llvm-mirror/lib/Bitcode/Reader/BitcodeReader.cpp
Bill Wendling 691930eeb9 Have the bitcode writer and reader handle the new attribute references.
The bitcode writer emits a reference to the attribute group that the object at
the given index refers to. The bitcode reader is modified to read this in and
map it back to the attribute group.

llvm-svn: 174952
2013-02-12 08:13:50 +00:00

3112 lines
110 KiB
C++

//===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Bitcode/ReaderWriter.h"
#include "BitcodeReader.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/AutoUpgrade.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/OperandTraits.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/DataStream.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
using namespace llvm;
enum {
SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
};
void BitcodeReader::materializeForwardReferencedFunctions() {
while (!BlockAddrFwdRefs.empty()) {
Function *F = BlockAddrFwdRefs.begin()->first;
F->Materialize();
}
}
void BitcodeReader::FreeState() {
if (BufferOwned)
delete Buffer;
Buffer = 0;
std::vector<Type*>().swap(TypeList);
ValueList.clear();
MDValueList.clear();
std::vector<AttributeSet>().swap(MAttributes);
std::vector<BasicBlock*>().swap(FunctionBBs);
std::vector<Function*>().swap(FunctionsWithBodies);
DeferredFunctionInfo.clear();
MDKindMap.clear();
assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references");
}
//===----------------------------------------------------------------------===//
// Helper functions to implement forward reference resolution, etc.
//===----------------------------------------------------------------------===//
/// ConvertToString - Convert a string from a record into an std::string, return
/// true on failure.
template<typename StrTy>
static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx,
StrTy &Result) {
if (Idx > Record.size())
return true;
for (unsigned i = Idx, e = Record.size(); i != e; ++i)
Result += (char)Record[i];
return false;
}
static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
switch (Val) {
default: // Map unknown/new linkages to external
case 0: return GlobalValue::ExternalLinkage;
case 1: return GlobalValue::WeakAnyLinkage;
case 2: return GlobalValue::AppendingLinkage;
case 3: return GlobalValue::InternalLinkage;
case 4: return GlobalValue::LinkOnceAnyLinkage;
case 5: return GlobalValue::DLLImportLinkage;
case 6: return GlobalValue::DLLExportLinkage;
case 7: return GlobalValue::ExternalWeakLinkage;
case 8: return GlobalValue::CommonLinkage;
case 9: return GlobalValue::PrivateLinkage;
case 10: return GlobalValue::WeakODRLinkage;
case 11: return GlobalValue::LinkOnceODRLinkage;
case 12: return GlobalValue::AvailableExternallyLinkage;
case 13: return GlobalValue::LinkerPrivateLinkage;
case 14: return GlobalValue::LinkerPrivateWeakLinkage;
case 15: return GlobalValue::LinkOnceODRAutoHideLinkage;
}
}
static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
switch (Val) {
default: // Map unknown visibilities to default.
case 0: return GlobalValue::DefaultVisibility;
case 1: return GlobalValue::HiddenVisibility;
case 2: return GlobalValue::ProtectedVisibility;
}
}
static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) {
switch (Val) {
case 0: return GlobalVariable::NotThreadLocal;
default: // Map unknown non-zero value to general dynamic.
case 1: return GlobalVariable::GeneralDynamicTLSModel;
case 2: return GlobalVariable::LocalDynamicTLSModel;
case 3: return GlobalVariable::InitialExecTLSModel;
case 4: return GlobalVariable::LocalExecTLSModel;
}
}
static int GetDecodedCastOpcode(unsigned Val) {
switch (Val) {
default: return -1;
case bitc::CAST_TRUNC : return Instruction::Trunc;
case bitc::CAST_ZEXT : return Instruction::ZExt;
case bitc::CAST_SEXT : return Instruction::SExt;
case bitc::CAST_FPTOUI : return Instruction::FPToUI;
case bitc::CAST_FPTOSI : return Instruction::FPToSI;
case bitc::CAST_UITOFP : return Instruction::UIToFP;
case bitc::CAST_SITOFP : return Instruction::SIToFP;
case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
case bitc::CAST_FPEXT : return Instruction::FPExt;
case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
case bitc::CAST_BITCAST : return Instruction::BitCast;
}
}
static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) {
switch (Val) {
default: return -1;
case bitc::BINOP_ADD:
return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
case bitc::BINOP_SUB:
return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
case bitc::BINOP_MUL:
return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
case bitc::BINOP_UDIV: return Instruction::UDiv;
case bitc::BINOP_SDIV:
return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
case bitc::BINOP_UREM: return Instruction::URem;
case bitc::BINOP_SREM:
return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
case bitc::BINOP_SHL: return Instruction::Shl;
case bitc::BINOP_LSHR: return Instruction::LShr;
case bitc::BINOP_ASHR: return Instruction::AShr;
case bitc::BINOP_AND: return Instruction::And;
case bitc::BINOP_OR: return Instruction::Or;
case bitc::BINOP_XOR: return Instruction::Xor;
}
}
static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) {
switch (Val) {
default: return AtomicRMWInst::BAD_BINOP;
case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
case bitc::RMW_ADD: return AtomicRMWInst::Add;
case bitc::RMW_SUB: return AtomicRMWInst::Sub;
case bitc::RMW_AND: return AtomicRMWInst::And;
case bitc::RMW_NAND: return AtomicRMWInst::Nand;
case bitc::RMW_OR: return AtomicRMWInst::Or;
case bitc::RMW_XOR: return AtomicRMWInst::Xor;
case bitc::RMW_MAX: return AtomicRMWInst::Max;
case bitc::RMW_MIN: return AtomicRMWInst::Min;
case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
}
}
static AtomicOrdering GetDecodedOrdering(unsigned Val) {
switch (Val) {
case bitc::ORDERING_NOTATOMIC: return NotAtomic;
case bitc::ORDERING_UNORDERED: return Unordered;
case bitc::ORDERING_MONOTONIC: return Monotonic;
case bitc::ORDERING_ACQUIRE: return Acquire;
case bitc::ORDERING_RELEASE: return Release;
case bitc::ORDERING_ACQREL: return AcquireRelease;
default: // Map unknown orderings to sequentially-consistent.
case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
}
}
static SynchronizationScope GetDecodedSynchScope(unsigned Val) {
switch (Val) {
case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
default: // Map unknown scopes to cross-thread.
case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
}
}
namespace llvm {
namespace {
/// @brief A class for maintaining the slot number definition
/// as a placeholder for the actual definition for forward constants defs.
class ConstantPlaceHolder : public ConstantExpr {
void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION;
public:
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context)
: ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
}
/// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
static bool classof(const Value *V) {
return isa<ConstantExpr>(V) &&
cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
}
/// Provide fast operand accessors
//DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
};
}
// FIXME: can we inherit this from ConstantExpr?
template <>
struct OperandTraits<ConstantPlaceHolder> :
public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
};
}
void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
if (Idx == size()) {
push_back(V);
return;
}
if (Idx >= size())
resize(Idx+1);
WeakVH &OldV = ValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
// Handle constants and non-constants (e.g. instrs) differently for
// efficiency.
if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
ResolveConstants.push_back(std::make_pair(PHC, Idx));
OldV = V;
} else {
// If there was a forward reference to this value, replace it.
Value *PrevVal = OldV;
OldV->replaceAllUsesWith(V);
delete PrevVal;
}
}
Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert(Ty == V->getType() && "Type mismatch in constant table!");
return cast<Constant>(V);
}
// Create and return a placeholder, which will later be RAUW'd.
Constant *C = new ConstantPlaceHolder(Ty, Context);
ValuePtrs[Idx] = C;
return C;
}
Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = ValuePtrs[Idx]) {
assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
return V;
}
// No type specified, must be invalid reference.
if (Ty == 0) return 0;
// Create and return a placeholder, which will later be RAUW'd.
Value *V = new Argument(Ty);
ValuePtrs[Idx] = V;
return V;
}
/// ResolveConstantForwardRefs - Once all constants are read, this method bulk
/// resolves any forward references. The idea behind this is that we sometimes
/// get constants (such as large arrays) which reference *many* forward ref
/// constants. Replacing each of these causes a lot of thrashing when
/// building/reuniquing the constant. Instead of doing this, we look at all the
/// uses and rewrite all the place holders at once for any constant that uses
/// a placeholder.
void BitcodeReaderValueList::ResolveConstantForwardRefs() {
// Sort the values by-pointer so that they are efficient to look up with a
// binary search.
std::sort(ResolveConstants.begin(), ResolveConstants.end());
SmallVector<Constant*, 64> NewOps;
while (!ResolveConstants.empty()) {
Value *RealVal = operator[](ResolveConstants.back().second);
Constant *Placeholder = ResolveConstants.back().first;
ResolveConstants.pop_back();
// Loop over all users of the placeholder, updating them to reference the
// new value. If they reference more than one placeholder, update them all
// at once.
while (!Placeholder->use_empty()) {
Value::use_iterator UI = Placeholder->use_begin();
User *U = *UI;
// If the using object isn't uniqued, just update the operands. This
// handles instructions and initializers for global variables.
if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
UI.getUse().set(RealVal);
continue;
}
// Otherwise, we have a constant that uses the placeholder. Replace that
// constant with a new constant that has *all* placeholder uses updated.
