llvm-mirror/include/llvm/ADT/AllocatorList.h
Chandler Carruth ae65e281f3 Update the file headers across all of the LLVM projects in the monorepo
to reflect the new license.

We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.

Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.

llvm-svn: 351636
2019-01-19 08:50:56 +00:00

241 lines
7.5 KiB
C++

//===- llvm/ADT/AllocatorList.h - Custom allocator list ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ADT_ALLOCATORLIST_H
#define LLVM_ADT_ALLOCATORLIST_H
#include "llvm/ADT/ilist_node.h"
#include "llvm/ADT/iterator.h"
#include "llvm/ADT/simple_ilist.h"
#include "llvm/Support/Allocator.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <iterator>
#include <type_traits>
#include <utility>
namespace llvm {
/// A linked-list with a custom, local allocator.
///
/// Expose a std::list-like interface that owns and uses a custom LLVM-style
/// allocator (e.g., BumpPtrAllocator), leveraging \a simple_ilist for the
/// implementation details.
///
/// Because this list owns the allocator, calling \a splice() with a different
/// list isn't generally safe. As such, \a splice has been left out of the
/// interface entirely.
template <class T, class AllocatorT> class AllocatorList : AllocatorT {
struct Node : ilist_node<Node> {
Node(Node &&) = delete;
Node(const Node &) = delete;
Node &operator=(Node &&) = delete;
Node &operator=(const Node &) = delete;
Node(T &&V) : V(std::move(V)) {}
Node(const T &V) : V(V) {}
template <class... Ts> Node(Ts &&... Vs) : V(std::forward<Ts>(Vs)...) {}
T V;
};
using list_type = simple_ilist<Node>;
list_type List;
AllocatorT &getAlloc() { return *this; }
const AllocatorT &getAlloc() const { return *this; }
template <class... ArgTs> Node *create(ArgTs &&... Args) {
return new (getAlloc()) Node(std::forward<ArgTs>(Args)...);
}
struct Cloner {
AllocatorList &AL;
Cloner(AllocatorList &AL) : AL(AL) {}
Node *operator()(const Node &N) const { return AL.create(N.V); }
};
struct Disposer {
AllocatorList &AL;
Disposer(AllocatorList &AL) : AL(AL) {}
void operator()(Node *N) const {
N->~Node();
AL.getAlloc().Deallocate(N);
}
};
public:
using value_type = T;
using pointer = T *;
using reference = T &;
using const_pointer = const T *;
using const_reference = const T &;
using size_type = typename list_type::size_type;
using difference_type = typename list_type::difference_type;
private:
template <class ValueT, class IteratorBase>
class IteratorImpl
: public iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>,
IteratorBase,
std::bidirectional_iterator_tag, ValueT> {
template <class OtherValueT, class OtherIteratorBase>
friend class IteratorImpl;
friend AllocatorList;
using base_type =
iterator_adaptor_base<IteratorImpl<ValueT, IteratorBase>, IteratorBase,
std::bidirectional_iterator_tag, ValueT>;
public:
using value_type = ValueT;
using pointer = ValueT *;
using reference = ValueT &;
IteratorImpl() = default;
IteratorImpl(const IteratorImpl &) = default;
IteratorImpl &operator=(const IteratorImpl &) = default;
explicit IteratorImpl(const IteratorBase &I) : base_type(I) {}
template <class OtherValueT, class OtherIteratorBase>
IteratorImpl(const IteratorImpl<OtherValueT, OtherIteratorBase> &X,
typename std::enable_if<std::is_convertible<
OtherIteratorBase, IteratorBase>::value>::type * = nullptr)
: base_type(X.wrapped()) {}
~IteratorImpl() = default;
reference operator*() const { return base_type::wrapped()->V; }
pointer operator->() const { return &operator*(); }
friend bool operator==(const IteratorImpl &L, const IteratorImpl &R) {
