llvm-mirror/lib/ProfileData/SampleProfReader.cpp
Wei Mi d9e172d0fb [SampleFDO] Enhance profile remapping support for searching inline instance
and indirect call promotion candidate.

Profile remapping is a feature to match a function in the module with its
profile in sample profile if the function name and the name in profile look
different but are equivalent using given remapping rules. This is a useful
feature to keep the performance stable by specifying some remapping rules
when sampleFDO targets are going through some large scale function signature
change.

However, currently profile remapping support is only valid for outline
function profile in SampleFDO. It cannot match a callee with an inline
instance profile if they have different but equivalent names. We found
that without the support for inline instance profile, remapping is less
effective for some large scale change.

To add that support, before any remapping lookup happens, all the names
in the profile will be inserted into remapper and the Key to the name
mapping will be recorded in a map called NameMap in the remapper. During
name lookup, a Key will be returned for the given name and it will be used
to extract an equivalent name in the profile from NameMap. So with the help
of the NameMap, we can translate any given name to an equivalent name in
the profile if it exists. Whenever we try to match a name in the module to
a name in the profile, we will try the match with the original name first,
and if it doesn't match, we will use the equivalent name got from remapper
to try the match for another time. In this way, the patch can enhance the
profile remapping support for searching inline instance and searching
indirect call promotion candidate.

In a planned large scale change of int64 type (long long) to int64_t (long),
we found the performance of a google internal benchmark degraded by 2% if
nothing was done. If existing profile remapping was enabled, the performance
degradation dropped to 1.2%. If the profile remapping with the current patch
was enabled, the performance degradation further dropped to 0.14% (Note the
experiment was done before searching indirect call promotion candidate was
added. We hope with the remapping support of searching indirect call promotion
candidate, the degradation can drop to 0% in the end. It will be evaluated
post commit).

Differential Revision: https://reviews.llvm.org/D86332
2020-08-26 11:07:35 -07:00

1451 lines
46 KiB
C++

//===- SampleProfReader.cpp - Read LLVM sample profile data ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that reads LLVM sample profiles. It
// supports three file formats: text, binary and gcov.
//
// The textual representation is useful for debugging and testing purposes. The
// binary representation is more compact, resulting in smaller file sizes.
//
// The gcov encoding is the one generated by GCC's AutoFDO profile creation
// tool (https://github.com/google/autofdo)
//
// All three encodings can be used interchangeably as an input sample profile.
//
//===----------------------------------------------------------------------===//
#include "llvm/ProfileData/SampleProfReader.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/ProfileSummary.h"
#include "llvm/ProfileData/ProfileCommon.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/ErrorOr.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MD5.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <system_error>
#include <vector>
using namespace llvm;
using namespace sampleprof;
/// Dump the function profile for \p FName.
///
/// \param FName Name of the function to print.
/// \param OS Stream to emit the output to.
void SampleProfileReader::dumpFunctionProfile(StringRef FName,
raw_ostream &OS) {
OS << "Function: " << FName << ": " << Profiles[FName];
}
/// Dump all the function profiles found on stream \p OS.
void SampleProfileReader::dump(raw_ostream &OS) {
for (const auto &I : Profiles)
dumpFunctionProfile(I.getKey(), OS);
}
/// Parse \p Input as function head.
///
/// Parse one line of \p Input, and update function name in \p FName,
/// function's total sample count in \p NumSamples, function's entry
/// count in \p NumHeadSamples.
///
/// \returns true if parsing is successful.
static bool ParseHead(const StringRef &Input, StringRef &FName,
uint64_t &NumSamples, uint64_t &NumHeadSamples) {
if (Input[0] == ' ')
return false;
size_t n2 = Input.rfind(':');
size_t n1 = Input.rfind(':', n2 - 1);
FName = Input.substr(0, n1);
if (Input.substr(n1 + 1, n2 - n1 - 1).getAsInteger(10, NumSamples))
return false;
if (Input.substr(n2 + 1).getAsInteger(10, NumHeadSamples))
return false;
return true;
}
/// Returns true if line offset \p L is legal (only has 16 bits).
static bool isOffsetLegal(unsigned L) { return (L & 0xffff) == L; }
/// Parse \p Input as line sample.
///
/// \param Input input line.
/// \param IsCallsite true if the line represents an inlined callsite.
/// \param Depth the depth of the inline stack.
/// \param NumSamples total samples of the line/inlined callsite.
/// \param LineOffset line offset to the start of the function.
/// \param Discriminator discriminator of the line.
/// \param TargetCountMap map from indirect call target to count.
///
/// returns true if parsing is successful.
static bool ParseLine(const StringRef &Input, bool &IsCallsite, uint32_t &Depth,
uint64_t &NumSamples, uint32_t &LineOffset,
uint32_t &Discriminator, StringRef &CalleeName,
DenseMap<StringRef, uint64_t> &TargetCountMap) {
for (Depth = 0; Input[Depth] == ' '; Depth++)
;
if (Depth == 0)
return false;
size_t n1 = Input.find(':');
StringRef Loc = Input.substr(Depth, n1 - Depth);
size_t n2 = Loc.find('.');
if (n2 == StringRef::npos) {
if (Loc.getAsInteger(10, LineOffset) || !isOffsetLegal(LineOffset))
return false;
Discriminator = 0;
} else {
if (Loc.substr(0, n2).getAsInteger(10, LineOffset))
return false;
if (Loc.substr(n2 + 1).getAsInteger(10, Discriminator))
return false;
}
StringRef Rest = Input.substr(n1 + 2);
if (Rest[0] >= '0' && Rest[0] <= '9') {
IsCallsite = false;
size_t n3 = Rest.find(' ');
if (n3 == StringRef::npos) {
if (Rest.getAsInteger(10, NumSamples))
return false;
} else {
if (Rest.substr(0, n3).getAsInteger(10, NumSamples))
return false;
}
// Find call targets and their sample counts.
