llvm-mirror/lib/DebugInfo/DWARF/DWARFAcceleratorTable.cpp
2020-06-02 17:55:30 +07:00

906 lines
30 KiB
C++

//===- DWARFAcceleratorTable.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/DWARF/DWARFAcceleratorTable.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/DebugInfo/DWARF/DWARFRelocMap.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DJB.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/raw_ostream.h"
#include <cstddef>
#include <cstdint>
#include <utility>
using namespace llvm;
namespace {
struct Atom {
unsigned Value;
};
static raw_ostream &operator<<(raw_ostream &OS, const Atom &A) {
StringRef Str = dwarf::AtomTypeString(A.Value);
if (!Str.empty())
return OS << Str;
return OS << "DW_ATOM_unknown_" << format("%x", A.Value);
}
} // namespace
static Atom formatAtom(unsigned Atom) { return {Atom}; }
DWARFAcceleratorTable::~DWARFAcceleratorTable() = default;
Error AppleAcceleratorTable::extract() {
uint64_t Offset = 0;
// Check that we can at least read the header.
if (!AccelSection.isValidOffset(offsetof(Header, HeaderDataLength) + 4))
return createStringError(errc::illegal_byte_sequence,
"Section too small: cannot read header.");
Hdr.Magic = AccelSection.getU32(&Offset);
Hdr.Version = AccelSection.getU16(&Offset);
Hdr.HashFunction = AccelSection.getU16(&Offset);
Hdr.BucketCount = AccelSection.getU32(&Offset);
Hdr.HashCount = AccelSection.getU32(&Offset);
Hdr.HeaderDataLength = AccelSection.getU32(&Offset);
// Check that we can read all the hashes and offsets from the
// section (see SourceLevelDebugging.rst for the structure of the index).
// We need to substract one because we're checking for an *offset* which is
// equal to the size for an empty table and hence pointer after the section.
if (!AccelSection.isValidOffset(sizeof(Hdr) + Hdr.HeaderDataLength +
Hdr.BucketCount * 4 + Hdr.HashCount * 8 - 1))
return createStringError(
errc::illegal_byte_sequence,
"Section too small: cannot read buckets and hashes.");
HdrData.DIEOffsetBase = AccelSection.getU32(&Offset);
uint32_t NumAtoms = AccelSection.getU32(&Offset);
for (unsigned i = 0; i < NumAtoms; ++i) {
uint16_t AtomType = AccelSection.getU16(&Offset);
auto AtomForm = static_cast<dwarf::Form>(AccelSection.getU16(&Offset));
HdrData.Atoms.push_back(std::make_pair(AtomType, AtomForm));
}
IsValid = true;
return Error::success();
}
uint32_t AppleAcceleratorTable::getNumBuckets() { return Hdr.BucketCount; }
uint32_t AppleAcceleratorTable::getNumHashes() { return Hdr.HashCount; }
uint32_t AppleAcceleratorTable::getSizeHdr() { return sizeof(Hdr); }
uint32_t AppleAcceleratorTable::getHeaderDataLength() {
return Hdr.HeaderDataLength;
}
ArrayRef<std::pair<AppleAcceleratorTable::HeaderData::AtomType,
AppleAcceleratorTable::HeaderData::Form>>
AppleAcceleratorTable::getAtomsDesc() {
return HdrData.Atoms;
}
bool AppleAcceleratorTable::validateForms() {
for (auto Atom : getAtomsDesc()) {
DWARFFormValue FormValue(Atom.second);
switch (Atom.first) {
case dwarf::DW_ATOM_die_offset:
case dwarf::DW_ATOM_die_tag:
case dwarf::DW_ATOM_type_flags:
if ((!FormValue.isFormClass(DWARFFormValue::FC_Constant) &&
!FormValue.isFormClass(DWARFFormValue::FC_Flag)) ||
FormValue.getForm() == dwarf::DW_FORM_sdata)
return false;
break;
default:
break;
}
}
return true;
}
std::pair<uint64_t, dwarf::Tag>
AppleAcceleratorTable::readAtoms(uint64_t *HashDataOffset) {