Constant *UserC = cast<Constant>(U);
for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
I != E; ++I) {
Value *NewOp;
if (!isa<ConstantPlaceHolder>(*I)) {
// Not a placeholder reference.
NewOp = *I;
} else if (*I == Placeholder) {
// Common case is that it just references this one placeholder.
NewOp = RealVal;
} else {
// Otherwise, look up the placeholder in ResolveConstants.
ResolveConstantsTy::iterator It =
std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
std::pair<Constant*, unsigned>(cast<Constant>(*I),
0));
assert(It != ResolveConstants.end() && It->first == *I);
NewOp = operator[](It->second);
}
NewOps.push_back(cast<Constant>(NewOp));
}
// Make the new constant.
Constant *NewC;
if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
NewC = ConstantArray::get(UserCA->getType(), NewOps);
} else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
NewC = ConstantStruct::get(UserCS->getType(), NewOps);
} else if (isa<ConstantVector>(UserC)) {
NewC = ConstantVector::get(NewOps);
} else {
assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
}
UserC->replaceAllUsesWith(NewC);
UserC->destroyConstant();
NewOps.clear();
}
// Update all ValueHandles, they should be the only users at this point.
Placeholder->replaceAllUsesWith(RealVal);
delete Placeholder;
}
}
void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
if (Idx == size()) {
push_back(V);
return;
}
if (Idx >= size())
resize(Idx+1);
WeakVH &OldV = MDValuePtrs[Idx];
if (OldV == 0) {
OldV = V;
return;
}
// If there was a forward reference to this value, replace it.
MDNode *PrevVal = cast<MDNode>(OldV);
OldV->replaceAllUsesWith(V);
MDNode::deleteTemporary(PrevVal);
// Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
// value for Idx.
MDValuePtrs[Idx] = V;
}
Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
if (Idx >= size())
resize(Idx + 1);
if (Value *V = MDValuePtrs[Idx]) {
assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
return V;
}
// Create and return a placeholder, which will later be RAUW'd.
Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>());
MDValuePtrs[Idx] = V;
return V;
}
Type *BitcodeReader::getTypeByID(unsigned ID) {
// The type table size is always specified correctly.
if (ID >= TypeList.size())
return 0;
if (Type *Ty = TypeList[ID])
return Ty;
// If we have a forward reference, the only possible case is when it is to a
// named struct. Just create a placeholder for now.
return TypeList[ID] = StructType::create(Context);
}
//===----------------------------------------------------------------------===//
// Functions for parsing blocks from the bitcode file
//===----------------------------------------------------------------------===//
/// \brief This fills an AttrBuilder object with the LLVM attributes that have
/// been decoded from the given integer. This function must stay in sync with
/// 'encodeLLVMAttributesForBitcode'.
static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
uint64_t EncodedAttrs) {
// FIXME: Remove in 4.0.
// The alignment is stored as a 16-bit raw value from bits 31--16. We shift
// the bits above 31 down by 11 bits.
unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
assert((!Alignment || isPowerOf2_32(Alignment)) &&
"Alignment must be a power of two.");
if (Alignment)
B.addAlignmentAttr(Alignment);
B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
(EncodedAttrs & 0xffff));
}
bool BitcodeReader::ParseAttributeBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
return Error("Malformed block record");
if (!MAttributes.empty())
return Error("Multiple PARAMATTR blocks found!");
SmallVector<uint64_t, 64> Record;
SmallVector<AttributeSet, 8> Attrs;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Error at end of PARAMATTR block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
// FIXME: Remove in 4.0.
if (Record.size() & 1)
return Error("Invalid ENTRY record");
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
AttrBuilder B;
decodeLLVMAttributesForBitcode(B, Record[i+1]);
Attrs.push_back(AttributeSet::get(Context, Record[i], B));
}
MAttributes.push_back(AttributeSet::get(Context, Attrs));
Attrs.clear();
break;
}
case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
for (unsigned i = 0, e = Record.size(); i != e; ++i)
Attrs.push_back(MAttributeGroups[Record[i]]);
MAttributes.push_back(AttributeSet::get(Context, Attrs));
Attrs.clear();
break;
}
}
}
}
bool BitcodeReader::ParseAttributeGroupBlock() {
if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
return Error("Malformed block record");
if (!MAttributeGroups.empty())
return Error("Multiple PARAMATTR_GROUP blocks found!");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("Error at end of PARAMATTR_GROUP block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
if (Record.size() < 3)
return Error("Invalid ENTRY record");
uint64_t GrpID = Record[0];
uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
AttrBuilder B;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Record[i] == 0) { // Enum attribute
B.addAttribute(Attribute::AttrKind(Record[++i]));
} else if (Record[i] == 1) { // Align attribute
if (Attribute::AttrKind(Record[++i]) == Attribute::Alignment)
B.addAlignmentAttr(Record[++i]);
else
B.addStackAlignmentAttr(Record[++i]);
} else { // String attribute
assert((Record[i] == 3 || Record[i] == 4) &&
"Invalid attribute group entry");
bool HasValue = (Record[i++] == 4);
SmallString<64> KindStr;
SmallString<64> ValStr;
while (Record[i] != 0 && i != e)
KindStr += Record[i++];
assert(Record[i] == 0 && "Kind string not null terminated");
if (HasValue) {
// Has a value associated with it.
++i; // Skip the '0' that terminates the "kind" string.
while (Record[i] != 0 && i != e)
ValStr += Record[i++];
assert(Record[i] == 0 && "Value string not null terminated");
}
B.addAttribute(KindStr.str(), ValStr.str());
}
}
MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
break;
}
}
}
}
bool BitcodeReader::ParseTypeTable() {
if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
return Error("Malformed block record");
return ParseTypeTableBody();
}
bool BitcodeReader::ParseTypeTableBody() {
if (!TypeList.empty())
return Error("Multiple TYPE_BLOCKs found!");
SmallVector<uint64_t, 64> Record;
unsigned NumRecords = 0;
SmallString<64> TypeName;
// Read all the records for this type table.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
Error("Error in the type table block");
return true;
case BitstreamEntry::EndBlock:
if (NumRecords != TypeList.size())
return Error("Invalid type forward reference in TYPE_BLOCK");
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Type *ResultTy = 0;
switch (Stream.readRecord(Entry.ID, Record)) {
default: return Error("unknown type in type table");
case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
// TYPE_CODE_NUMENTRY contains a count of the number of types in the
// type list. This allows us to reserve space.
if (Record.size() < 1)
return Error("Invalid TYPE_CODE_NUMENTRY record");
TypeList.resize(Record[0]);
continue;
case bitc::TYPE_CODE_VOID: // VOID
ResultTy = Type::getVoidTy(Context);
break;
case bitc::TYPE_CODE_HALF: // HALF
ResultTy = Type::getHalfTy(Context);
break;
case bitc::TYPE_CODE_FLOAT: // FLOAT
ResultTy = Type::getFloatTy(Context);
break;
case bitc::TYPE_CODE_DOUBLE: // DOUBLE
ResultTy = Type::getDoubleTy(Context);
break;
case bitc::TYPE_CODE_X86_FP80: // X86_FP80
ResultTy = Type::getX86_FP80Ty(Context);
break;
case bitc::TYPE_CODE_FP128: // FP128
ResultTy = Type::getFP128Ty(Context);
break;
case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
ResultTy = Type::getPPC_FP128Ty(Context);
break;
case bitc::TYPE_CODE_LABEL: // LABEL
ResultTy = Type::getLabelTy(Context);
break;
case bitc::TYPE_CODE_METADATA: // METADATA
ResultTy = Type::getMetadataTy(Context);
break;
case bitc::TYPE_CODE_X86_MMX: // X86_MMX
ResultTy = Type::getX86_MMXTy(Context);
break;
case bitc::TYPE_CODE_INTEGER: // INTEGER: [width]
if (Record.size() < 1)
return Error("Invalid Integer type record");
ResultTy = IntegerType::get(Context, Record[0]);
break;
case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
// [pointee type, address space]
if (Record.size() < 1)
return Error("Invalid POINTER type record");
unsigned AddressSpace = 0;
if (Record.size() == 2)
AddressSpace = Record[1];
ResultTy = getTypeByID(Record[0]);
if (ResultTy == 0) return Error("invalid element type in pointer type");
ResultTy = PointerType::get(ResultTy, AddressSpace);
break;
}
case bitc::TYPE_CODE_FUNCTION_OLD: {
// FIXME: attrid is dead, remove it in LLVM 4.0
// FUNCTION: [vararg, attrid, retty, paramty x N]
if (Record.size() < 3)
return Error("Invalid FUNCTION type record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 3, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[2]);
if (ResultTy == 0 || ArgTys.size() < Record.size()-3)
return Error("invalid type in function type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_FUNCTION: {
// FUNCTION: [vararg, retty, paramty x N]
if (Record.size() < 2)
return Error("Invalid FUNCTION type record");
SmallVector<Type*, 8> ArgTys;
for (unsigned i = 2, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
ArgTys.push_back(T);
else
break;
}
ResultTy = getTypeByID(Record[1]);
if (ResultTy == 0 || ArgTys.size() < Record.size()-2)
return Error("invalid type in function type");
ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid STRUCT type record");
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("invalid type in struct type");
ResultTy = StructType::get(Context, EltTys, Record[0]);
break;
}
case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N]
if (ConvertToString(Record, 0, TypeName))
return Error("Invalid STRUCT_NAME record");
continue;
case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
if (Record.size() < 1)
return Error("Invalid STRUCT type record");
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = 0;
} else // Otherwise, create a new struct.