// Note: In some cases, there are symbols in the profile which are not
// mangled. To accommodate such cases, use colon + integer pairs as the
// anchor points.
// An example:
// _M_construct<char *>:1000 string_view<std::allocator<char> >:437
// ":1000" and ":437" are used as anchor points so the string above will
// be interpreted as
// target: _M_construct<char *>
// count: 1000
// target: string_view<std::allocator<char> >
// count: 437
while (n3 != StringRef::npos) {
n3 += Rest.substr(n3).find_first_not_of(' ');
Rest = Rest.substr(n3);
n3 = Rest.find_first_of(':');
if (n3 == StringRef::npos || n3 == 0)
return false;
StringRef Target;
uint64_t count, n4;
while (true) {
// Get the segment after the current colon.
StringRef AfterColon = Rest.substr(n3 + 1);
// Get the target symbol before the current colon.
Target = Rest.substr(0, n3);
// Check if the word after the current colon is an integer.
n4 = AfterColon.find_first_of(' ');
n4 = (n4 != StringRef::npos) ? n3 + n4 + 1 : Rest.size();
StringRef WordAfterColon = Rest.substr(n3 + 1, n4 - n3 - 1);
if (!WordAfterColon.getAsInteger(10, count))
break;
// Try to find the next colon.
uint64_t n5 = AfterColon.find_first_of(':');
if (n5 == StringRef::npos)
return false;
n3 += n5 + 1;
}
// An anchor point is found. Save the {target, count} pair
TargetCountMap[Target] = count;
if (n4 == Rest.size())
break;
// Change n3 to the next blank space after colon + integer pair.
n3 = n4;
}
} else {
IsCallsite = true;
size_t n3 = Rest.find_last_of(':');
CalleeName = Rest.substr(0, n3);
if (Rest.substr(n3 + 1).getAsInteger(10, NumSamples))
return false;
}
return true;
}
/// Load samples from a text file.
///
/// See the documentation at the top of the file for an explanation of
/// the expected format.
///
/// \returns true if the file was loaded successfully, false otherwise.
std::error_code SampleProfileReaderText::readImpl() {
line_iterator LineIt(*Buffer, /*SkipBlanks=*/true, '#');
sampleprof_error Result = sampleprof_error::success;
InlineCallStack InlineStack;
for (; !LineIt.is_at_eof(); ++LineIt) {
if ((*LineIt)[(*LineIt).find_first_not_of(' ')] == '#')
continue;
// Read the header of each function.
//
// Note that for function identifiers we are actually expecting
// mangled names, but we may not always get them. This happens when
// the compiler decides not to emit the function (e.g., it was inlined
// and removed). In this case, the binary will not have the linkage
// name for the function, so the profiler will emit the function's
// unmangled name, which may contain characters like ':' and '>' in its
// name (member functions, templates, etc).
//
// The only requirement we place on the identifier, then, is that it
// should not begin with a number.
if ((*LineIt)[0] != ' ') {
uint64_t NumSamples, NumHeadSamples;
StringRef FName;
if (!ParseHead(*LineIt, FName, NumSamples, NumHeadSamples)) {
reportError(LineIt.line_number(),
"Expected 'mangled_name:NUM:NUM', found " + *LineIt);
return sampleprof_error::malformed;
}
Profiles[FName] = FunctionSamples();
FunctionSamples &FProfile = Profiles[FName];
FProfile.setName(FName);
MergeResult(Result, FProfile.addTotalSamples(NumSamples));
MergeResult(Result, FProfile.addHeadSamples(NumHeadSamples));
InlineStack.clear();
InlineStack.push_back(&FProfile);
} else {
uint64_t NumSamples;
StringRef FName;
DenseMap<StringRef, uint64_t> TargetCountMap;
bool IsCallsite;
uint32_t Depth, LineOffset, Discriminator;
if (!ParseLine(*LineIt, IsCallsite, Depth, NumSamples, LineOffset,
Discriminator, FName, TargetCountMap)) {
reportError(LineIt.line_number(),
"Expected 'NUM[.NUM]: NUM[ mangled_name:NUM]*', found " +
*LineIt);
return sampleprof_error::malformed;
}
if (IsCallsite) {
while (InlineStack.size() > Depth) {
InlineStack.pop_back();
}
FunctionSamples &FSamples = InlineStack.back()->functionSamplesAt(
LineLocation(LineOffset, Discriminator))[std::string(FName)];
FSamples.setName(FName);
MergeResult(Result, FSamples.addTotalSamples(NumSamples));
InlineStack.push_back(&FSamples);
} else {
while (InlineStack.size() > Depth) {
InlineStack.pop_back();
}
FunctionSamples &FProfile = *InlineStack.back();
for (const auto &name_count : TargetCountMap) {
MergeResult(Result, FProfile.addCalledTargetSamples(
LineOffset, Discriminator, name_count.first,
name_count.second));
}
MergeResult(Result, FProfile.addBodySamples(LineOffset, Discriminator,
NumSamples));
}
}
}
if (Result == sampleprof_error::success)
computeSummary();
return Result;
}
bool SampleProfileReaderText::hasFormat(const MemoryBuffer &Buffer) {
bool result = false;
// Check that the first non-comment line is a valid function header.