uint64_t DieOffset = dwarf::DW_INVALID_OFFSET;
dwarf::Tag DieTag = dwarf::DW_TAG_null;
dwarf::FormParams FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32};
for (auto Atom : getAtomsDesc()) {
DWARFFormValue FormValue(Atom.second);
FormValue.extractValue(AccelSection, HashDataOffset, FormParams);
switch (Atom.first) {
case dwarf::DW_ATOM_die_offset:
DieOffset = *FormValue.getAsUnsignedConstant();
break;
case dwarf::DW_ATOM_die_tag:
DieTag = (dwarf::Tag)*FormValue.getAsUnsignedConstant();
break;
default:
break;
}
}
return {DieOffset, DieTag};
}
void AppleAcceleratorTable::Header::dump(ScopedPrinter &W) const {
DictScope HeaderScope(W, "Header");
W.printHex("Magic", Magic);
W.printHex("Version", Version);
W.printHex("Hash function", HashFunction);
W.printNumber("Bucket count", BucketCount);
W.printNumber("Hashes count", HashCount);
W.printNumber("HeaderData length", HeaderDataLength);
}
Optional<uint64_t> AppleAcceleratorTable::HeaderData::extractOffset(
Optional<DWARFFormValue> Value) const {
if (!Value)
return None;
switch (Value->getForm()) {
case dwarf::DW_FORM_ref1:
case dwarf::DW_FORM_ref2:
case dwarf::DW_FORM_ref4:
case dwarf::DW_FORM_ref8:
case dwarf::DW_FORM_ref_udata:
return Value->getRawUValue() + DIEOffsetBase;
default:
return Value->getAsSectionOffset();
}
}
bool AppleAcceleratorTable::dumpName(ScopedPrinter &W,
SmallVectorImpl<DWARFFormValue> &AtomForms,
uint64_t *DataOffset) const {
dwarf::FormParams FormParams = {Hdr.Version, 0, dwarf::DwarfFormat::DWARF32};
uint64_t NameOffset = *DataOffset;
if (!AccelSection.isValidOffsetForDataOfSize(*DataOffset, 4)) {
W.printString("Incorrectly terminated list.");
return false;
}
uint64_t StringOffset = AccelSection.getRelocatedValue(4, DataOffset);
if (!StringOffset)
return false; // End of list
DictScope NameScope(W, ("Name@0x" + Twine::utohexstr(NameOffset)).str());
W.startLine() << format("String: 0x%08" PRIx64, StringOffset);
W.getOStream() << " \"" << StringSection.getCStr(&StringOffset) << "\"\n";
unsigned NumData = AccelSection.getU32(DataOffset);
for (unsigned Data = 0; Data < NumData; ++Data) {
ListScope DataScope(W, ("Data " + Twine(Data)).str());
unsigned i = 0;
for (auto &Atom : AtomForms) {
W.startLine() << format("Atom[%d]: ", i);
if (Atom.extractValue(AccelSection, DataOffset, FormParams)) {
Atom.dump(W.getOStream());
if (Optional<uint64_t> Val = Atom.getAsUnsignedConstant()) {
StringRef Str = dwarf::AtomValueString(HdrData.Atoms[i].first, *Val);
if (!Str.empty())
W.getOStream() << " (" << Str << ")";
}
} else
W.getOStream() << "Error extracting the value";
W.getOStream() << "\n";
i++;
}
}
return true; // more entries follow
}
LLVM_DUMP_METHOD void AppleAcceleratorTable::dump(raw_ostream &OS) const {
if (!IsValid)
return;
ScopedPrinter W(OS);
Hdr.dump(W);
W.printNumber("DIE offset base", HdrData.DIEOffsetBase);
W.printNumber("Number of atoms", uint64_t(HdrData.Atoms.size()));
SmallVector<DWARFFormValue, 3> AtomForms;
{
ListScope AtomsScope(W, "Atoms");
unsigned i = 0;
for (const auto &Atom : HdrData.Atoms) {
DictScope AtomScope(W, ("Atom " + Twine(i++)).str());
W.startLine() << "Type: " << formatAtom(Atom.first) << '\n';
W.startLine() << "Form: " << formatv("{0}", Atom.second) << '\n';
AtomForms.push_back(DWARFFormValue(Atom.second));
}
}
// Now go through the actual tables and dump them.