Res = StructType::create(Context, TypeName);
TypeName.clear();
SmallVector<Type*, 8> EltTys;
for (unsigned i = 1, e = Record.size(); i != e; ++i) {
if (Type *T = getTypeByID(Record[i]))
EltTys.push_back(T);
else
break;
}
if (EltTys.size() != Record.size()-1)
return Error("invalid STRUCT type record");
Res->setBody(EltTys, Record[0]);
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: []
if (Record.size() != 1)
return Error("Invalid OPAQUE type record");
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
// Check to see if this was forward referenced, if so fill in the temp.
StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
if (Res) {
Res->setName(TypeName);
TypeList[NumRecords] = 0;
} else // Otherwise, create a new struct with no body.
Res = StructType::create(Context, TypeName);
TypeName.clear();
ResultTy = Res;
break;
}
case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid ARRAY type record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = ArrayType::get(ResultTy, Record[0]);
else
return Error("Invalid ARRAY type element");
break;
case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty]
if (Record.size() < 2)
return Error("Invalid VECTOR type record");
if ((ResultTy = getTypeByID(Record[1])))
ResultTy = VectorType::get(ResultTy, Record[0]);
else
return Error("Invalid ARRAY type element");
break;
}
if (NumRecords >= TypeList.size())
return Error("invalid TYPE table");
assert(ResultTy && "Didn't read a type?");
assert(TypeList[NumRecords] == 0 && "Already read type?");
TypeList[NumRecords++] = ResultTy;
}
}
bool BitcodeReader::ParseValueSymbolTable() {
if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
SmallString<128> ValueName;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("malformed value symbol table block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N]
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid VST_ENTRY record");
unsigned ValueID = Record[0];
if (ValueID >= ValueList.size())
return Error("Invalid Value ID in VST_ENTRY record");
Value *V = ValueList[ValueID];
V->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
case bitc::VST_CODE_BBENTRY: {
if (ConvertToString(Record, 1, ValueName))
return Error("Invalid VST_BBENTRY record");
BasicBlock *BB = getBasicBlock(Record[0]);
if (BB == 0)
return Error("Invalid BB ID in VST_BBENTRY record");
BB->setName(StringRef(ValueName.data(), ValueName.size()));
ValueName.clear();
break;
}
}
}
}
bool BitcodeReader::ParseMetadata() {
unsigned NextMDValueNo = MDValueList.size();
if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
Error("malformed metadata block");
return true;
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
bool IsFunctionLocal = false;
// Read a record.
Record.clear();
unsigned Code = Stream.readRecord(Entry.ID, Record);
switch (Code) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_NAME: {
// Read name of the named metadata.
SmallString<8> Name(Record.begin(), Record.end());
Record.clear();
Code = Stream.ReadCode();
// METADATA_NAME is always followed by METADATA_NAMED_NODE.
unsigned NextBitCode = Stream.readRecord(Code, Record);
assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode;
// Read named metadata elements.
unsigned Size = Record.size();
NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
for (unsigned i = 0; i != Size; ++i) {
MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
if (MD == 0)
return Error("Malformed metadata record");
NMD->addOperand(MD);
}
break;
}
case bitc::METADATA_FN_NODE:
IsFunctionLocal = true;
// fall-through
case bitc::METADATA_NODE: {
if (Record.size() % 2 == 1)
return Error("Invalid METADATA_NODE record");
unsigned Size = Record.size();
SmallVector<Value*, 8> Elts;
for (unsigned i = 0; i != Size; i += 2) {
Type *Ty = getTypeByID(Record[i]);
if (!Ty) return Error("Invalid METADATA_NODE record");
if (Ty->isMetadataTy())
Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
else if (!Ty->isVoidTy())
Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
else
Elts.push_back(NULL);
}
Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal);
IsFunctionLocal = false;
MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_STRING: {
SmallString<8> String(Record.begin(), Record.end());
Value *V = MDString::get(Context, String);
MDValueList.AssignValue(V, NextMDValueNo++);
break;
}
case bitc::METADATA_KIND: {
if (Record.size() < 2)
return Error("Invalid METADATA_KIND record");
unsigned Kind = Record[0];
SmallString<8> Name(Record.begin()+1, Record.end());
unsigned NewKind = TheModule->getMDKindID(Name.str());
if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
return Error("Conflicting METADATA_KIND records");
break;
}
}
}
}
/// decodeSignRotatedValue - Decode a signed value stored with the sign bit in
/// the LSB for dense VBR encoding.
uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
if ((V & 1) == 0)
return V >> 1;
if (V != 1)
return -(V >> 1);
// There is no such thing as -0 with integers. "-0" really means MININT.
return 1ULL << 63;
}
/// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
/// values and aliases that we can.
bool BitcodeReader::ResolveGlobalAndAliasInits() {
std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
GlobalInitWorklist.swap(GlobalInits);
AliasInitWorklist.swap(AliasInits);
while (!GlobalInitWorklist.empty()) {
unsigned ValID = GlobalInitWorklist.back().second;
if (ValID >= ValueList.size()) {
// Not ready to resolve this yet, it requires something later in the file.
GlobalInits.push_back(GlobalInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
GlobalInitWorklist.back().first->setInitializer(C);
else
return Error("Global variable initializer is not a constant!");
}
GlobalInitWorklist.pop_back();
}
while (!AliasInitWorklist.empty()) {
unsigned ValID = AliasInitWorklist.back().second;
if (ValID >= ValueList.size()) {
AliasInits.push_back(AliasInitWorklist.back());
} else {
if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
AliasInitWorklist.back().first->setAliasee(C);
else
return Error("Alias initializer is not a constant!");
}
AliasInitWorklist.pop_back();
}
return false;
}
static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
SmallVector<uint64_t, 8> Words(Vals.size());
std::transform(Vals.begin(), Vals.end(), Words.begin(),
BitcodeReader::decodeSignRotatedValue);
return APInt(TypeBits, Words);
}
bool BitcodeReader::ParseConstants() {
if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this value table.
Type *CurTy = Type::getInt32Ty(Context);
unsigned NextCstNo = ValueList.size();
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("malformed block record in AST file");
case BitstreamEntry::EndBlock:
if (NextCstNo != ValueList.size())
return Error("Invalid constant reference!");
// Once all the constants have been read, go through and resolve forward
// references.
ValueList.ResolveConstantForwardRefs();
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Value *V = 0;
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
switch (BitCode) {
default: // Default behavior: unknown constant
case bitc::CST_CODE_UNDEF: // UNDEF
V = UndefValue::get(CurTy);
break;
case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid]
if (Record.empty())
return Error("Malformed CST_SETTYPE record");
if (Record[0] >= TypeList.size())
return Error("Invalid Type ID in CST_SETTYPE record");
CurTy = TypeList[Record[0]];
continue; // Skip the ValueList manipulation.
case bitc::CST_CODE_NULL: // NULL
V = Constant::getNullValue(CurTy);
break;
case bitc::CST_CODE_INTEGER: // INTEGER: [intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid CST_INTEGER record");
V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
break;
case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
if (!CurTy->isIntegerTy() || Record.empty())
return Error("Invalid WIDE_INTEGER record");
APInt VInt = ReadWideAPInt(Record,
cast<IntegerType>(CurTy)->getBitWidth());
V = ConstantInt::get(Context, VInt);
break;
}
case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval]
if (Record.empty())
return Error("Invalid FLOAT record");
if (CurTy->isHalfTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
APInt(16, (uint16_t)Record[0])));
else if (CurTy->isFloatTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
APInt(32, (uint32_t)Record[0])));
else if (CurTy->isDoubleTy())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
APInt(64, Record[0])));
else if (CurTy->isX86_FP80Ty()) {
// Bits are not stored the same way as a normal i80 APInt, compensate.
uint64_t Rearrange[2];
Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
Rearrange[1] = Record[0] >> 48;
V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
APInt(80, Rearrange)));
} else if (CurTy->isFP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
APInt(128, Record)));
else if (CurTy->isPPC_FP128Ty())
V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
APInt(128, Record)));
else
V = UndefValue::get(CurTy);
break;
}
case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
if (Record.empty())
return Error("Invalid CST_AGGREGATE record");
unsigned Size = Record.size();
SmallVector<Constant*, 16> Elts;
if (StructType *STy = dyn_cast<StructType>(CurTy)) {
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i],
STy->getElementType(i)));
V = ConstantStruct::get(STy, Elts);
} else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
Type *EltTy = ATy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantArray::get(ATy, Elts);
} else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
Type *EltTy = VTy->getElementType();
for (unsigned i = 0; i != Size; ++i)
Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
V = ConstantVector::get(Elts);
} else {
V = UndefValue::get(CurTy);
}
break;
}
case bitc::CST_CODE_STRING: // STRING: [values]
case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
if (Record.empty())
return Error("Invalid CST_STRING record");
SmallString<16> Elts(Record.begin(), Record.end());
V = ConstantDataArray::getString(Context, Elts,
BitCode == bitc::CST_CODE_CSTRING);
break;
}
case bitc::CST_CODE_DATA: {// DATA: [n x value]
if (Record.empty())
return Error("Invalid CST_DATA record");
Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
unsigned Size = Record.size();
if (EltTy->isIntegerTy(8)) {
SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(16)) {
SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(32)) {
SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isIntegerTy(64)) {
SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isFloatTy()) {
SmallVector<float, 16> Elts(Size);
std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else if (EltTy->isDoubleTy()) {
SmallVector<double, 16> Elts(Size);
std::transform(Record.begin(), Record.end(), Elts.begin(),
BitsToDouble);
if (isa<VectorType>(CurTy))
V = ConstantDataVector::get(Context, Elts);
else
V = ConstantDataArray::get(Context, Elts);
} else {
return Error("Unknown element type in CE_DATA");
}
break;
}
case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown binop.