line_iterator LineIt(Buffer, /*SkipBlanks=*/true, '#');
if (!LineIt.is_at_eof()) {
if ((*LineIt)[0] != ' ') {
uint64_t NumSamples, NumHeadSamples;
StringRef FName;
result = ParseHead(*LineIt, FName, NumSamples, NumHeadSamples);
}
}
return result;
}
template <typename T> ErrorOr<T> SampleProfileReaderBinary::readNumber() {
unsigned NumBytesRead = 0;
std::error_code EC;
uint64_t Val = decodeULEB128(Data, &NumBytesRead);
if (Val > std::numeric_limits<T>::max())
EC = sampleprof_error::malformed;
else if (Data + NumBytesRead > End)
EC = sampleprof_error::truncated;
else
EC = sampleprof_error::success;
if (EC) {
reportError(0, EC.message());
return EC;
}
Data += NumBytesRead;
return static_cast<T>(Val);
}
ErrorOr<StringRef> SampleProfileReaderBinary::readString() {
std::error_code EC;
StringRef Str(reinterpret_cast<const char *>(Data));
if (Data + Str.size() + 1 > End) {
EC = sampleprof_error::truncated;
reportError(0, EC.message());
return EC;
}
Data += Str.size() + 1;
return Str;
}
template <typename T>
ErrorOr<T> SampleProfileReaderBinary::readUnencodedNumber() {
std::error_code EC;
if (Data + sizeof(T) > End) {
EC = sampleprof_error::truncated;
reportError(0, EC.message());
return EC;
}
using namespace support;
T Val = endian::readNext<T, little, unaligned>(Data);
return Val;
}
template <typename T>
inline ErrorOr<uint32_t> SampleProfileReaderBinary::readStringIndex(T &Table) {
std::error_code EC;
auto Idx = readNumber<uint32_t>();
if (std::error_code EC = Idx.getError())
return EC;
if (*Idx >= Table.size())
return sampleprof_error::truncated_name_table;
return *Idx;
}
ErrorOr<StringRef> SampleProfileReaderBinary::readStringFromTable() {
auto Idx = readStringIndex(NameTable);
if (std::error_code EC = Idx.getError())
return EC;
return NameTable[*Idx];
}
ErrorOr<StringRef> SampleProfileReaderCompactBinary::readStringFromTable() {
auto Idx = readStringIndex(NameTable);
if (std::error_code EC = Idx.getError())
return EC;
return StringRef(NameTable[*Idx]);
}
std::error_code
SampleProfileReaderBinary::readProfile(FunctionSamples &FProfile) {
auto NumSamples = readNumber<uint64_t>();
if (std::error_code EC = NumSamples.getError())
return EC;
FProfile.addTotalSamples(*NumSamples);
// Read the samples in the body.
auto NumRecords = readNumber<uint32_t>();
if (std::error_code EC = NumRecords.getError())
return EC;
for (uint32_t I = 0; I < *NumRecords; ++I) {
auto LineOffset = readNumber<uint64_t>();
if (std::error_code EC = LineOffset.getError())
return EC;
if (!isOffsetLegal(*LineOffset)) {
return std::error_code();
}
auto Discriminator = readNumber<uint64_t>();
if (std::error_code EC = Discriminator.getError())
return EC;
auto NumSamples = readNumber<uint64_t>();
if (std::error_code EC = NumSamples.getError())
return EC;
auto NumCalls = readNumber<uint32_t>();
if (std::error_code EC = NumCalls.getError())
return EC;
for (uint32_t J = 0; J < *NumCalls; ++J) {
auto CalledFunction(readStringFromTable());
if (std::error_code EC = CalledFunction.getError())
return EC;
auto CalledFunctionSamples = readNumber<uint64_t>();
if (std::error_code EC = CalledFunctionSamples.getError())
return EC;
FProfile.addCalledTargetSamples(*LineOffset, *Discriminator,
*CalledFunction, *CalledFunctionSamples);
}
FProfile.addBodySamples(*LineOffset, *Discriminator, *NumSamples);
}
// Read all the samples for inlined function calls.
auto NumCallsites = readNumber<uint32_t>();
if (std::error_code EC = NumCallsites.getError())
return EC;
for (uint32_t J = 0; J < *NumCallsites; ++J) {
auto LineOffset = readNumber<uint64_t>();
if (std::error_code EC = LineOffset.getError())
return EC;
auto Discriminator = readNumber<uint64_t>();
if (std::error_code EC = Discriminator.getError())
return EC;
auto FName(readStringFromTable());
if (std::error_code EC = FName.getError())
return EC;
FunctionSamples &CalleeProfile = FProfile.functionSamplesAt(
LineLocation(*LineOffset, *Discriminator))[std::string(*FName)];
CalleeProfile.setName(*FName);
if (std::error_code EC = readProfile(CalleeProfile))
return EC;
}
return sampleprof_error::success;
}
std::error_code
SampleProfileReaderBinary::readFuncProfile(const uint8_t *Start) {
Data = Start;
auto NumHeadSamples = readNumber<uint64_t>();
if (std::error_code EC = NumHeadSamples.getError())
return EC;
auto FName(readStringFromTable());
if (std::error_code EC = FName.getError())
return EC;
Profiles[*FName] = FunctionSamples();
FunctionSamples &FProfile = Profiles[*FName];
FProfile.setName(*FName);
FProfile.addHeadSamples(*NumHeadSamples);
if (std::error_code EC = readProfile(FProfile))
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderBinary::readImpl() {
while (!at_eof()) {
if (std::error_code EC = readFuncProfile(Data))
return EC;
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinary::readOneSection(