uint64_t Offset = sizeof(Hdr) + Hdr.HeaderDataLength;
uint64_t HashesBase = Offset + Hdr.BucketCount * 4;
uint64_t OffsetsBase = HashesBase + Hdr.HashCount * 4;
for (unsigned Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket) {
unsigned Index = AccelSection.getU32(&Offset);
ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str());
if (Index == UINT32_MAX) {
W.printString("EMPTY");
continue;
}
for (unsigned HashIdx = Index; HashIdx < Hdr.HashCount; ++HashIdx) {
uint64_t HashOffset = HashesBase + HashIdx*4;
uint64_t OffsetsOffset = OffsetsBase + HashIdx*4;
uint32_t Hash = AccelSection.getU32(&HashOffset);
if (Hash % Hdr.BucketCount != Bucket)
break;
uint64_t DataOffset = AccelSection.getU32(&OffsetsOffset);
ListScope HashScope(W, ("Hash 0x" + Twine::utohexstr(Hash)).str());
if (!AccelSection.isValidOffset(DataOffset)) {
W.printString("Invalid section offset");
continue;
}
while (dumpName(W, AtomForms, &DataOffset))
/*empty*/;
}
}
}
AppleAcceleratorTable::Entry::Entry(
const AppleAcceleratorTable::HeaderData &HdrData)
: HdrData(&HdrData) {
Values.reserve(HdrData.Atoms.size());
for (const auto &Atom : HdrData.Atoms)
Values.push_back(DWARFFormValue(Atom.second));
}
void AppleAcceleratorTable::Entry::extract(
const AppleAcceleratorTable &AccelTable, uint64_t *Offset) {
dwarf::FormParams FormParams = {AccelTable.Hdr.Version, 0,
dwarf::DwarfFormat::DWARF32};
for (auto &Atom : Values)
Atom.extractValue(AccelTable.AccelSection, Offset, FormParams);
}
Optional<DWARFFormValue>
AppleAcceleratorTable::Entry::lookup(HeaderData::AtomType Atom) const {
assert(HdrData && "Dereferencing end iterator?");
assert(HdrData->Atoms.size() == Values.size());
for (auto Tuple : zip_first(HdrData->Atoms, Values)) {
if (std::get<0>(Tuple).first == Atom)
return std::get<1>(Tuple);
}
return None;
}
Optional<uint64_t> AppleAcceleratorTable::Entry::getDIESectionOffset() const {
return HdrData->extractOffset(lookup(dwarf::DW_ATOM_die_offset));
}
Optional<uint64_t> AppleAcceleratorTable::Entry::getCUOffset() const {
return HdrData->extractOffset(lookup(dwarf::DW_ATOM_cu_offset));
}
Optional<dwarf::Tag> AppleAcceleratorTable::Entry::getTag() const {
Optional<DWARFFormValue> Tag = lookup(dwarf::DW_ATOM_die_tag);
if (!Tag)
return None;
if (Optional<uint64_t> Value = Tag->getAsUnsignedConstant())
return dwarf::Tag(*Value);
return None;
}
AppleAcceleratorTable::ValueIterator::ValueIterator(
const AppleAcceleratorTable &AccelTable, uint64_t Offset)
: AccelTable(&AccelTable), Current(AccelTable.HdrData), DataOffset(Offset) {
if (!AccelTable.AccelSection.isValidOffsetForDataOfSize(DataOffset, 4))
return;
// Read the first entry.
NumData = AccelTable.AccelSection.getU32(&DataOffset);
Next();
}
void AppleAcceleratorTable::ValueIterator::Next() {
assert(NumData > 0 && "attempted to increment iterator past the end");
auto &AccelSection = AccelTable->AccelSection;
if (Data >= NumData ||
!AccelSection.isValidOffsetForDataOfSize(DataOffset, 4)) {
NumData = 0;
DataOffset = 0;
return;
}
Current.extract(*AccelTable, &DataOffset);
++Data;
}
iterator_range<AppleAcceleratorTable::ValueIterator>
AppleAcceleratorTable::equal_range(StringRef Key) const {
if (!IsValid)
return make_range(ValueIterator(), ValueIterator());
// Find the bucket.
unsigned HashValue = djbHash(Key);
unsigned Bucket = HashValue % Hdr.BucketCount;
uint64_t BucketBase = sizeof(Hdr) + Hdr.HeaderDataLength;
uint64_t HashesBase = BucketBase + Hdr.BucketCount * 4;
uint64_t OffsetsBase = HashesBase + Hdr.HashCount * 4;
uint64_t BucketOffset = BucketBase + Bucket * 4;
unsigned Index = AccelSection.getU32(&BucketOffset);
// Search through all hashes in the bucket.