} else {
Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
unsigned Flags = 0;
if (Record.size() >= 4) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoSignedWrap;
if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[3] & (1 << bitc::PEO_EXACT))
Flags |= SDivOperator::IsExact;
}
}
V = ConstantExpr::get(Opc, LHS, RHS, Flags);
}
break;
}
case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval]
if (Record.size() < 3) return Error("Invalid CE_CAST record");
int Opc = GetDecodedCastOpcode(Record[0]);
if (Opc < 0) {
V = UndefValue::get(CurTy); // Unknown cast.
} else {
Type *OpTy = getTypeByID(Record[1]);
if (!OpTy) return Error("Invalid CE_CAST record");
Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
V = ConstantExpr::getCast(Opc, Op, CurTy);
}
break;
}
case bitc::CST_CODE_CE_INBOUNDS_GEP:
case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands]
if (Record.size() & 1) return Error("Invalid CE_GEP record");
SmallVector<Constant*, 16> Elts;
for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
Type *ElTy = getTypeByID(Record[i]);
if (!ElTy) return Error("Invalid CE_GEP record");
Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
}
ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
V = ConstantExpr::getGetElementPtr(Elts[0], Indices,
BitCode ==
bitc::CST_CODE_CE_INBOUNDS_GEP);
break;
}
case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#]
if (Record.size() < 3) return Error("Invalid CE_SELECT record");
V = ConstantExpr::getSelect(
ValueList.getConstantFwdRef(Record[0],
Type::getInt1Ty(Context)),
ValueList.getConstantFwdRef(Record[1],CurTy),
ValueList.getConstantFwdRef(Record[2],CurTy));
break;
case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2],
Type::getInt32Ty(Context));
V = ConstantExpr::getExtractElement(Op0, Op1);
break;
}
case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_INSERTELT record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
OpTy->getElementType());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2],
Type::getInt32Ty(Context));
V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
VectorType *OpTy = dyn_cast<VectorType>(CurTy);
if (Record.size() < 3 || OpTy == 0)
return Error("Invalid CE_SHUFFLEVEC record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
OpTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
VectorType *RTy = dyn_cast<VectorType>(CurTy);
VectorType *OpTy =
dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
if (Record.size() < 4 || RTy == 0 || OpTy == 0)
return Error("Invalid CE_SHUFVEC_EX record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
RTy->getNumElements());
Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
break;
}
case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred]
if (Record.size() < 4) return Error("Invalid CE_CMP record");
Type *OpTy = getTypeByID(Record[0]);
if (OpTy == 0) return Error("Invalid CE_CMP record");
Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
if (OpTy->isFPOrFPVectorTy())
V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
else
V = ConstantExpr::getICmp(Record[3], Op0, Op1);
break;
}
// This maintains backward compatibility, pre-asm dialect keywords.
// FIXME: Remove with the 4.0 release.
case bitc::CST_CODE_INLINEASM_OLD: {
if (Record.size() < 2) return Error("Invalid INLINEASM record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = Record[0] >> 1;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid INLINEASM record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
break;
}
// This version adds support for the asm dialect keywords (e.g.,
// inteldialect).
case bitc::CST_CODE_INLINEASM: {
if (Record.size() < 2) return Error("Invalid INLINEASM record");
std::string AsmStr, ConstrStr;
bool HasSideEffects = Record[0] & 1;
bool IsAlignStack = (Record[0] >> 1) & 1;
unsigned AsmDialect = Record[0] >> 2;
unsigned AsmStrSize = Record[1];
if (2+AsmStrSize >= Record.size())
return Error("Invalid INLINEASM record");
unsigned ConstStrSize = Record[2+AsmStrSize];
if (3+AsmStrSize+ConstStrSize > Record.size())
return Error("Invalid INLINEASM record");
for (unsigned i = 0; i != AsmStrSize; ++i)
AsmStr += (char)Record[2+i];
for (unsigned i = 0; i != ConstStrSize; ++i)
ConstrStr += (char)Record[3+AsmStrSize+i];
PointerType *PTy = cast<PointerType>(CurTy);
V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
InlineAsm::AsmDialect(AsmDialect));
break;
}
case bitc::CST_CODE_BLOCKADDRESS:{
if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
Type *FnTy = getTypeByID(Record[0]);
if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
Function *Fn =
dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
// If the function is already parsed we can insert the block address right
// away.
if (!Fn->empty()) {
Function::iterator BBI = Fn->begin(), BBE = Fn->end();
for (size_t I = 0, E = Record[2]; I != E; ++I) {
if (BBI == BBE)
return Error("Invalid blockaddress block #");
++BBI;
}
V = BlockAddress::get(Fn, BBI);
} else {
// Otherwise insert a placeholder and remember it so it can be inserted
// when the function is parsed.
GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
Type::getInt8Ty(Context),
false, GlobalValue::InternalLinkage,
0, "");
BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
V = FwdRef;
}
break;
}
}
ValueList.AssignValue(V, NextCstNo);
++NextCstNo;
}
}
bool BitcodeReader::ParseUseLists() {
if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("malformed use list block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a use list record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: unknown type.
break;
case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD.
unsigned RecordLength = Record.size();
if (RecordLength < 1)
return Error ("Invalid UseList reader!");
UseListRecords.push_back(Record);
break;
}
}
}
}
/// RememberAndSkipFunctionBody - When we see the block for a function body,
/// remember where it is and then skip it. This lets us lazily deserialize the
/// functions.
bool BitcodeReader::RememberAndSkipFunctionBody() {
// Get the function we are talking about.
if (FunctionsWithBodies.empty())
return Error("Insufficient function protos");
Function *Fn = FunctionsWithBodies.back();
FunctionsWithBodies.pop_back();
// Save the current stream state.
uint64_t CurBit = Stream.GetCurrentBitNo();
DeferredFunctionInfo[Fn] = CurBit;
// Skip over the function block for now.
if (Stream.SkipBlock())
return Error("Malformed block record");
return false;
}
bool BitcodeReader::GlobalCleanup() {
// Patch the initializers for globals and aliases up.
ResolveGlobalAndAliasInits();
if (!GlobalInits.empty() || !AliasInits.empty())
return Error("Malformed global initializer set");
// Look for intrinsic functions which need to be upgraded at some point
for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
FI != FE; ++FI) {
Function *NewFn;
if (UpgradeIntrinsicFunction(FI, NewFn))
UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
}
// Look for global variables which need to be renamed.
for (Module::global_iterator
GI = TheModule->global_begin(), GE = TheModule->global_end();
GI != GE; ++GI)
UpgradeGlobalVariable(GI);
// Force deallocation of memory for these vectors to favor the client that
// want lazy deserialization.
std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
return false;
}
bool BitcodeReader::ParseModule(bool Resume) {
if (Resume)
Stream.JumpToBit(NextUnreadBit);
else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
std::vector<std::string> SectionTable;
std::vector<std::string> GCTable;
// Read all the records for this module.