const uint8_t *Start, uint64_t Size, const SecHdrTableEntry &Entry) {
Data = Start;
End = Start + Size;
switch (Entry.Type) {
case SecProfSummary:
if (std::error_code EC = readSummary())
return EC;
if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
Summary->setPartialProfile(true);
break;
case SecNameTable:
if (std::error_code EC = readNameTableSec(
hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name)))
return EC;
break;
case SecLBRProfile:
if (std::error_code EC = readFuncProfiles())
return EC;
break;
case SecProfileSymbolList:
if (std::error_code EC = readProfileSymbolList())
return EC;
break;
case SecFuncOffsetTable:
if (std::error_code EC = readFuncOffsetTable())
return EC;
break;
default:
break;
}
return sampleprof_error::success;
}
void SampleProfileReaderExtBinary::collectFuncsFrom(const Module &M) {
UseAllFuncs = false;
FuncsToUse.clear();
for (auto &F : M)
FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
}
std::error_code SampleProfileReaderExtBinary::readFuncOffsetTable() {
auto Size = readNumber<uint64_t>();
if (std::error_code EC = Size.getError())
return EC;
FuncOffsetTable.reserve(*Size);
for (uint32_t I = 0; I < *Size; ++I) {
auto FName(readStringFromTable());
if (std::error_code EC = FName.getError())
return EC;
auto Offset = readNumber<uint64_t>();
if (std::error_code EC = Offset.getError())
return EC;
FuncOffsetTable[*FName] = *Offset;
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinary::readFuncProfiles() {
const uint8_t *Start = Data;
if (UseAllFuncs) {
while (Data < End) {
if (std::error_code EC = readFuncProfile(Data))
return EC;
}
assert(Data == End && "More data is read than expected");
return sampleprof_error::success;
}
if (Remapper) {
for (auto Name : FuncsToUse) {
Remapper->insert(Name);
}
}
if (useMD5()) {
for (auto Name : FuncsToUse) {
auto GUID = std::to_string(MD5Hash(Name));
auto iter = FuncOffsetTable.find(StringRef(GUID));
if (iter == FuncOffsetTable.end())
continue;
const uint8_t *FuncProfileAddr = Start + iter->second;
assert(FuncProfileAddr < End && "out of LBRProfile section");
if (std::error_code EC = readFuncProfile(FuncProfileAddr))
return EC;
}
} else {
for (auto NameOffset : FuncOffsetTable) {
auto FuncName = NameOffset.first;
if (!FuncsToUse.count(FuncName) &&
(!Remapper || !Remapper->exist(FuncName)))
continue;
const uint8_t *FuncProfileAddr = Start + NameOffset.second;
assert(FuncProfileAddr < End && "out of LBRProfile section");
if (std::error_code EC = readFuncProfile(FuncProfileAddr))
return EC;
}
}
Data = End;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinary::readProfileSymbolList() {
if (!ProfSymList)
ProfSymList = std::make_unique<ProfileSymbolList>();
if (std::error_code EC = ProfSymList->read(Data, End - Data))
return EC;
Data = End;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinaryBase::decompressSection(
const uint8_t *SecStart, const uint64_t SecSize,
const uint8_t *&DecompressBuf, uint64_t &DecompressBufSize) {
Data = SecStart;
End = SecStart + SecSize;
auto DecompressSize = readNumber<uint64_t>();
if (std::error_code EC = DecompressSize.getError())
return EC;
DecompressBufSize = *DecompressSize;
auto CompressSize = readNumber<uint64_t>();
if (std::error_code EC = CompressSize.getError())
return EC;
if (!llvm::zlib::isAvailable())
return sampleprof_error::zlib_unavailable;
StringRef CompressedStrings(reinterpret_cast<const char *>(Data),
*CompressSize);
char *Buffer = Allocator.Allocate<char>(DecompressBufSize);
size_t UCSize = DecompressBufSize;
llvm::Error E =
zlib::uncompress(CompressedStrings, Buffer, UCSize);
if (E)
return sampleprof_error::uncompress_failed;
DecompressBuf = reinterpret_cast<const uint8_t *>(Buffer);
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinaryBase::readImpl() {
const uint8_t *BufStart =
reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
for (auto &Entry : SecHdrTable) {
// Skip empty section.
if (!Entry.Size)
continue;
const uint8_t *SecStart = BufStart + Entry.Offset;
uint64_t SecSize = Entry.Size;
// If the section is compressed, decompress it into a buffer
// DecompressBuf before reading the actual data. The pointee of
// 'Data' will be changed to buffer hold by DecompressBuf
// temporarily when reading the actual data.
bool isCompressed = hasSecFlag(Entry, SecCommonFlags::SecFlagCompress);
if (isCompressed) {
const uint8_t *DecompressBuf;
uint64_t DecompressBufSize;
if (std::error_code EC = decompressSection(
SecStart, SecSize, DecompressBuf, DecompressBufSize))
return EC;
SecStart = DecompressBuf;
SecSize = DecompressBufSize;
}
if (std::error_code EC = readOneSection(SecStart, SecSize, Entry))
return EC;
if (Data != SecStart + SecSize)
return sampleprof_error::malformed;
// Change the pointee of 'Data' from DecompressBuf to original Buffer.
