//===--------------------- Scheduler.cpp ------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // A scheduler for processor resource units and processor resource groups. // //===----------------------------------------------------------------------===// #include "Scheduler.h" #include "Backend.h" #include "HWEventListener.h" #include "Support.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #define DEBUG_TYPE "llvm-mca" namespace mca { using namespace llvm; uint64_t ResourceState::selectNextInSequence() { assert(isReady()); uint64_t Next = getNextInSequence(); while (!isSubResourceReady(Next)) { updateNextInSequence(); Next = getNextInSequence(); } return Next; } #ifndef NDEBUG void ResourceState::dump() const { dbgs() << "MASK: " << ResourceMask << ", SIZE_MASK: " << ResourceSizeMask << ", NEXT: " << NextInSequenceMask << ", RDYMASK: " << ReadyMask << ", BufferSize=" << BufferSize << ", AvailableSlots=" << AvailableSlots << ", Reserved=" << Unavailable << '\n'; } #endif void ResourceManager::initialize(const llvm::MCSchedModel &SM) { computeProcResourceMasks(SM, ProcResID2Mask); for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) addResource(*SM.getProcResource(I), I, ProcResID2Mask[I]); } // Adds a new resource state in Resources, as well as a new descriptor in // ResourceDescriptor. Map 'Resources' allows to quickly obtain ResourceState // objects from resource mask identifiers. void ResourceManager::addResource(const MCProcResourceDesc &Desc, unsigned Index, uint64_t Mask) { assert(Resources.find(Mask) == Resources.end() && "Resource already added!"); Resources[Mask] = llvm::make_unique(Desc, Index, Mask); } // Returns the actual resource consumed by this Use. // First, is the primary resource ID. // Second, is the specific sub-resource ID. std::pair ResourceManager::selectPipe(uint64_t ResourceID) { ResourceState &RS = *Resources[ResourceID]; uint64_t SubResourceID = RS.selectNextInSequence(); if (RS.isAResourceGroup()) return selectPipe(SubResourceID); return std::pair(ResourceID, SubResourceID); } void ResourceState::removeFromNextInSequence(uint64_t ID) { assert(NextInSequenceMask); assert(countPopulation(ID) == 1); if (ID > getNextInSequence()) RemovedFromNextInSequence |= ID; NextInSequenceMask = NextInSequenceMask & (~ID); if (!NextInSequenceMask) { NextInSequenceMask = ResourceSizeMask; assert(NextInSequenceMask != RemovedFromNextInSequence); NextInSequenceMask ^= RemovedFromNextInSequence; RemovedFromNextInSequence = 0; } } void ResourceManager::use(ResourceRef RR) { // Mark the sub-resource referenced by RR as used. ResourceState &RS = *Resources[RR.first]; RS.markSubResourceAsUsed(RR.second); // If there are still available units in RR.first, // then we are done. if (RS.isReady()) return; // Notify to other resources that RR.first is no longer available. for (const std::pair &Res : Resources) { ResourceState &Current = *Res.second.get(); if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) continue; if (Current.containsResource(RR.first)) { Current.markSubResourceAsUsed(RR.first); Current.removeFromNextInSequence(RR.first); } } } void ResourceManager::release(ResourceRef RR) { ResourceState &RS = *Resources[RR.first]; bool WasFullyUsed = !RS.isReady(); RS.releaseSubResource(RR.second); if (!WasFullyUsed) return; for (const std::pair &Res : Resources) { ResourceState &Current = *Res.second.get(); if (!Current.isAResourceGroup() || Current.getResourceMask() == RR.first) continue; if (Current.containsResource(RR.first)) Current.releaseSubResource(RR.first); } } ResourceStateEvent ResourceManager::canBeDispatched(ArrayRef Buffers) const { ResourceStateEvent Result = ResourceStateEvent::RS_BUFFER_AVAILABLE; for (uint64_t Buffer : Buffers) { Result = isBufferAvailable(Buffer); if (Result != ResourceStateEvent::RS_BUFFER_AVAILABLE) break; } return Result; } void ResourceManager::reserveBuffers(ArrayRef Buffers) { for (const uint64_t R : Buffers) { reserveBuffer(R); ResourceState &Resource = *Resources[R]; if (Resource.isADispatchHazard()) { assert(!Resource.isReserved()); Resource.setReserved(); } } } void ResourceManager::releaseBuffers(ArrayRef Buffers) { for (const uint64_t R : Buffers) releaseBuffer(R); } bool ResourceManager::canBeIssued(const InstrDesc &Desc) const { return std::all_of(Desc.Resources.begin(), Desc.Resources.end(), [&](const std::pair &E) { unsigned NumUnits = E.second.isReserved() ? 0U : E.second.NumUnits; return isReady(E.first, NumUnits); }); } // Returns true if all resources are in-order, and there is at least one // resource which is a dispatch hazard (BufferSize = 0). bool ResourceManager::mustIssueImmediately(const InstrDesc &Desc) { if (!canBeIssued(Desc)) return false; bool AllInOrderResources = std::all_of( Desc.Buffers.begin(), Desc.Buffers.end(), [&](const unsigned BufferMask) { const ResourceState &Resource = *Resources[BufferMask]; return Resource.isInOrder() || Resource.isADispatchHazard(); }); if (!AllInOrderResources) return false; return std::any_of(Desc.Buffers.begin(), Desc.Buffers.end(), [&](const unsigned BufferMask) { return Resources[BufferMask]->isADispatchHazard(); }); } void ResourceManager::issueInstruction( unsigned Index, const InstrDesc &Desc, SmallVectorImpl> &Pipes) { for (const std::pair &R : Desc.Resources) { const CycleSegment &CS = R.second.CS; if (!CS.size()) { releaseResource(R.first); continue; } assert(CS.begin() == 0 && "Invalid {Start, End} cycles!"); if (!R.second.isReserved()) { ResourceRef Pipe = selectPipe(R.first); use(Pipe); BusyResources[Pipe] += CS.size(); // Replace the resource mask with a valid processor resource index. const ResourceState &RS = *Resources[Pipe.first]; Pipe.first = RS.getProcResourceID(); Pipes.emplace_back( std::pair(Pipe, static_cast(CS.size()))); } else { assert((countPopulation(R.first) > 1) && "Expected a group!"); // Mark this group as reserved. assert(R.second.isReserved()); reserveResource(R.first); BusyResources[ResourceRef(R.first, R.first)] += CS.size(); } } } void ResourceManager::cycleEvent(SmallVectorImpl &ResourcesFreed) { for (std::pair &BR : BusyResources) { if (BR.second) BR.second--; if (!BR.second) { // Release this resource. const ResourceRef &RR = BR.first; if (countPopulation(RR.first) == 1) release(RR); releaseResource(RR.first); ResourcesFreed.push_back(RR); } } for (const ResourceRef &RF : ResourcesFreed) BusyResources.erase(RF); } void Scheduler::scheduleInstruction(unsigned Idx, Instruction &MCIS) { assert(WaitQueue.find(Idx) == WaitQueue.end()); assert(ReadyQueue.find(Idx) == ReadyQueue.end()); assert(IssuedQueue.find(Idx) == IssuedQueue.end()); // Special case where MCIS is a zero-latency instruction. A zero-latency // instruction doesn't consume any scheduler resources. That is because it // doesn't need to be executed. Most of the times, zero latency instructions // are removed at register renaming stage. For example, register-register // moves can be removed at register renaming stage by creating new aliases. // Zero-idiom instruction (for example: a `xor reg, reg`) can also be // eliminated at register renaming stage, since we know in advance that those // clear their output register. if (MCIS.isZeroLatency()) { assert(MCIS.isReady() && "data dependent zero-latency instruction?"); notifyInstructionReady(Idx); MCIS.execute(); notifyInstructionIssued(Idx, {}); assert(MCIS.isExecuted() && "Unexpected non-zero latency!"); notifyInstructionExecuted(Idx); return; } const InstrDesc &Desc = MCIS.getDesc(); if (!Desc.Buffers.empty()) { // Reserve a slot in each buffered resource. Also, mark units with // BufferSize=0 as reserved. Resources with a buffer size of zero will only // be released after MCIS is issued, and all the ResourceCycles for those // units have been consumed. Resources->reserveBuffers(Desc.Buffers); notifyReservedBuffers(Desc.Buffers); } // If necessary, reserve queue entries in the load-store unit (LSU). bool Reserved = LSU->reserve(Idx, Desc); if (!MCIS.isReady() || (Reserved && !LSU->isReady(Idx))) { DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Wait Queue\n"); WaitQueue[Idx] = &MCIS; return; } notifyInstructionReady(Idx); // Special case where the instruction is ready, and it uses an in-order // dispatch/issue processor resource. The instruction is issued immediately to // the pipelines. Any other in-order buffered resources (i.e. BufferSize=1) // are consumed. if (Resources->mustIssueImmediately(Desc)) { DEBUG(dbgs() << "[SCHEDULER] Instruction " << Idx << " issued immediately\n"); return issueInstruction(MCIS, Idx); } DEBUG(dbgs() << "[SCHEDULER] Adding " << Idx << " to the Ready Queue\n"); ReadyQueue[Idx] = &MCIS; } void Scheduler::cycleEvent(unsigned /* unused */) { SmallVector ResourcesFreed; Resources->cycleEvent(ResourcesFreed); for (const ResourceRef &RR : ResourcesFreed) notifyResourceAvailable(RR); updateIssuedQueue(); updatePendingQueue(); bool InstructionsWerePromoted = false; do { InstructionsWerePromoted = issue(); } while(InstructionsWerePromoted); } #ifndef NDEBUG void Scheduler::dump() const { dbgs() << "[SCHEDULER]: WaitQueue size is: " << WaitQueue.size() << '\n'; dbgs() << "[SCHEDULER]: ReadyQueue size is: " << ReadyQueue.size() << '\n'; dbgs() << "[SCHEDULER]: IssuedQueue size is: " << IssuedQueue.size() << '\n'; Resources->dump(); } #endif Scheduler::Event Scheduler::canBeDispatched(const InstrDesc &Desc) const { if (Desc.MayLoad && LSU->isLQFull()) return HWS_LD_QUEUE_UNAVAILABLE; if (Desc.MayStore && LSU->isSQFull()) return HWS_ST_QUEUE_UNAVAILABLE; Scheduler::Event Event; switch (Resources->canBeDispatched(Desc.Buffers)) { case ResourceStateEvent::RS_BUFFER_AVAILABLE: Event = HWS_AVAILABLE; break; case ResourceStateEvent::RS_BUFFER_UNAVAILABLE: Event = HWS_QUEUE_UNAVAILABLE; break; case ResourceStateEvent::RS_RESERVED: Event = HWS_DISPATCH_GROUP_RESTRICTION; } return Event; } void Scheduler::issueInstruction(Instruction &IS, unsigned InstrIndex) { const InstrDesc &D = IS.getDesc(); if (!D.Buffers.empty()) { Resources->releaseBuffers(D.Buffers); notifyReleasedBuffers(D.Buffers); } // Issue the instruction and collect all the consumed resources // into a vector. That vector is then used to notify the listener. // Most instructions consume very few resurces (typically one or // two resources). We use a small vector here, and conservatively // initialize its capacity to 4. This should address the majority of // the cases. SmallVector, 4> UsedResources; Resources->issueInstruction(InstrIndex, D, UsedResources); // Notify the instruction that it started executing. // This updates the internal state of each write. IS.execute(); notifyInstructionIssued(InstrIndex, UsedResources); if (D.MaxLatency) { assert(IS.isExecuting() && "A zero latency instruction?"); IssuedQueue[InstrIndex] = &IS; return; } // A zero latency instruction which reads and/or updates registers. assert(IS.isExecuted() && "Instruction still executing!"); notifyInstructionExecuted(InstrIndex); } bool Scheduler::promoteToReadyQueue() { // Scan the set of waiting instructions and promote them to the // ready queue if operands are all ready. bool InstructionsWerePromoted = false; for (auto I = WaitQueue.begin(), E = WaitQueue.end(); I != E;) { const QueueEntryTy &Entry = *I; // Check if this