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
Error("malformed module block");
return true;
case BitstreamEntry::EndBlock:
return GlobalCleanup();
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::PARAMATTR_BLOCK_ID:
if (ParseAttributeBlock())
return true;
break;
case bitc::PARAMATTR_GROUP_BLOCK_ID:
if (ParseAttributeGroupBlock())
return true;
break;
case bitc::TYPE_BLOCK_ID_NEW:
if (ParseTypeTable())
return true;
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable())
return true;
SeenValueSymbolTable = true;
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants() || ResolveGlobalAndAliasInits())
return true;
break;
case bitc::METADATA_BLOCK_ID:
if (ParseMetadata())
return true;
break;
case bitc::FUNCTION_BLOCK_ID:
// If this is the first function body we've seen, reverse the
// FunctionsWithBodies list.
if (!SeenFirstFunctionBody) {
std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
if (GlobalCleanup())
return true;
SeenFirstFunctionBody = true;
}
if (RememberAndSkipFunctionBody())
return true;
// For streaming bitcode, suspend parsing when we reach the function
// bodies. Subsequent materialization calls will resume it when
// necessary. For streaming, the function bodies must be at the end of
// the bitcode. If the bitcode file is old, the symbol table will be
// at the end instead and will not have been seen yet. In this case,
// just finish the parse now.
if (LazyStreamer && SeenValueSymbolTable) {
NextUnreadBit = Stream.GetCurrentBitNo();
return false;
}
break;
case bitc::USELIST_BLOCK_ID:
if (ParseUseLists())
return true;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
switch (Stream.readRecord(Entry.ID, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_VERSION: { // VERSION: [version#]
if (Record.size() < 1)
return Error("Malformed MODULE_CODE_VERSION");
// Only version #0 and #1 are supported so far.
unsigned module_version = Record[0];
switch (module_version) {
default: return Error("Unknown bitstream version!");
case 0:
UseRelativeIDs = false;
break;
case 1:
UseRelativeIDs = true;
break;
}
break;
}
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_TRIPLE record");
TheModule->setTargetTriple(S);
break;
}
case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DATALAYOUT record");
TheModule->setDataLayout(S);
break;
}
case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_ASM record");
TheModule->setModuleInlineAsm(S);
break;
}
case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N]
// FIXME: Remove in 4.0.
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_DEPLIB record");
// Ignore value.
break;
}
case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_SECTIONNAME record");
SectionTable.push_back(S);
break;
}
case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_GCNAME record");
GCTable.push_back(S);
break;
}
// GLOBALVAR: [pointer type, isconst, initid,
// linkage, alignment, section, visibility, threadlocal,
// unnamed_addr]
case bitc::MODULE_CODE_GLOBALVAR: {
if (Record.size() < 6)
return Error("Invalid MODULE_CODE_GLOBALVAR record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record");
if (!Ty->isPointerTy())
return Error("Global not a pointer type!");
unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
Ty = cast<PointerType>(Ty)->getElementType();
bool isConstant = Record[1];
GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
unsigned Alignment = (1 << Record[4]) >> 1;
std::string Section;
if (Record[5]) {
if (Record[5]-1 >= SectionTable.size())
return Error("Invalid section ID");
Section = SectionTable[Record[5]-1];
}
GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
if (Record.size() > 6)
Visibility = GetDecodedVisibility(Record[6]);
GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
if (Record.size() > 7)
TLM = GetDecodedThreadLocalMode(Record[7]);
bool UnnamedAddr = false;
if (Record.size() > 8)
UnnamedAddr = Record[8];
bool ExternallyInitialized = false;
if (Record.size() > 9)
ExternallyInitialized = Record[9];
GlobalVariable *NewGV =
new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
TLM, AddressSpace, ExternallyInitialized);
NewGV->setAlignment(Alignment);
if (!Section.empty())
NewGV->setSection(Section);
NewGV->setVisibility(Visibility);
NewGV->setUnnamedAddr(UnnamedAddr);
ValueList.push_back(NewGV);
// Remember which value to use for the global initializer.
if (unsigned InitID = Record[2])
GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
break;
}
// FUNCTION: [type, callingconv, isproto, linkage, paramattr,
// alignment, section, visibility, gc, unnamed_addr]
case bitc::MODULE_CODE_FUNCTION: {
if (Record.size() < 8)
return Error("Invalid MODULE_CODE_FUNCTION record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record");
if (!Ty->isPointerTy())
return Error("Function not a pointer type!");
FunctionType *FTy =
dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
if (!FTy)
return Error("Function not a pointer to function type!");
Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
"", TheModule);
Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
bool isProto = Record[2];
Func->setLinkage(GetDecodedLinkage(Record[3]));
Func->setAttributes(getAttributes(Record[4]));
Func->setAlignment((1 << Record[5]) >> 1);
if (Record[6]) {
if (Record[6]-1 >= SectionTable.size())
return Error("Invalid section ID");
Func->setSection(SectionTable[Record[6]-1]);
}
Func->setVisibility(GetDecodedVisibility(Record[7]));
if (Record.size() > 8 && Record[8]) {
if (Record[8]-1 > GCTable.size())
return Error("Invalid GC ID");
Func->setGC(GCTable[Record[8]-1].c_str());
}
bool UnnamedAddr = false;
if (Record.size() > 9)
UnnamedAddr = Record[9];
Func->setUnnamedAddr(UnnamedAddr);
ValueList.push_back(Func);
// If this is a function with a body, remember the prototype we are
// creating now, so that we can match up the body with them later.
if (!isProto) {
FunctionsWithBodies.push_back(Func);
if (LazyStreamer) DeferredFunctionInfo[Func] = 0;
}
break;
}
// ALIAS: [alias type, aliasee val#, linkage]
// ALIAS: [alias type, aliasee val#, linkage, visibility]
case bitc::MODULE_CODE_ALIAS: {
if (Record.size() < 3)
return Error("Invalid MODULE_ALIAS record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid MODULE_ALIAS record");
if (!Ty->isPointerTy())
return Error("Function not a pointer type!");
GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
"", 0, TheModule);
// Old bitcode files didn't have visibility field.
if (Record.size() > 3)
NewGA->setVisibility(GetDecodedVisibility(Record[3]));
ValueList.push_back(NewGA);
AliasInits.push_back(std::make_pair(NewGA, Record[1]));
break;
}
/// MODULE_CODE_PURGEVALS: [numvals]
case bitc::MODULE_CODE_PURGEVALS:
// Trim down the value list to the specified size.
if (Record.size() < 1 || Record[0] > ValueList.size())
return Error("Invalid MODULE_PURGEVALS record");
ValueList.shrinkTo(Record[0]);
break;
}
Record.clear();
}
}
bool BitcodeReader::ParseBitcodeInto(Module *M) {
TheModule = 0;
if (InitStream()) return true;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (1) {
if (Stream.AtEndOfStream())
return false;
BitstreamEntry Entry =
Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
switch (Entry.Kind) {
case BitstreamEntry::Error:
Error("malformed module file");
return true;
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
case bitc::BLOCKINFO_BLOCK_ID:
if (Stream.ReadBlockInfoBlock())
return Error("Malformed BlockInfoBlock");
break;
case bitc::MODULE_BLOCK_ID:
// Reject multiple MODULE_BLOCK's in a single bitstream.
if (TheModule)
return Error("Multiple MODULE_BLOCKs in same stream");
TheModule = M;
if (ParseModule(false))
return true;
if (LazyStreamer) return false;
break;
default:
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
}
continue;
case BitstreamEntry::Record:
// There should be no records in the top-level of blocks.
// The ranlib in Xcode 4 will align archive members by appending newlines
// to the end of them. If this file size is a multiple of 4 but not 8, we
// have to read and ignore these final 4 bytes :-(
if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 &&
Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a &&
Stream.AtEndOfStream())
return false;
return Error("Invalid record at top-level");
}
}
}
bool BitcodeReader::ParseModuleTriple(std::string &Triple) {
if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
// Read all the records for this module.
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("malformed module block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
switch (Stream.readRecord(Entry.ID, Record)) {
default: break; // Default behavior, ignore unknown content.
case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N]
std::string S;
if (ConvertToString(Record, 0, S))
return Error("Invalid MODULE_CODE_TRIPLE record");
Triple = S;
break;
}
}
Record.clear();
}
}
bool BitcodeReader::ParseTriple(std::string &Triple) {
if (InitStream()) return true;
// Sniff for the signature.
if (Stream.Read(8) != 'B' ||
Stream.Read(8) != 'C' ||
Stream.Read(4) != 0x0 ||
Stream.Read(4) != 0xC ||
Stream.Read(4) != 0xE ||
Stream.Read(4) != 0xD)
return Error("Invalid bitcode signature");
// We expect a number of well-defined blocks, though we don't necessarily
// need to understand them all.
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
Error("malformed module file");
return true;
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::SubBlock:
if (Entry.ID == bitc::MODULE_BLOCK_ID)
return ParseModuleTriple(Triple);
// Ignore other sub-blocks.
if (Stream.SkipBlock()) {
Error("malformed block record in AST file");
return true;
}
continue;
case BitstreamEntry::Record:
Stream.skipRecord(Entry.ID);
continue;
}
}
}
/// ParseMetadataAttachment - Parse metadata attachments.
bool BitcodeReader::ParseMetadataAttachment() {
if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
return Error("Malformed block record");
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
switch (Entry.Kind) {
case BitstreamEntry::SubBlock: // Handled for us already.
case BitstreamEntry::Error:
return Error("malformed metadata block");
case BitstreamEntry::EndBlock:
return false;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a metadata attachment record.