for (unsigned HashIdx = Index; HashIdx < Hdr.HashCount; ++HashIdx) {
uint64_t HashOffset = HashesBase + HashIdx * 4;
uint64_t OffsetsOffset = OffsetsBase + HashIdx * 4;
uint32_t Hash = AccelSection.getU32(&HashOffset);
if (Hash % Hdr.BucketCount != Bucket)
// We are already in the next bucket.
break;
uint64_t DataOffset = AccelSection.getU32(&OffsetsOffset);
uint64_t StringOffset = AccelSection.getRelocatedValue(4, &DataOffset);
if (!StringOffset)
break;
// Finally, compare the key.
if (Key == StringSection.getCStr(&StringOffset))
return make_range({*this, DataOffset}, ValueIterator());
}
return make_range(ValueIterator(), ValueIterator());
}
void DWARFDebugNames::Header::dump(ScopedPrinter &W) const {
DictScope HeaderScope(W, "Header");
W.printHex("Length", UnitLength);
W.printString("Format", dwarf::FormatString(Format));
W.printNumber("Version", Version);
W.printNumber("CU count", CompUnitCount);
W.printNumber("Local TU count", LocalTypeUnitCount);
W.printNumber("Foreign TU count", ForeignTypeUnitCount);
W.printNumber("Bucket count", BucketCount);
W.printNumber("Name count", NameCount);
W.printHex("Abbreviations table size", AbbrevTableSize);
W.startLine() << "Augmentation: '" << AugmentationString << "'\n";
}
Error DWARFDebugNames::Header::extract(const DWARFDataExtractor &AS,
uint64_t *Offset) {
auto HeaderError = [Offset = *Offset](Error E) {
return createStringError(errc::illegal_byte_sequence,
"parsing .debug_names header at 0x%" PRIx64 ": %s",
Offset, toString(std::move(E)).c_str());
};
DataExtractor::Cursor C(*Offset);
std::tie(UnitLength, Format) = AS.getInitialLength(C);
Version = AS.getU16(C);
AS.skip(C, 2); // padding
CompUnitCount = AS.getU32(C);
LocalTypeUnitCount = AS.getU32(C);
ForeignTypeUnitCount = AS.getU32(C);
BucketCount = AS.getU32(C);
NameCount = AS.getU32(C);
AbbrevTableSize = AS.getU32(C);
AugmentationStringSize = alignTo(AS.getU32(C), 4);
if (!C)
return HeaderError(C.takeError());
if (!AS.isValidOffsetForDataOfSize(C.tell(), AugmentationStringSize))
return HeaderError(createStringError(errc::illegal_byte_sequence,
"cannot read header augmentation"));
AugmentationString.resize(AugmentationStringSize);
AS.getU8(C, reinterpret_cast<uint8_t *>(AugmentationString.data()),
AugmentationStringSize);
*Offset = C.tell();
return C.takeError();
}
void DWARFDebugNames::Abbrev::dump(ScopedPrinter &W) const {
DictScope AbbrevScope(W, ("Abbreviation 0x" + Twine::utohexstr(Code)).str());
W.startLine() << formatv("Tag: {0}\n", Tag);
for (const auto &Attr : Attributes)
W.startLine() << formatv("{0}: {1}\n", Attr.Index, Attr.Form);
}
static constexpr DWARFDebugNames::AttributeEncoding sentinelAttrEnc() {
return {dwarf::Index(0), dwarf::Form(0)};
}
static bool isSentinel(const DWARFDebugNames::AttributeEncoding &AE) {
return AE == sentinelAttrEnc();
}
static DWARFDebugNames::Abbrev sentinelAbbrev() {
return DWARFDebugNames::Abbrev(0, dwarf::Tag(0), {});
}
static bool isSentinel(const DWARFDebugNames::Abbrev &Abbr) {
return Abbr.Code == 0;
}
DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getEmptyKey() {
return sentinelAbbrev();
}
DWARFDebugNames::Abbrev DWARFDebugNames::AbbrevMapInfo::getTombstoneKey() {
return DWARFDebugNames::Abbrev(~0, dwarf::Tag(0), {});
}
Expected<DWARFDebugNames::AttributeEncoding>
DWARFDebugNames::NameIndex::extractAttributeEncoding(uint64_t *Offset) {
if (*Offset >= EntriesBase) {
return createStringError(errc::illegal_byte_sequence,