if (isCompressed) {
Data = BufStart + Entry.Offset;
End = BufStart + Buffer->getBufferSize();
}
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderCompactBinary::readImpl() {
std::vector<uint64_t> OffsetsToUse;
if (UseAllFuncs) {
for (auto FuncEntry : FuncOffsetTable) {
OffsetsToUse.push_back(FuncEntry.second);
}
}
else {
for (auto Name : FuncsToUse) {
auto GUID = std::to_string(MD5Hash(Name));
auto iter = FuncOffsetTable.find(StringRef(GUID));
if (iter == FuncOffsetTable.end())
continue;
OffsetsToUse.push_back(iter->second);
}
}
for (auto Offset : OffsetsToUse) {
const uint8_t *SavedData = Data;
if (std::error_code EC = readFuncProfile(
reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
Offset))
return EC;
Data = SavedData;
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderRawBinary::verifySPMagic(uint64_t Magic) {
if (Magic == SPMagic())
return sampleprof_error::success;
return sampleprof_error::bad_magic;
}
std::error_code SampleProfileReaderExtBinary::verifySPMagic(uint64_t Magic) {
if (Magic == SPMagic(SPF_Ext_Binary))
return sampleprof_error::success;
return sampleprof_error::bad_magic;
}
std::error_code
SampleProfileReaderCompactBinary::verifySPMagic(uint64_t Magic) {
if (Magic == SPMagic(SPF_Compact_Binary))
return sampleprof_error::success;
return sampleprof_error::bad_magic;
}
std::error_code SampleProfileReaderBinary::readNameTable() {
auto Size = readNumber<uint32_t>();
if (std::error_code EC = Size.getError())
return EC;
NameTable.reserve(*Size);
for (uint32_t I = 0; I < *Size; ++I) {
auto Name(readString());
if (std::error_code EC = Name.getError())
return EC;
NameTable.push_back(*Name);
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinary::readMD5NameTable() {
auto Size = readNumber<uint64_t>();
if (std::error_code EC = Size.getError())
return EC;
NameTable.reserve(*Size);
MD5StringBuf = std::make_unique<std::vector<std::string>>();
MD5StringBuf->reserve(*Size);
for (uint32_t I = 0; I < *Size; ++I) {
auto FID = readNumber<uint64_t>();
if (std::error_code EC = FID.getError())
return EC;
MD5StringBuf->push_back(std::to_string(*FID));
// NameTable is a vector of StringRef. Here it is pushing back a
// StringRef initialized with the last string in MD5stringBuf.
NameTable.push_back(MD5StringBuf->back());
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinary::readNameTableSec(bool IsMD5) {
if (IsMD5)
return readMD5NameTable();
return SampleProfileReaderBinary::readNameTable();
}
std::error_code SampleProfileReaderCompactBinary::readNameTable() {
auto Size = readNumber<uint64_t>();
if (std::error_code EC = Size.getError())
return EC;
NameTable.reserve(*Size);
for (uint32_t I = 0; I < *Size; ++I) {
auto FID = readNumber<uint64_t>();
if (std::error_code EC = FID.getError())
return EC;
NameTable.push_back(std::to_string(*FID));
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTableEntry() {
SecHdrTableEntry Entry;
auto Type = readUnencodedNumber<uint64_t>();
if (std::error_code EC = Type.getError())
return EC;
Entry.Type = static_cast<SecType>(*Type);
auto Flags = readUnencodedNumber<uint64_t>();
if (std::error_code EC = Flags.getError())
return EC;
Entry.Flags = *Flags;
auto Offset = readUnencodedNumber<uint64_t>();
if (std::error_code EC = Offset.getError())
return EC;
Entry.Offset = *Offset;
auto Size = readUnencodedNumber<uint64_t>();
if (std::error_code EC = Size.getError())
return EC;
Entry.Size = *Size;
SecHdrTable.push_back(std::move(Entry));
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinaryBase::readSecHdrTable() {
auto EntryNum = readUnencodedNumber<uint64_t>();
if (std::error_code EC = EntryNum.getError())
return EC;
for (uint32_t i = 0; i < (*EntryNum); i++)
if (std::error_code EC = readSecHdrTableEntry())
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderExtBinaryBase::readHeader() {
const uint8_t *BufStart =
reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
Data = BufStart;
End = BufStart + Buffer->getBufferSize();
if (std::error_code EC = readMagicIdent())
return EC;
if (std::error_code EC = readSecHdrTable())
return EC;
return sampleprof_error::success;
}
uint64_t SampleProfileReaderExtBinaryBase::getSectionSize(SecType Type) {
for (auto &Entry : SecHdrTable) {
if (Entry.Type == Type)
return Entry.Size;
}
return 0;
}
uint64_t SampleProfileReaderExtBinaryBase::getFileSize() {
// Sections in SecHdrTable is not necessarily in the same order as
// sections in the profile because section like FuncOffsetTable needs
// to be written after section LBRProfile but needs to be read before
// section LBRProfile, so we cannot simply use the last entry in
// SecHdrTable to calculate the file size.
uint64_t FileSize = 0;
for (auto &Entry : SecHdrTable) {
FileSize = std::max(Entry.Offset + Entry.Size, FileSize);
}
return FileSize;
}
static std::string getSecFlagsStr(const SecHdrTableEntry &Entry) {
std::string Flags;
if (hasSecFlag(Entry, SecCommonFlags::SecFlagCompress))
Flags.append("{compressed,");
else
Flags.append("{");
switch (Entry.Type) {
case SecNameTable:
if (hasSecFlag(Entry, SecNameTableFlags::SecFlagMD5Name))
Flags.append("md5,");
break;
case SecProfSummary:
if (hasSecFlag(Entry, SecProfSummaryFlags::SecFlagPartial))
Flags.append("partial,");
break;
default:
break;
}
char &last = Flags.back();
if (last == ',')
last = '}';
else
Flags.append("}");
return Flags;
}
bool SampleProfileReaderExtBinaryBase::dumpSectionInfo(raw_ostream &OS) {
uint64_t TotalSecsSize = 0;
for (auto &Entry : SecHdrTable) {
OS << getSecName(Entry.Type) << " - Offset: " << Entry.Offset
<< ", Size: " << Entry.Size << ", Flags: " << getSecFlagsStr(Entry)
<< "\n";
;
TotalSecsSize += getSectionSize(Entry.Type);
}
uint64_t HeaderSize = SecHdrTable.front().Offset;
assert(HeaderSize + TotalSecsSize == getFileSize() &&
"Size of 'header + sections' doesn't match the total size of profile");
OS << "Header Size: " << HeaderSize << "\n";
OS << "Total Sections Size: " << TotalSecsSize << "\n";
OS << "File Size: " << getFileSize() << "\n";
return true;
}
std::error_code SampleProfileReaderBinary::readMagicIdent() {
// Read and check the magic identifier.