Record.clear();
switch (Stream.readRecord(Entry.ID, Record)) {
default: // Default behavior: ignore.
break;
case bitc::METADATA_ATTACHMENT: {
unsigned RecordLength = Record.size();
if (Record.empty() || (RecordLength - 1) % 2 == 1)
return Error ("Invalid METADATA_ATTACHMENT reader!");
Instruction *Inst = InstructionList[Record[0]];
for (unsigned i = 1; i != RecordLength; i = i+2) {
unsigned Kind = Record[i];
DenseMap<unsigned, unsigned>::iterator I =
MDKindMap.find(Kind);
if (I == MDKindMap.end())
return Error("Invalid metadata kind ID");
Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
Inst->setMetadata(I->second, cast<MDNode>(Node));
}
break;
}
}
}
}
/// ParseFunctionBody - Lazily parse the specified function body block.
bool BitcodeReader::ParseFunctionBody(Function *F) {
if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
return Error("Malformed block record");
InstructionList.clear();
unsigned ModuleValueListSize = ValueList.size();
unsigned ModuleMDValueListSize = MDValueList.size();
// Add all the function arguments to the value table.
for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
ValueList.push_back(I);
unsigned NextValueNo = ValueList.size();
BasicBlock *CurBB = 0;
unsigned CurBBNo = 0;
DebugLoc LastLoc;
// Read all the records.
SmallVector<uint64_t, 64> Record;
while (1) {
BitstreamEntry Entry = Stream.advance();
switch (Entry.Kind) {
case BitstreamEntry::Error:
return Error("Bitcode error in function block");
case BitstreamEntry::EndBlock:
goto OutOfRecordLoop;
case BitstreamEntry::SubBlock:
switch (Entry.ID) {
default: // Skip unknown content.
if (Stream.SkipBlock())
return Error("Malformed block record");
break;
case bitc::CONSTANTS_BLOCK_ID:
if (ParseConstants()) return true;
NextValueNo = ValueList.size();
break;
case bitc::VALUE_SYMTAB_BLOCK_ID:
if (ParseValueSymbolTable()) return true;
break;
case bitc::METADATA_ATTACHMENT_ID:
if (ParseMetadataAttachment()) return true;
break;
case bitc::METADATA_BLOCK_ID:
if (ParseMetadata()) return true;
break;
}
continue;
case BitstreamEntry::Record:
// The interesting case.
break;
}
// Read a record.
Record.clear();
Instruction *I = 0;
unsigned BitCode = Stream.readRecord(Entry.ID, Record);
switch (BitCode) {
default: // Default behavior: reject
return Error("Unknown instruction");
case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks]
if (Record.size() < 1 || Record[0] == 0)
return Error("Invalid DECLAREBLOCKS record");
// Create all the basic blocks for the function.
FunctionBBs.resize(Record[0]);
for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
FunctionBBs[i] = BasicBlock::Create(Context, "", F);
CurBB = FunctionBBs[0];
continue;
case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN
// This record indicates that the last instruction is at the same
// location as the previous instruction with a location.
I = 0;
// Get the last instruction emitted.
if (CurBB && !CurBB->empty())
I = &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
!FunctionBBs[CurBBNo-1]->empty())
I = &FunctionBBs[CurBBNo-1]->back();
if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
I->setDebugLoc(LastLoc);
I = 0;
continue;
case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia]
I = 0; // Get the last instruction emitted.
if (CurBB && !CurBB->empty())
I = &CurBB->back();
else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
!FunctionBBs[CurBBNo-1]->empty())
I = &FunctionBBs[CurBBNo-1]->back();
if (I == 0 || Record.size() < 4)
return Error("Invalid FUNC_CODE_DEBUG_LOC record");
unsigned Line = Record[0], Col = Record[1];
unsigned ScopeID = Record[2], IAID = Record[3];
MDNode *Scope = 0, *IA = 0;
if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
LastLoc = DebugLoc::get(Line, Col, Scope, IA);
I->setDebugLoc(LastLoc);
I = 0;
continue;
}
case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode]
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
OpNum+1 > Record.size())
return Error("Invalid BINOP record");
int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
if (Opc == -1) return Error("Invalid BINOP record");
I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
InstructionList.push_back(I);
if (OpNum < Record.size()) {
if (Opc == Instruction::Add ||
Opc == Instruction::Sub ||
Opc == Instruction::Mul ||
Opc == Instruction::Shl) {
if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
} else if (Opc == Instruction::SDiv ||
Opc == Instruction::UDiv ||
Opc == Instruction::LShr ||
Opc == Instruction::AShr) {
if (Record[OpNum] & (1 << bitc::PEO_EXACT))
cast<BinaryOperator>(I)->setIsExact(true);
} else if (isa<FPMathOperator>(I)) {
FastMathFlags FMF;
if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra))
FMF.setUnsafeAlgebra();
if (0 != (Record[OpNum] & FastMathFlags::NoNaNs))
FMF.setNoNaNs();
if (0 != (Record[OpNum] & FastMathFlags::NoInfs))
FMF.setNoInfs();
if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros))
FMF.setNoSignedZeros();
if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal))
FMF.setAllowReciprocal();
if (FMF.any())
I->setFastMathFlags(FMF);
}
}
break;
}
case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid CAST record");
Type *ResTy = getTypeByID(Record[OpNum]);
int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
if (Opc == -1 || ResTy == 0)
return Error("Invalid CAST record");
I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
unsigned OpNum = 0;
Value *BasePtr;
if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
return Error("Invalid GEP record");
SmallVector<Value*, 16> GEPIdx;
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid GEP record");
GEPIdx.push_back(Op);
}
I = GetElementPtrInst::Create(BasePtr, GEPIdx);
InstructionList.push_back(I);
if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
cast<GetElementPtrInst>(I)->setIsInBounds(true);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTVAL: {
// EXTRACTVAL: [opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid EXTRACTVAL record");
SmallVector<unsigned, 4> EXTRACTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid EXTRACTVAL index");
EXTRACTVALIdx.push_back((unsigned)Index);
}
I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTVAL: {
// INSERTVAL: [opty, opval, opty, opval, n x indices]
unsigned OpNum = 0;
Value *Agg;
if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
return Error("Invalid INSERTVAL record");
Value *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Val))
return Error("Invalid INSERTVAL record");
SmallVector<unsigned, 4> INSERTVALIdx;
for (unsigned RecSize = Record.size();
OpNum != RecSize; ++OpNum) {
uint64_t Index = Record[OpNum];
if ((unsigned)Index != Index)
return Error("Invalid INSERTVAL index");
INSERTVALIdx.push_back((unsigned)Index);
}
I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
// obsolete form of select
// handles select i1 ... in old bitcode
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
return Error("Invalid SELECT record");
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
// new form of select
// handles select i1 or select [N x i1]
unsigned OpNum = 0;
Value *TrueVal, *FalseVal, *Cond;
if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
getValueTypePair(Record, OpNum, NextValueNo, Cond))
return Error("Invalid SELECT record");
// select condition can be either i1 or [N x i1]
if (VectorType* vector_type =
dyn_cast<VectorType>(Cond->getType())) {
// expect <n x i1>
if (vector_type->getElementType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
} else {
// expect i1
if (Cond->getType() != Type::getInt1Ty(Context))
return Error("Invalid SELECT condition type");
}
I = SelectInst::Create(Cond, TrueVal, FalseVal);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
unsigned OpNum = 0;
Value *Vec, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
return Error("Invalid EXTRACTELT record");
I = ExtractElementInst::Create(Vec, Idx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
unsigned OpNum = 0;
Value *Vec, *Elt, *Idx;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
popValue(Record, OpNum, NextValueNo,
cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx))
return Error("Invalid INSERTELT record");
I = InsertElementInst::Create(Vec, Elt, Idx);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
unsigned OpNum = 0;
Value *Vec1, *Vec2, *Mask;
if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
return Error("Invalid SHUFFLEVEC record");
if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
return Error("Invalid SHUFFLEVEC record");
I = new ShuffleVectorInst(Vec1, Vec2, Mask);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred]
// Old form of ICmp/FCmp returning bool
// Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
// both legal on vectors but had different behaviour.
case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
// FCmp/ICmp returning bool or vector of bool
unsigned OpNum = 0;
Value *LHS, *RHS;
if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
OpNum+1 != Record.size())
return Error("Invalid CMP record");
if (LHS->getType()->isFPOrFPVectorTy())
I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
else
I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
{
unsigned Size = Record.size();
if (Size == 0) {
I = ReturnInst::Create(Context);
InstructionList.push_back(I);
break;
}
unsigned OpNum = 0;
Value *Op = NULL;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid RET record");
if (OpNum != Record.size())
return Error("Invalid RET record");
I = ReturnInst::Create(Context, Op);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
if (Record.size() != 1 && Record.size() != 3)
return Error("Invalid BR record");
BasicBlock *TrueDest = getBasicBlock(Record[0]);
if (TrueDest == 0)
return Error("Invalid BR record");
if (Record.size() == 1) {
I = BranchInst::Create(TrueDest);
InstructionList.push_back(I);
}
else {
BasicBlock *FalseDest = getBasicBlock(Record[1]);
Value *Cond = getValue(Record, 2, NextValueNo,
Type::getInt1Ty(Context));
if (FalseDest == 0 || Cond == 0)
return Error("Invalid BR record");
I = BranchInst::Create(TrueDest, FalseDest, Cond);
InstructionList.push_back(I);
}
break;
}
case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
// Check magic
if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
// New SwitchInst format with case ranges.