"Incorrectly terminated abbreviation table.");
}
uint32_t Index = Section.AccelSection.getULEB128(Offset);
uint32_t Form = Section.AccelSection.getULEB128(Offset);
return AttributeEncoding(dwarf::Index(Index), dwarf::Form(Form));
}
Expected<std::vector<DWARFDebugNames::AttributeEncoding>>
DWARFDebugNames::NameIndex::extractAttributeEncodings(uint64_t *Offset) {
std::vector<AttributeEncoding> Result;
for (;;) {
auto AttrEncOr = extractAttributeEncoding(Offset);
if (!AttrEncOr)
return AttrEncOr.takeError();
if (isSentinel(*AttrEncOr))
return std::move(Result);
Result.emplace_back(*AttrEncOr);
}
}
Expected<DWARFDebugNames::Abbrev>
DWARFDebugNames::NameIndex::extractAbbrev(uint64_t *Offset) {
if (*Offset >= EntriesBase) {
return createStringError(errc::illegal_byte_sequence,
"Incorrectly terminated abbreviation table.");
}
uint32_t Code = Section.AccelSection.getULEB128(Offset);
if (Code == 0)
return sentinelAbbrev();
uint32_t Tag = Section.AccelSection.getULEB128(Offset);
auto AttrEncOr = extractAttributeEncodings(Offset);
if (!AttrEncOr)
return AttrEncOr.takeError();
return Abbrev(Code, dwarf::Tag(Tag), std::move(*AttrEncOr));
}
Error DWARFDebugNames::NameIndex::extract() {
const DWARFDataExtractor &AS = Section.AccelSection;
uint64_t Offset = Base;
if (Error E = Hdr.extract(AS, &Offset))
return E;
const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format);
CUsBase = Offset;
Offset += Hdr.CompUnitCount * SectionOffsetSize;
Offset += Hdr.LocalTypeUnitCount * SectionOffsetSize;
Offset += Hdr.ForeignTypeUnitCount * 8;
BucketsBase = Offset;
Offset += Hdr.BucketCount * 4;
HashesBase = Offset;
if (Hdr.BucketCount > 0)
Offset += Hdr.NameCount * 4;
StringOffsetsBase = Offset;
Offset += Hdr.NameCount * SectionOffsetSize;
EntryOffsetsBase = Offset;
Offset += Hdr.NameCount * SectionOffsetSize;
if (!AS.isValidOffsetForDataOfSize(Offset, Hdr.AbbrevTableSize))
return createStringError(errc::illegal_byte_sequence,
"Section too small: cannot read abbreviations.");
EntriesBase = Offset + Hdr.AbbrevTableSize;
for (;;) {
auto AbbrevOr = extractAbbrev(&Offset);
if (!AbbrevOr)
return AbbrevOr.takeError();
if (isSentinel(*AbbrevOr))
return Error::success();
if (!Abbrevs.insert(std::move(*AbbrevOr)).second)
return createStringError(errc::invalid_argument,
"Duplicate abbreviation code.");
}
}
DWARFDebugNames::Entry::Entry(const NameIndex &NameIdx, const Abbrev &Abbr)
: NameIdx(&NameIdx), Abbr(&Abbr) {
// This merely creates form values. It is up to the caller
// (NameIndex::getEntry) to populate them.
Values.reserve(Abbr.Attributes.size());
for (const auto &Attr : Abbr.Attributes)
Values.emplace_back(Attr.Form);
}
Optional<DWARFFormValue>
DWARFDebugNames::Entry::lookup(dwarf::Index Index) const {
assert(Abbr->Attributes.size() == Values.size());
for (auto Tuple : zip_first(Abbr->Attributes, Values)) {
if (std::get<0>(Tuple).Index == Index)
return std::get<1>(Tuple);
}
return None;
}
Optional<uint64_t> DWARFDebugNames::Entry::getDIEUnitOffset() const {
if (Optional<DWARFFormValue> Off = lookup(dwarf::DW_IDX_die_offset))
return Off->getAsReferenceUVal();
return None;
}
Optional<uint64_t> DWARFDebugNames::Entry::getCUIndex() const {
if (Optional<DWARFFormValue> Off = lookup(dwarf::DW_IDX_compile_unit))
return Off->getAsUnsignedConstant();
// In a per-CU index, the entries without a DW_IDX_compile_unit attribute
// implicitly refer to the single CU.