auto Magic = readNumber<uint64_t>();
if (std::error_code EC = Magic.getError())
return EC;
else if (std::error_code EC = verifySPMagic(*Magic))
return EC;
// Read the version number.
auto Version = readNumber<uint64_t>();
if (std::error_code EC = Version.getError())
return EC;
else if (*Version != SPVersion())
return sampleprof_error::unsupported_version;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderBinary::readHeader() {
Data = reinterpret_cast<const uint8_t *>(Buffer->getBufferStart());
End = Data + Buffer->getBufferSize();
if (std::error_code EC = readMagicIdent())
return EC;
if (std::error_code EC = readSummary())
return EC;
if (std::error_code EC = readNameTable())
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderCompactBinary::readHeader() {
SampleProfileReaderBinary::readHeader();
if (std::error_code EC = readFuncOffsetTable())
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderCompactBinary::readFuncOffsetTable() {
auto TableOffset = readUnencodedNumber<uint64_t>();
if (std::error_code EC = TableOffset.getError())
return EC;
const uint8_t *SavedData = Data;
const uint8_t *TableStart =
reinterpret_cast<const uint8_t *>(Buffer->getBufferStart()) +
*TableOffset;
Data = TableStart;
auto Size = readNumber<uint64_t>();
if (std::error_code EC = Size.getError())
return EC;
FuncOffsetTable.reserve(*Size);
for (uint32_t I = 0; I < *Size; ++I) {
auto FName(readStringFromTable());
if (std::error_code EC = FName.getError())
return EC;
auto Offset = readNumber<uint64_t>();
if (std::error_code EC = Offset.getError())
return EC;
FuncOffsetTable[*FName] = *Offset;
}
End = TableStart;
Data = SavedData;
return sampleprof_error::success;
}
void SampleProfileReaderCompactBinary::collectFuncsFrom(const Module &M) {
UseAllFuncs = false;
FuncsToUse.clear();
for (auto &F : M)
FuncsToUse.insert(FunctionSamples::getCanonicalFnName(F));
}
std::error_code SampleProfileReaderBinary::readSummaryEntry(
std::vector<ProfileSummaryEntry> &Entries) {
auto Cutoff = readNumber<uint64_t>();
if (std::error_code EC = Cutoff.getError())
return EC;
auto MinBlockCount = readNumber<uint64_t>();
if (std::error_code EC = MinBlockCount.getError())
return EC;
auto NumBlocks = readNumber<uint64_t>();
if (std::error_code EC = NumBlocks.getError())
return EC;
Entries.emplace_back(*Cutoff, *MinBlockCount, *NumBlocks);
return sampleprof_error::success;
}
std::error_code SampleProfileReaderBinary::readSummary() {
auto TotalCount = readNumber<uint64_t>();
if (std::error_code EC = TotalCount.getError())
return EC;
auto MaxBlockCount = readNumber<uint64_t>();
if (std::error_code EC = MaxBlockCount.getError())
return EC;
auto MaxFunctionCount = readNumber<uint64_t>();
if (std::error_code EC = MaxFunctionCount.getError())
return EC;
auto NumBlocks = readNumber<uint64_t>();
if (std::error_code EC = NumBlocks.getError())
return EC;
auto NumFunctions = readNumber<uint64_t>();
if (std::error_code EC = NumFunctions.getError())
return EC;
auto NumSummaryEntries = readNumber<uint64_t>();
if (std::error_code EC = NumSummaryEntries.getError())
return EC;
std::vector<ProfileSummaryEntry> Entries;
for (unsigned i = 0; i < *NumSummaryEntries; i++) {
std::error_code EC = readSummaryEntry(Entries);
if (EC != sampleprof_error::success)
return EC;
}
Summary = std::make_unique<ProfileSummary>(
ProfileSummary::PSK_Sample, Entries, *TotalCount, *MaxBlockCount, 0,
*MaxFunctionCount, *NumBlocks, *NumFunctions);
return sampleprof_error::success;
}
bool SampleProfileReaderRawBinary::hasFormat(const MemoryBuffer &Buffer) {
const uint8_t *Data =
reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
uint64_t Magic = decodeULEB128(Data);
return Magic == SPMagic();
}
bool SampleProfileReaderExtBinary::hasFormat(const MemoryBuffer &Buffer) {
const uint8_t *Data =
reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
uint64_t Magic = decodeULEB128(Data);
return Magic == SPMagic(SPF_Ext_Binary);
}
bool SampleProfileReaderCompactBinary::hasFormat(const MemoryBuffer &Buffer) {
const uint8_t *Data =
reinterpret_cast<const uint8_t *>(Buffer.getBufferStart());
uint64_t Magic = decodeULEB128(Data);
return Magic == SPMagic(SPF_Compact_Binary);
}
std::error_code SampleProfileReaderGCC::skipNextWord() {
uint32_t dummy;
if (!GcovBuffer.readInt(dummy))
return sampleprof_error::truncated;
return sampleprof_error::success;
}
template <typename T> ErrorOr<T> SampleProfileReaderGCC::readNumber() {
if (sizeof(T) <= sizeof(uint32_t)) {
uint32_t Val;
if (GcovBuffer.readInt(Val) && Val <= std::numeric_limits<T>::max())
return static_cast<T>(Val);
} else if (sizeof(T) <= sizeof(uint64_t)) {
uint64_t Val;
if (GcovBuffer.readInt64(Val) && Val <= std::numeric_limits<T>::max())
return static_cast<T>(Val);
}
std::error_code EC = sampleprof_error::malformed;
reportError(0, EC.message());
return EC;
}
ErrorOr<StringRef> SampleProfileReaderGCC::readString() {
StringRef Str;
if (!GcovBuffer.readString(Str))
return sampleprof_error::truncated;
return Str;
}
std::error_code SampleProfileReaderGCC::readHeader() {
// Read the magic identifier.