Type *OpTy = getTypeByID(Record[1]);
unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[3]);
if (OpTy == 0 || Cond == 0 || Default == 0)
return Error("Invalid SWITCH record");
unsigned NumCases = Record[4];
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
unsigned CurIdx = 5;
for (unsigned i = 0; i != NumCases; ++i) {
IntegersSubsetToBB CaseBuilder;
unsigned NumItems = Record[CurIdx++];
for (unsigned ci = 0; ci != NumItems; ++ci) {
bool isSingleNumber = Record[CurIdx++];
APInt Low;
unsigned ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
ValueBitWidth);
CurIdx += ActiveWords;
if (!isSingleNumber) {
ActiveWords = 1;
if (ValueBitWidth > 64)
ActiveWords = Record[CurIdx++];
APInt High =
ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
ValueBitWidth);
CaseBuilder.add(IntItem::fromType(OpTy, Low),
IntItem::fromType(OpTy, High));
CurIdx += ActiveWords;
} else
CaseBuilder.add(IntItem::fromType(OpTy, Low));
}
BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
IntegersSubset Case = CaseBuilder.getCase();
SI->addCase(Case, DestBB);
}
uint16_t Hash = SI->hash();
if (Hash != (Record[0] & 0xFFFF))
return Error("Invalid SWITCH record");
I = SI;
break;
}
// Old SwitchInst format without case ranges.
if (Record.size() < 3 || (Record.size() & 1) == 0)
return Error("Invalid SWITCH record");
Type *OpTy = getTypeByID(Record[0]);
Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
BasicBlock *Default = getBasicBlock(Record[2]);
if (OpTy == 0 || Cond == 0 || Default == 0)
return Error("Invalid SWITCH record");
unsigned NumCases = (Record.size()-3)/2;
SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
InstructionList.push_back(SI);
for (unsigned i = 0, e = NumCases; i != e; ++i) {
ConstantInt *CaseVal =
dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
if (CaseVal == 0 || DestBB == 0) {
delete SI;
return Error("Invalid SWITCH record!");
}
SI->addCase(CaseVal, DestBB);
}
I = SI;
break;
}
case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
if (Record.size() < 2)
return Error("Invalid INDIRECTBR record");
Type *OpTy = getTypeByID(Record[0]);
Value *Address = getValue(Record, 1, NextValueNo, OpTy);
if (OpTy == 0 || Address == 0)
return Error("Invalid INDIRECTBR record");
unsigned NumDests = Record.size()-2;
IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
InstructionList.push_back(IBI);
for (unsigned i = 0, e = NumDests; i != e; ++i) {
if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
IBI->addDestination(DestBB);
} else {
delete IBI;
return Error("Invalid INDIRECTBR record!");
}
}
I = IBI;
break;
}
case bitc::FUNC_CODE_INST_INVOKE: {
// INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
if (Record.size() < 4) return Error("Invalid INVOKE record");
AttributeSet PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
BasicBlock *NormalBB = getBasicBlock(Record[2]);
BasicBlock *UnwindBB = getBasicBlock(Record[3]);
unsigned OpNum = 4;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid INVOKE record");
PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = !CalleeTy ? 0 :
dyn_cast<FunctionType>(CalleeTy->getElementType());
// Check that the right number of fixed parameters are here.
if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
Record.size() < OpNum+FTy->getNumParams())
return Error("Invalid INVOKE record");
SmallVector<Value*, 16> Ops;
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
Ops.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
if (Ops.back() == 0) return Error("Invalid INVOKE record");
}
if (!FTy->isVarArg()) {
if (Record.size() != OpNum)
return Error("Invalid INVOKE record");
} else {
// Read type/value pairs for varargs params.
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid INVOKE record");
Ops.push_back(Op);
}
}
I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops);
InstructionList.push_back(I);
cast<InvokeInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CCInfo));
cast<InvokeInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
unsigned Idx = 0;
Value *Val = 0;
if (getValueTypePair(Record, Idx, NextValueNo, Val))
return Error("Invalid RESUME record");
I = ResumeInst::Create(Val);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
I = new UnreachableInst(Context);
InstructionList.push_back(I);
break;
case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
if (Record.size() < 1 || ((Record.size()-1)&1))
return Error("Invalid PHI record");
Type *Ty = getTypeByID(Record[0]);
if (!Ty) return Error("Invalid PHI record");
PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
InstructionList.push_back(PN);
for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
Value *V;
// With the new function encoding, it is possible that operands have
// negative IDs (for forward references). Use a signed VBR
// representation to keep the encoding small.
if (UseRelativeIDs)
V = getValueSigned(Record, 1+i, NextValueNo, Ty);
else
V = getValue(Record, 1+i, NextValueNo, Ty);
BasicBlock *BB = getBasicBlock(Record[2+i]);
if (!V || !BB) return Error("Invalid PHI record");
PN->addIncoming(V, BB);
}
I = PN;
break;
}
case bitc::FUNC_CODE_INST_LANDINGPAD: {
// LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
unsigned Idx = 0;
if (Record.size() < 4)
return Error("Invalid LANDINGPAD record");
Type *Ty = getTypeByID(Record[Idx++]);
if (!Ty) return Error("Invalid LANDINGPAD record");
Value *PersFn = 0;
if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
return Error("Invalid LANDINGPAD record");
bool IsCleanup = !!Record[Idx++];
unsigned NumClauses = Record[Idx++];
LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses);
LP->setCleanup(IsCleanup);
for (unsigned J = 0; J != NumClauses; ++J) {
LandingPadInst::ClauseType CT =
LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
Value *Val;
if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
delete LP;
return Error("Invalid LANDINGPAD record");
}
assert((CT != LandingPadInst::Catch ||
!isa<ArrayType>(Val->getType())) &&
"Catch clause has a invalid type!");
assert((CT != LandingPadInst::Filter ||
isa<ArrayType>(Val->getType())) &&
"Filter clause has invalid type!");
LP->addClause(Val);
}
I = LP;
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
if (Record.size() != 4)
return Error("Invalid ALLOCA record");
PointerType *Ty =
dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
Type *OpTy = getTypeByID(Record[1]);
Value *Size = getFnValueByID(Record[2], OpTy);
unsigned Align = Record[3];
if (!Ty || !Size) return Error("Invalid ALLOCA record");
I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+2 != Record.size())
return Error("Invalid LOAD record");
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_LOADATOMIC: {
// LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
OpNum+4 != Record.size())
return Error("Invalid LOADATOMIC record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Release ||
Ordering == AcquireRelease)
return Error("Invalid LOADATOMIC record");
if (Ordering != NotAtomic && Record[OpNum] == 0)
return Error("Invalid LOADATOMIC record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1,
Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+2 != Record.size())
return Error("Invalid STORE record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_STOREATOMIC: {
// STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Val, *Ptr;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
return Error("Invalid STOREATOMIC record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Acquire ||
Ordering == AcquireRelease)
return Error("Invalid STOREATOMIC record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
if (Ordering != NotAtomic && Record[OpNum] == 0)
return Error("Invalid STOREATOMIC record");
I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1,
Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CMPXCHG: {
// CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Ptr, *Cmp, *New;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Cmp) ||
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), New) ||
OpNum+3 != Record.size())
return Error("Invalid CMPXCHG record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]);
if (Ordering == NotAtomic || Ordering == Unordered)
return Error("Invalid CMPXCHG record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]);
I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope);
cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_ATOMICRMW: {
// ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
unsigned OpNum = 0;
Value *Ptr, *Val;
if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
popValue(Record, OpNum, NextValueNo,
cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
OpNum+4 != Record.size())
return Error("Invalid ATOMICRMW record");
AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]);
if (Operation < AtomicRMWInst::FIRST_BINOP ||
Operation > AtomicRMWInst::LAST_BINOP)
return Error("Invalid ATOMICRMW record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]);
if (Ordering == NotAtomic || Ordering == Unordered)
return Error("Invalid ATOMICRMW record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]);
I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
if (2 != Record.size())
return Error("Invalid FENCE record");
AtomicOrdering Ordering = GetDecodedOrdering(Record[0]);
if (Ordering == NotAtomic || Ordering == Unordered ||
Ordering == Monotonic)
return Error("Invalid FENCE record");
SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]);
I = new FenceInst(Context, Ordering, SynchScope);
InstructionList.push_back(I);
break;
}
case bitc::FUNC_CODE_INST_CALL: {
// CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
if (Record.size() < 3)
return Error("Invalid CALL record");
AttributeSet PAL = getAttributes(Record[0]);
unsigned CCInfo = Record[1];
unsigned OpNum = 2;
Value *Callee;
if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
return Error("Invalid CALL record");
PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
FunctionType *FTy = 0;
if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
return Error("Invalid CALL record");
SmallVector<Value*, 16> Args;
// Read the fixed params.