if (NameIdx->getCUCount() == 1)
return 0;
return None;
}
Optional<uint64_t> DWARFDebugNames::Entry::getCUOffset() const {
Optional<uint64_t> Index = getCUIndex();
if (!Index || *Index >= NameIdx->getCUCount())
return None;
return NameIdx->getCUOffset(*Index);
}
void DWARFDebugNames::Entry::dump(ScopedPrinter &W) const {
W.printHex("Abbrev", Abbr->Code);
W.startLine() << formatv("Tag: {0}\n", Abbr->Tag);
assert(Abbr->Attributes.size() == Values.size());
for (auto Tuple : zip_first(Abbr->Attributes, Values)) {
W.startLine() << formatv("{0}: ", std::get<0>(Tuple).Index);
std::get<1>(Tuple).dump(W.getOStream());
W.getOStream() << '\n';
}
}
char DWARFDebugNames::SentinelError::ID;
std::error_code DWARFDebugNames::SentinelError::convertToErrorCode() const {
return inconvertibleErrorCode();
}
uint64_t DWARFDebugNames::NameIndex::getCUOffset(uint32_t CU) const {
assert(CU < Hdr.CompUnitCount);
const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format);
uint64_t Offset = CUsBase + SectionOffsetSize * CU;
return Section.AccelSection.getRelocatedValue(SectionOffsetSize, &Offset);
}
uint64_t DWARFDebugNames::NameIndex::getLocalTUOffset(uint32_t TU) const {
assert(TU < Hdr.LocalTypeUnitCount);
const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format);
uint64_t Offset = CUsBase + SectionOffsetSize * (Hdr.CompUnitCount + TU);
return Section.AccelSection.getRelocatedValue(SectionOffsetSize, &Offset);
}
uint64_t DWARFDebugNames::NameIndex::getForeignTUSignature(uint32_t TU) const {
assert(TU < Hdr.ForeignTypeUnitCount);
const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format);
uint64_t Offset =
CUsBase +
SectionOffsetSize * (Hdr.CompUnitCount + Hdr.LocalTypeUnitCount) + 8 * TU;
return Section.AccelSection.getU64(&Offset);
}
Expected<DWARFDebugNames::Entry>
DWARFDebugNames::NameIndex::getEntry(uint64_t *Offset) const {
const DWARFDataExtractor &AS = Section.AccelSection;
if (!AS.isValidOffset(*Offset))
return createStringError(errc::illegal_byte_sequence,
"Incorrectly terminated entry list.");
uint32_t AbbrevCode = AS.getULEB128(Offset);
if (AbbrevCode == 0)
return make_error<SentinelError>();
const auto AbbrevIt = Abbrevs.find_as(AbbrevCode);
if (AbbrevIt == Abbrevs.end())
return createStringError(errc::invalid_argument, "Invalid abbreviation.");
Entry E(*this, *AbbrevIt);
dwarf::FormParams FormParams = {Hdr.Version, 0, Hdr.Format};
for (auto &Value : E.Values) {
if (!Value.extractValue(AS, Offset, FormParams))
return createStringError(errc::io_error,
"Error extracting index attribute values.");
}
return std::move(E);
}
DWARFDebugNames::NameTableEntry
DWARFDebugNames::NameIndex::getNameTableEntry(uint32_t Index) const {
assert(0 < Index && Index <= Hdr.NameCount);
const unsigned SectionOffsetSize = dwarf::getDwarfOffsetByteSize(Hdr.Format);
uint64_t StringOffsetOffset =
StringOffsetsBase + SectionOffsetSize * (Index - 1);
uint64_t EntryOffsetOffset =
EntryOffsetsBase + SectionOffsetSize * (Index - 1);
const DWARFDataExtractor &AS = Section.AccelSection;
uint64_t StringOffset =
AS.getRelocatedValue(SectionOffsetSize, &StringOffsetOffset);
uint64_t EntryOffset = AS.getUnsigned(&EntryOffsetOffset, SectionOffsetSize);
EntryOffset += EntriesBase;
return {Section.StringSection, Index, StringOffset, EntryOffset};
}
uint32_t
DWARFDebugNames::NameIndex::getBucketArrayEntry(uint32_t Bucket) const {
assert(Bucket < Hdr.BucketCount);
uint64_t BucketOffset = BucketsBase + 4 * Bucket;
return Section.AccelSection.getU32(&BucketOffset);
}
uint32_t DWARFDebugNames::NameIndex::getHashArrayEntry(uint32_t Index) const {
assert(0 < Index && Index <= Hdr.NameCount);
uint64_t HashOffset = HashesBase + 4 * (Index - 1);
return Section.AccelSection.getU32(&HashOffset);
}
// Returns true if we should continue scanning for entries, false if this is the
// last (sentinel) entry). In case of a parsing error we also return false, as
// it's not possible to recover this entry list (but the other lists may still
// parse OK).