return L.wrapped() == R.wrapped();
}
friend bool operator!=(const IteratorImpl &L, const IteratorImpl &R) {
return !(L == R);
}
};
public:
using iterator = IteratorImpl<T, typename list_type::iterator>;
using reverse_iterator =
IteratorImpl<T, typename list_type::reverse_iterator>;
using const_iterator =
IteratorImpl<const T, typename list_type::const_iterator>;
using const_reverse_iterator =
IteratorImpl<const T, typename list_type::const_reverse_iterator>;
AllocatorList() = default;
AllocatorList(AllocatorList &&X)
: AllocatorT(std::move(X.getAlloc())), List(std::move(X.List)) {}
AllocatorList(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
}
AllocatorList &operator=(AllocatorList &&X) {
clear(); // Dispose of current nodes explicitly.
List = std::move(X.List);
getAlloc() = std::move(X.getAlloc());
return *this;
}
AllocatorList &operator=(const AllocatorList &X) {
List.cloneFrom(X.List, Cloner(*this), Disposer(*this));
return *this;
}
~AllocatorList() { clear(); }
void swap(AllocatorList &RHS) {
List.swap(RHS.List);
std::swap(getAlloc(), RHS.getAlloc());
}
bool empty() { return List.empty(); }
size_t size() { return List.size(); }
iterator begin() { return iterator(List.begin()); }
iterator end() { return iterator(List.end()); }
const_iterator begin() const { return const_iterator(List.begin()); }
const_iterator end() const { return const_iterator(List.end()); }
reverse_iterator rbegin() { return reverse_iterator(List.rbegin()); }
reverse_iterator rend() { return reverse_iterator(List.rend()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(List.rbegin());
}
const_reverse_iterator rend() const {
return const_reverse_iterator(List.rend());
}
T &back() { return List.back().V; }
T &front() { return List.front().V; }
const T &back() const { return List.back().V; }
const T &front() const { return List.front().V; }
template <class... Ts> iterator emplace(iterator I, Ts &&... Vs) {
return iterator(List.insert(I.wrapped(), *create(std::forward<Ts>(Vs)...)));
}
iterator insert(iterator I, T &&V) {
return iterator(List.insert(I.wrapped(), *create(std::move(V))));
}
iterator insert(iterator I, const T &V) {
return iterator(List.insert(I.wrapped(), *create(V)));
}
template <class Iterator>
void insert(iterator I, Iterator First, Iterator Last) {
for (; First != Last; ++First)
List.insert(I.wrapped(), *create(*First));
}
iterator erase(iterator I) {
return iterator(List.eraseAndDispose(I.wrapped(), Disposer(*this)));
}
iterator erase(iterator First, iterator Last) {
return iterator(
List.eraseAndDispose(First.wrapped(), Last.wrapped(), Disposer(*this)));
}
void clear() { List.clearAndDispose(Disposer(*this)); }
void pop_back() { List.eraseAndDispose(--List.end(), Disposer(*this)); }
void pop_front() { List.eraseAndDispose(List.begin(), Disposer(*this)); }
void push_back(T &&V) { insert(end(), std::move(V)); }
void push_front(T &&V) { insert(begin(), std::move(V)); }
void push_back(const T &V) { insert(end(), V); }
void push_front(const T &V) { insert(begin(), V); }
template <class... Ts> void emplace_back(Ts &&... Vs) {
emplace(end(), std::forward<Ts>(Vs)...);
}
template <class... Ts> void emplace_front(Ts &&... Vs) {
emplace(begin(), std::forward<Ts>(Vs)...);
}
/// Reset the underlying allocator.
///
/// \pre \c empty()
void resetAlloc() {
assert(empty() && "Cannot reset allocator if not empty");
getAlloc().Reset();
}
};
template <class T> using BumpPtrList = AllocatorList<T, BumpPtrAllocator>;
} // end namespace llvm
#endif // LLVM_ADT_ALLOCATORLIST_H