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
if (FTy->getParamType(i)->isLabelTy())
Args.push_back(getBasicBlock(Record[OpNum]));
else
Args.push_back(getValue(Record, OpNum, NextValueNo,
FTy->getParamType(i)));
if (Args.back() == 0) return Error("Invalid CALL record");
}
// Read type/value pairs for varargs params.
if (!FTy->isVarArg()) {
if (OpNum != Record.size())
return Error("Invalid CALL record");
} else {
while (OpNum != Record.size()) {
Value *Op;
if (getValueTypePair(Record, OpNum, NextValueNo, Op))
return Error("Invalid CALL record");
Args.push_back(Op);
}
}
I = CallInst::Create(Callee, Args);
InstructionList.push_back(I);
cast<CallInst>(I)->setCallingConv(
static_cast<CallingConv::ID>(CCInfo>>1));
cast<CallInst>(I)->setTailCall(CCInfo & 1);
cast<CallInst>(I)->setAttributes(PAL);
break;
}
case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
if (Record.size() < 3)
return Error("Invalid VAARG record");
Type *OpTy = getTypeByID(Record[0]);
Value *Op = getValue(Record, 1, NextValueNo, OpTy);
Type *ResTy = getTypeByID(Record[2]);
if (!OpTy || !Op || !ResTy)
return Error("Invalid VAARG record");
I = new VAArgInst(Op, ResTy);
InstructionList.push_back(I);
break;
}
}
// Add instruction to end of current BB. If there is no current BB, reject
// this file.
if (CurBB == 0) {
delete I;
return Error("Invalid instruction with no BB");
}
CurBB->getInstList().push_back(I);
// If this was a terminator instruction, move to the next block.
if (isa<TerminatorInst>(I)) {
++CurBBNo;
CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
}
// Non-void values get registered in the value table for future use.
if (I && !I->getType()->isVoidTy())
ValueList.AssignValue(I, NextValueNo++);
}
OutOfRecordLoop:
// Check the function list for unresolved values.
if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
if (A->getParent() == 0) {
// We found at least one unresolved value. Nuke them all to avoid leaks.
for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) {
A->replaceAllUsesWith(UndefValue::get(A->getType()));
delete A;
}
}
return Error("Never resolved value found in function!");
}
}
// FIXME: Check for unresolved forward-declared metadata references
// and clean up leaks.
// See if anything took the address of blocks in this function. If so,
// resolve them now.
DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
BlockAddrFwdRefs.find(F);
if (BAFRI != BlockAddrFwdRefs.end()) {
std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
unsigned BlockIdx = RefList[i].first;
if (BlockIdx >= FunctionBBs.size())
return Error("Invalid blockaddress block #");
GlobalVariable *FwdRef = RefList[i].second;
FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
FwdRef->eraseFromParent();
}
BlockAddrFwdRefs.erase(BAFRI);
}
// Trim the value list down to the size it was before we parsed this function.
ValueList.shrinkTo(ModuleValueListSize);
MDValueList.shrinkTo(ModuleMDValueListSize);
std::vector<BasicBlock*>().swap(FunctionBBs);
return false;
}
/// FindFunctionInStream - Find the function body in the bitcode stream
bool BitcodeReader::FindFunctionInStream(Function *F,
DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) {
while (DeferredFunctionInfoIterator->second == 0) {
if (Stream.AtEndOfStream())
return Error("Could not find Function in stream");
// ParseModule will parse the next body in the stream and set its
// position in the DeferredFunctionInfo map.
if (ParseModule(true)) return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// GVMaterializer implementation
//===----------------------------------------------------------------------===//
bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
if (const Function *F = dyn_cast<Function>(GV)) {
return F->isDeclaration() &&
DeferredFunctionInfo.count(const_cast<Function*>(F));
}
return false;
}
bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
Function *F = dyn_cast<Function>(GV);
// If it's not a function or is already material, ignore the request.
if (!F || !F->isMaterializable()) return false;
DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
// If its position is recorded as 0, its body is somewhere in the stream
// but we haven't seen it yet.
if (DFII->second == 0)
if (LazyStreamer && FindFunctionInStream(F, DFII)) return true;
// Move the bit stream to the saved position of the deferred function body.
Stream.JumpToBit(DFII->second);
if (ParseFunctionBody(F)) {
if (ErrInfo) *ErrInfo = ErrorString;
return true;
}
// Upgrade any old intrinsic calls in the function.
for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
}
}
return false;
}
bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
const Function *F = dyn_cast<Function>(GV);
if (!F || F->isDeclaration())
return false;
return DeferredFunctionInfo.count(const_cast<Function*>(F));
}
void BitcodeReader::Dematerialize(GlobalValue *GV) {
Function *F = dyn_cast<Function>(GV);
// If this function isn't dematerializable, this is a noop.
if (!F || !isDematerializable(F))
return;
assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
// Just forget the function body, we can remat it later.
F->deleteBody();
}
bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
assert(M == TheModule &&
"Can only Materialize the Module this BitcodeReader is attached to.");
// Iterate over the module, deserializing any functions that are still on
// disk.
for (Module::iterator F = TheModule->begin(), E = TheModule->end();
F != E; ++F)
if (F->isMaterializable() &&
Materialize(F, ErrInfo))
return true;
// At this point, if there are any function bodies, the current bit is
// pointing to the END_BLOCK record after them. Now make sure the rest
// of the bits in the module have been read.
if (NextUnreadBit)
ParseModule(true);
// Upgrade any intrinsic calls that slipped through (should not happen!) and
// delete the old functions to clean up. We can't do this unless the entire
// module is materialized because there could always be another function body
// with calls to the old function.
for (std::vector<std::pair<Function*, Function*> >::iterator I =
UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
if (I->first != I->second) {
for (Value::use_iterator UI = I->first->use_begin(),
UE = I->first->use_end(); UI != UE; ) {
if (CallInst* CI = dyn_cast<CallInst>(*UI++))
UpgradeIntrinsicCall(CI, I->second);
}
if (!I->first->use_empty())
I->first->replaceAllUsesWith(I->second);
I->first->eraseFromParent();
}
}
std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
return false;
}
bool BitcodeReader::InitStream() {
if (LazyStreamer) return InitLazyStream();
return InitStreamFromBuffer();
}
bool BitcodeReader::InitStreamFromBuffer() {
const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
if (Buffer->getBufferSize() & 3) {
if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
return Error("Invalid bitcode signature");
else
return Error("Bitcode stream should be a multiple of 4 bytes in length");
}
// If we have a wrapper header, parse it and ignore the non-bc file contents.
// The magic number is 0x0B17C0DE stored in little endian.
if (isBitcodeWrapper(BufPtr, BufEnd))
if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
return Error("Invalid bitcode wrapper header");
StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
Stream.init(*StreamFile);
return false;
}
bool BitcodeReader::InitLazyStream() {
// Check and strip off the bitcode wrapper; BitstreamReader expects never to
// see it.
StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer);
StreamFile.reset(new BitstreamReader(Bytes));
Stream.init(*StreamFile);
unsigned char buf[16];
if (Bytes->readBytes(0, 16, buf, NULL) == -1)
return Error("Bitcode stream must be at least 16 bytes in length");
if (!isBitcode(buf, buf + 16))
return Error("Invalid bitcode signature");
if (isBitcodeWrapper(buf, buf + 4)) {
const unsigned char *bitcodeStart = buf;
const unsigned char *bitcodeEnd = buf + 16;
SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
Bytes->dropLeadingBytes(bitcodeStart - buf);
Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart);
}
return false;
}
//===----------------------------------------------------------------------===//
// External interface
//===----------------------------------------------------------------------===//
/// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
///
Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
LLVMContext& Context,
std::string *ErrMsg) {
Module *M = new Module(Buffer->getBufferIdentifier(), Context);
BitcodeReader *R = new BitcodeReader(Buffer, Context);
M->setMaterializer(R);
if (R->ParseBitcodeInto(M)) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
delete M; // Also deletes R.
return 0;
}
// Have the BitcodeReader dtor delete 'Buffer'.
R->setBufferOwned(true);
R->materializeForwardReferencedFunctions();
return M;
}
Module *llvm::getStreamedBitcodeModule(const std::string &name,
DataStreamer *streamer,
LLVMContext &Context,
std::string *ErrMsg) {
Module *M = new Module(name, Context);
BitcodeReader *R = new BitcodeReader(streamer, Context);
M->setMaterializer(R);
if (R->ParseBitcodeInto(M)) {
if (ErrMsg)
*ErrMsg = R->getErrorString();
delete M; // Also deletes R.
return 0;
}
R->setBufferOwned(false); // no buffer to delete
return M;
}
/// ParseBitcodeFile - Read the specified bitcode file, returning the module.
/// If an error occurs, return null and fill in *ErrMsg if non-null.
Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
std::string *ErrMsg){
Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
if (!M) return 0;
// Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
// there was an error.
static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
// Read in the entire module, and destroy the BitcodeReader.
if (M->MaterializeAllPermanently(ErrMsg)) {
delete M;
return 0;
}
// TODO: Restore the use-lists to the in-memory state when the bitcode was
// written. We must defer until the Module has been fully materialized.
return M;
}
std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer,
LLVMContext& Context,
std::string *ErrMsg) {
BitcodeReader *R = new BitcodeReader(Buffer, Context);
// Don't let the BitcodeReader dtor delete 'Buffer'.
R->setBufferOwned(false);
std::string Triple("");
if (R->ParseTriple(Triple))
if (ErrMsg)
*ErrMsg = R->getErrorString();
delete R;
return Triple;
}