bool DWARFDebugNames::NameIndex::dumpEntry(ScopedPrinter &W,
uint64_t *Offset) const {
uint64_t EntryId = *Offset;
auto EntryOr = getEntry(Offset);
if (!EntryOr) {
handleAllErrors(EntryOr.takeError(), [](const SentinelError &) {},
[&W](const ErrorInfoBase &EI) { EI.log(W.startLine()); });
return false;
}
DictScope EntryScope(W, ("Entry @ 0x" + Twine::utohexstr(EntryId)).str());
EntryOr->dump(W);
return true;
}
void DWARFDebugNames::NameIndex::dumpName(ScopedPrinter &W,
const NameTableEntry &NTE,
Optional<uint32_t> Hash) const {
DictScope NameScope(W, ("Name " + Twine(NTE.getIndex())).str());
if (Hash)
W.printHex("Hash", *Hash);
W.startLine() << format("String: 0x%08" PRIx64, NTE.getStringOffset());
W.getOStream() << " \"" << NTE.getString() << "\"\n";
uint64_t EntryOffset = NTE.getEntryOffset();
while (dumpEntry(W, &EntryOffset))
/*empty*/;
}
void DWARFDebugNames::NameIndex::dumpCUs(ScopedPrinter &W) const {
ListScope CUScope(W, "Compilation Unit offsets");
for (uint32_t CU = 0; CU < Hdr.CompUnitCount; ++CU)
W.startLine() << format("CU[%u]: 0x%08" PRIx64 "\n", CU, getCUOffset(CU));
}
void DWARFDebugNames::NameIndex::dumpLocalTUs(ScopedPrinter &W) const {
if (Hdr.LocalTypeUnitCount == 0)
return;
ListScope TUScope(W, "Local Type Unit offsets");
for (uint32_t TU = 0; TU < Hdr.LocalTypeUnitCount; ++TU)
W.startLine() << format("LocalTU[%u]: 0x%08" PRIx64 "\n", TU,
getLocalTUOffset(TU));
}
void DWARFDebugNames::NameIndex::dumpForeignTUs(ScopedPrinter &W) const {
if (Hdr.ForeignTypeUnitCount == 0)
return;
ListScope TUScope(W, "Foreign Type Unit signatures");
for (uint32_t TU = 0; TU < Hdr.ForeignTypeUnitCount; ++TU) {
W.startLine() << format("ForeignTU[%u]: 0x%016" PRIx64 "\n", TU,
getForeignTUSignature(TU));
}
}
void DWARFDebugNames::NameIndex::dumpAbbreviations(ScopedPrinter &W) const {
ListScope AbbrevsScope(W, "Abbreviations");
for (const auto &Abbr : Abbrevs)
Abbr.dump(W);
}
void DWARFDebugNames::NameIndex::dumpBucket(ScopedPrinter &W,
uint32_t Bucket) const {
ListScope BucketScope(W, ("Bucket " + Twine(Bucket)).str());
uint32_t Index = getBucketArrayEntry(Bucket);
if (Index == 0) {
W.printString("EMPTY");
return;
}
if (Index > Hdr.NameCount) {
W.printString("Name index is invalid");
return;
}
for (; Index <= Hdr.NameCount; ++Index) {
uint32_t Hash = getHashArrayEntry(Index);
if (Hash % Hdr.BucketCount != Bucket)
break;
dumpName(W, getNameTableEntry(Index), Hash);
}
}
LLVM_DUMP_METHOD void DWARFDebugNames::NameIndex::dump(ScopedPrinter &W) const {
DictScope UnitScope(W, ("Name Index @ 0x" + Twine::utohexstr(Base)).str());
Hdr.dump(W);
dumpCUs(W);
dumpLocalTUs(W);
dumpForeignTUs(W);
dumpAbbreviations(W);
if (Hdr.BucketCount > 0) {
for (uint32_t Bucket = 0; Bucket < Hdr.BucketCount; ++Bucket)
dumpBucket(W, Bucket);
return;
}
W.startLine() << "Hash table not present\n";
for (NameTableEntry NTE : *this)
dumpName(W, NTE, None);
}
Error DWARFDebugNames::extract() {
uint64_t Offset = 0;
while (AccelSection.isValidOffset(Offset)) {
NameIndex Next(*this, Offset);
if (Error E = Next.extract())
return E;
Offset = Next.getNextUnitOffset();
NameIndices.push_back(std::move(Next));
}
return Error::success();
}
iterator_range<DWARFDebugNames::ValueIterator>
DWARFDebugNames::NameIndex::equal_range(StringRef Key) const {
return make_range(ValueIterator(*this, Key), ValueIterator());
}
LLVM_DUMP_METHOD void DWARFDebugNames::dump(raw_ostream &OS) const {
ScopedPrinter W(OS);
for (const NameIndex &NI : NameIndices)
NI.dump(W);
}
Optional<uint64_t>
DWARFDebugNames::ValueIterator::findEntryOffsetInCurrentIndex() {
const Header &Hdr = CurrentIndex->Hdr;
if (Hdr.BucketCount == 0) {
// No Hash Table, We need to search through all names in the Name Index.