if (!GcovBuffer.readGCDAFormat())
return sampleprof_error::unrecognized_format;
// Read the version number. Note - the GCC reader does not validate this
// version, but the profile creator generates v704.
GCOV::GCOVVersion version;
if (!GcovBuffer.readGCOVVersion(version))
return sampleprof_error::unrecognized_format;
if (version != GCOV::V407)
return sampleprof_error::unsupported_version;
// Skip the empty integer.
if (std::error_code EC = skipNextWord())
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderGCC::readSectionTag(uint32_t Expected) {
uint32_t Tag;
if (!GcovBuffer.readInt(Tag))
return sampleprof_error::truncated;
if (Tag != Expected)
return sampleprof_error::malformed;
if (std::error_code EC = skipNextWord())
return EC;
return sampleprof_error::success;
}
std::error_code SampleProfileReaderGCC::readNameTable() {
if (std::error_code EC = readSectionTag(GCOVTagAFDOFileNames))
return EC;
uint32_t Size;
if (!GcovBuffer.readInt(Size))
return sampleprof_error::truncated;
for (uint32_t I = 0; I < Size; ++I) {
StringRef Str;
if (!GcovBuffer.readString(Str))
return sampleprof_error::truncated;
Names.push_back(std::string(Str));
}
return sampleprof_error::success;
}
std::error_code SampleProfileReaderGCC::readFunctionProfiles() {
if (std::error_code EC = readSectionTag(GCOVTagAFDOFunction))
return EC;
uint32_t NumFunctions;
if (!GcovBuffer.readInt(NumFunctions))
return sampleprof_error::truncated;
InlineCallStack Stack;
for (uint32_t I = 0; I < NumFunctions; ++I)
if (std::error_code EC = readOneFunctionProfile(Stack, true, 0))
return EC;
computeSummary();
return sampleprof_error::success;
}
std::error_code SampleProfileReaderGCC::readOneFunctionProfile(
const InlineCallStack &InlineStack, bool Update, uint32_t Offset) {
uint64_t HeadCount = 0;
if (InlineStack.size() == 0)
if (!GcovBuffer.readInt64(HeadCount))
return sampleprof_error::truncated;
uint32_t NameIdx;
if (!GcovBuffer.readInt(NameIdx))
return sampleprof_error::truncated;
StringRef Name(Names[NameIdx]);
uint32_t NumPosCounts;
if (!GcovBuffer.readInt(NumPosCounts))
return sampleprof_error::truncated;
uint32_t NumCallsites;
if (!GcovBuffer.readInt(NumCallsites))
return sampleprof_error::truncated;
FunctionSamples *FProfile = nullptr;
if (InlineStack.size() == 0) {
// If this is a top function that we have already processed, do not
// update its profile again. This happens in the presence of
// function aliases. Since these aliases share the same function
// body, there will be identical replicated profiles for the
// original function. In this case, we simply not bother updating
// the profile of the original function.
FProfile = &Profiles[Name];
FProfile->addHeadSamples(HeadCount);
if (FProfile->getTotalSamples() > 0)
Update = false;
} else {
// Otherwise, we are reading an inlined instance. The top of the
// inline stack contains the profile of the caller. Insert this
// callee in the caller's CallsiteMap.
FunctionSamples *CallerProfile = InlineStack.front();
uint32_t LineOffset = Offset >> 16;
uint32_t Discriminator = Offset & 0xffff;
FProfile = &CallerProfile->functionSamplesAt(
LineLocation(LineOffset, Discriminator))[std::string(Name)];
}
FProfile->setName(Name);
for (uint32_t I = 0; I < NumPosCounts; ++I) {
uint32_t Offset;
if (!GcovBuffer.readInt(Offset))
return sampleprof_error::truncated;
uint32_t NumTargets;
if (!GcovBuffer.readInt(NumTargets))
return sampleprof_error::truncated;
uint64_t Count;
if (!GcovBuffer.readInt64(Count))
return sampleprof_error::truncated;
// The line location is encoded in the offset as:
// high 16 bits: line offset to the start of the function.
// low 16 bits: discriminator.
uint32_t LineOffset = Offset >> 16;
uint32_t Discriminator = Offset & 0xffff;
InlineCallStack NewStack;
NewStack.push_back(FProfile);
NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end());
if (Update) {
// Walk up the inline stack, adding the samples on this line to
// the total sample count of the callers in the chain.
for (auto CallerProfile : NewStack)
CallerProfile->addTotalSamples(Count);
// Update the body samples for the current profile.
FProfile->addBodySamples(LineOffset, Discriminator, Count);
}
// Process the list of functions called at an indirect call site.