instruction is now ready. In case, force // a transition in state using method 'update()'. Entry.second->update(); bool IsReady = Entry.second->isReady(); const InstrDesc &Desc = Entry.second->getDesc(); bool IsMemOp = Desc.MayLoad || Desc.MayStore; if (IsReady && IsMemOp) IsReady &= LSU->isReady(Entry.first); if (IsReady) { notifyInstructionReady(Entry.first); ReadyQueue[Entry.first] = Entry.second; auto ToRemove = I; ++I; WaitQueue.erase(ToRemove); InstructionsWerePromoted = true; } else { ++I; } } return InstructionsWerePromoted; } bool Scheduler::issue() { std::vector ToRemove; for (const QueueEntryTy QueueEntry : ReadyQueue) { // Give priority to older instructions in ReadyQueue. The ready queue is // ordered by key, and therefore older instructions are visited first. Instruction &IS = *QueueEntry.second; const InstrDesc &D = IS.getDesc(); if (!Resources->canBeIssued(D)) continue; unsigned InstrIndex = QueueEntry.first; issueInstruction(IS, InstrIndex); ToRemove.emplace_back(InstrIndex); } if (ToRemove.empty()) return false; for (const unsigned InstrIndex : ToRemove) ReadyQueue.erase(InstrIndex); // Instructions that have been issued during this cycle might have unblocked // other dependent instructions. Dependent instructions // may be issued during this same cycle if operands have ReadAdvance entries. // Promote those instructions to the ReadyQueue and tell to the caller that // we need another round of 'issue()'. return promoteToReadyQueue(); } void Scheduler::updatePendingQueue() { // Notify to instructions in the pending queue that a new cycle just // started. for (QueueEntryTy Entry : WaitQueue) Entry.second->cycleEvent(); promoteToReadyQueue(); } void Scheduler::updateIssuedQueue() { for (auto I = IssuedQueue.begin(), E = IssuedQueue.end(); I != E;) { const QueueEntryTy Entry = *I; Entry.second->cycleEvent(); if (Entry.second->isExecuted()) { notifyInstructionExecuted(Entry.first); auto ToRemove = I; ++I; IssuedQueue.erase(ToRemove); } else { DEBUG(dbgs() << "[SCHEDULER]: Instruction " << Entry.first << " is still executing.\n"); ++I; } } } void Scheduler::notifyInstructionIssued( unsigned Index, ArrayRef> Used) { DEBUG({ dbgs() << "[E] Instruction Issued: " << Index << '\n'; for (const std::pair &Resource : Used) { dbgs() << "[E] Resource Used: [" << Resource.first.first << '.' << Resource.first.second << "]\n"; dbgs() << " cycles: " << Resource.second << '\n'; } }); Owner->notifyInstructionEvent(HWInstructionIssuedEvent(Index, Used)); } void Scheduler::notifyInstructionExecuted(unsigned Index) { LSU->onInstructionExecuted(Index); DEBUG(dbgs() << "[E] Instruction Executed: " << Index << '\n'); Owner->notifyInstructionEvent( HWInstructionEvent(HWInstructionEvent::Executed, Index)); const Instruction &IS = Owner->getInstruction(Index); DU->onInstructionExecuted(IS.getRCUTokenID()); } void Scheduler::notifyInstructionReady(unsigned Index) { DEBUG(dbgs() << "[E] Instruction Ready: " << Index << '\n'); Owner->notifyInstructionEvent( HWInstructionEvent(HWInstructionEvent::Ready, Index)); } void Scheduler::notifyResourceAvailable(const ResourceRef &RR) { Owner->notifyResourceAvailable(RR); } void Scheduler::notifyReservedBuffers(ArrayRef Buffers) { SmallVector BufferIDs(Buffers.begin(), Buffers.end()); std::transform( Buffers.begin(), Buffers.end(), BufferIDs.begin(), [&](uint64_t Op) { return Resources->resolveResourceMask(Op); }); Owner->notifyReservedBuffers(BufferIDs); } void Scheduler::notifyReleasedBuffers(ArrayRef Buffers) { SmallVector BufferIDs(Buffers.begin(), Buffers.end()); std::transform( Buffers.begin(), Buffers.end(), BufferIDs.begin(), [&](uint64_t Op) { return Resources->resolveResourceMask(Op); }); Owner->notifyReleasedBuffers(BufferIDs); } } // namespace mca