for (NameTableEntry NTE : *CurrentIndex) {
if (NTE.getString() == Key)
return NTE.getEntryOffset();
}
return None;
}
// The Name Index has a Hash Table, so use that to speed up the search.
// Compute the Key Hash, if it has not been done already.
if (!Hash)
Hash = caseFoldingDjbHash(Key);
uint32_t Bucket = *Hash % Hdr.BucketCount;
uint32_t Index = CurrentIndex->getBucketArrayEntry(Bucket);
if (Index == 0)
return None; // Empty bucket
for (; Index <= Hdr.NameCount; ++Index) {
uint32_t Hash = CurrentIndex->getHashArrayEntry(Index);
if (Hash % Hdr.BucketCount != Bucket)
return None; // End of bucket
NameTableEntry NTE = CurrentIndex->getNameTableEntry(Index);
if (NTE.getString() == Key)
return NTE.getEntryOffset();
}
return None;
}
bool DWARFDebugNames::ValueIterator::getEntryAtCurrentOffset() {
auto EntryOr = CurrentIndex->getEntry(&DataOffset);
if (!EntryOr) {
consumeError(EntryOr.takeError());
return false;
}
CurrentEntry = std::move(*EntryOr);
return true;
}
bool DWARFDebugNames::ValueIterator::findInCurrentIndex() {
Optional<uint64_t> Offset = findEntryOffsetInCurrentIndex();
if (!Offset)
return false;
DataOffset = *Offset;
return getEntryAtCurrentOffset();
}
void DWARFDebugNames::ValueIterator::searchFromStartOfCurrentIndex() {
for (const NameIndex *End = CurrentIndex->Section.NameIndices.end();
CurrentIndex != End; ++CurrentIndex) {
if (findInCurrentIndex())
return;
}
setEnd();
}
void DWARFDebugNames::ValueIterator::next() {
assert(CurrentIndex && "Incrementing an end() iterator?");
// First try the next entry in the current Index.
if (getEntryAtCurrentOffset())
return;
// If we're a local iterator or we have reached the last Index, we're done.
if (IsLocal || CurrentIndex == &CurrentIndex->Section.NameIndices.back()) {
setEnd();
return;
}
// Otherwise, try the next index.
++CurrentIndex;
searchFromStartOfCurrentIndex();
}
DWARFDebugNames::ValueIterator::ValueIterator(const DWARFDebugNames &AccelTable,
StringRef Key)
: CurrentIndex(AccelTable.NameIndices.begin()), IsLocal(false),
Key(std::string(Key)) {
searchFromStartOfCurrentIndex();
}
DWARFDebugNames::ValueIterator::ValueIterator(
const DWARFDebugNames::NameIndex &NI, StringRef Key)
: CurrentIndex(&NI), IsLocal(true), Key(std::string(Key)) {
if (!findInCurrentIndex())
setEnd();
}
iterator_range<DWARFDebugNames::ValueIterator>
DWARFDebugNames::equal_range(StringRef Key) const {
if (NameIndices.empty())
return make_range(ValueIterator(), ValueIterator());
return make_range(ValueIterator(*this, Key), ValueIterator());
}
const DWARFDebugNames::NameIndex *
DWARFDebugNames::getCUNameIndex(uint64_t CUOffset) {
if (CUToNameIndex.size() == 0 && NameIndices.size() > 0) {
for (const auto &NI : *this) {
for (uint32_t CU = 0; CU < NI.getCUCount(); ++CU)
CUToNameIndex.try_emplace(NI.getCUOffset(CU), &NI);
}
}
return CUToNameIndex.lookup(CUOffset);
}