// These are all the targets that a function pointer (or virtual
// function) resolved at runtime.
for (uint32_t J = 0; J < NumTargets; J++) {
uint32_t HistVal;
if (!GcovBuffer.readInt(HistVal))
return sampleprof_error::truncated;
if (HistVal != HIST_TYPE_INDIR_CALL_TOPN)
return sampleprof_error::malformed;
uint64_t TargetIdx;
if (!GcovBuffer.readInt64(TargetIdx))
return sampleprof_error::truncated;
StringRef TargetName(Names[TargetIdx]);
uint64_t TargetCount;
if (!GcovBuffer.readInt64(TargetCount))
return sampleprof_error::truncated;
if (Update)
FProfile->addCalledTargetSamples(LineOffset, Discriminator,
TargetName, TargetCount);
}
}
// Process all the inlined callers into the current function. These
// are all the callsites that were inlined into this function.
for (uint32_t I = 0; I < NumCallsites; I++) {
// The offset is encoded as:
// high 16 bits: line offset to the start of the function.
// low 16 bits: discriminator.
uint32_t Offset;
if (!GcovBuffer.readInt(Offset))
return sampleprof_error::truncated;
InlineCallStack NewStack;
NewStack.push_back(FProfile);
NewStack.insert(NewStack.end(), InlineStack.begin(), InlineStack.end());
if (std::error_code EC = readOneFunctionProfile(NewStack, Update, Offset))
return EC;
}
return sampleprof_error::success;
}
/// Read a GCC AutoFDO profile.
///
/// This format is generated by the Linux Perf conversion tool at
/// https://github.com/google/autofdo.
std::error_code SampleProfileReaderGCC::readImpl() {
// Read the string table.
if (std::error_code EC = readNameTable())
return EC;
// Read the source profile.
if (std::error_code EC = readFunctionProfiles())
return EC;
return sampleprof_error::success;
}
bool SampleProfileReaderGCC::hasFormat(const MemoryBuffer &Buffer) {
StringRef Magic(reinterpret_cast<const char *>(Buffer.getBufferStart()));
return Magic == "adcg*704";
}
void SampleProfileReaderItaniumRemapper::applyRemapping(LLVMContext &Ctx) {
// If the reader uses MD5 to represent string, we can't remap it because
// we don't know what the original function names were.
if (Reader.useMD5()) {
Ctx.diagnose(DiagnosticInfoSampleProfile(
Reader.getBuffer()->getBufferIdentifier(),
"Profile data remapping cannot be applied to profile data "
"in compact format (original mangled names are not available).",
DS_Warning));
return;
}
assert(Remappings && "should be initialized while creating remapper");
for (auto &Sample : Reader.getProfiles()) {
DenseSet<StringRef> NamesInSample;
Sample.second.findAllNames(NamesInSample);
for (auto &Name : NamesInSample)
if (auto Key = Remappings->insert(Name))
NameMap.insert({Key, Name});
}
RemappingApplied = true;
}
Optional<StringRef>
SampleProfileReaderItaniumRemapper::lookUpNameInProfile(StringRef Fname) {
if (auto Key = Remappings->lookup(Fname))
return NameMap.lookup(Key);
return None;
}
/// Prepare a memory buffer for the contents of \p Filename.
///
/// \returns an error code indicating the status of the buffer.
static ErrorOr<std::unique_ptr<MemoryBuffer>>
setupMemoryBuffer(const Twine &Filename) {
auto BufferOrErr = MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = BufferOrErr.getError())
return EC;
auto Buffer = std::move(BufferOrErr.get());
// Sanity check the file.
if (uint64_t(Buffer->getBufferSize()) > std::numeric_limits<uint32_t>::max())
return sampleprof_error::too_large;
return std::move(Buffer);
}
/// Create a sample profile reader based on the format of the input file.
///
/// \param Filename The file to open.
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param RemapFilename The file used for profile remapping.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReader>>
SampleProfileReader::create(const std::string Filename, LLVMContext &C,
const std::string RemapFilename) {
auto BufferOrError = setupMemoryBuffer(Filename);
if (std::error_code EC = BufferOrError.getError())
return EC;
return create(BufferOrError.get(), C, RemapFilename);
}
/// Create a sample profile remapper from the given input, to remap the
/// function names in the given profile data.
///
/// \param Filename The file to open.
///
/// \param Reader The profile reader the remapper is going to be applied to.
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
SampleProfileReaderItaniumRemapper::create(const std::string Filename,
SampleProfileReader &Reader,
LLVMContext &C) {
auto BufferOrError = setupMemoryBuffer(Filename);
if (std::error_code EC = BufferOrError.getError())
return EC;
return create(BufferOrError.get(), Reader, C);
}
/// Create a sample profile remapper from the given input, to remap the
/// function names in the given profile data.
///
/// \param B The memory buffer to create the reader from (assumes ownership).
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param Reader The profile reader the remapper is going to be applied to.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReaderItaniumRemapper>>
SampleProfileReaderItaniumRemapper::create(std::unique_ptr<MemoryBuffer> &B,
SampleProfileReader &Reader,
LLVMContext &C) {
auto Remappings = std::make_unique<SymbolRemappingReader>();
if (Error E = Remappings->read(*B.get())) {
handleAllErrors(
std::move(E), [&](const SymbolRemappingParseError &ParseError) {
C.diagnose(DiagnosticInfoSampleProfile(B->getBufferIdentifier(),
ParseError.getLineNum(),
ParseError.getMessage()));
});
return sampleprof_error::malformed;
}
return std::make_unique<SampleProfileReaderItaniumRemapper>(
std::move(B), std::move(Remappings), Reader);
}
/// Create a sample profile reader based on the format of the input data.
///
/// \param B The memory buffer to create the reader from (assumes ownership).
///
/// \param C The LLVM context to use to emit diagnostics.
///
/// \param RemapFilename The file used for profile remapping.
///
/// \returns an error code indicating the status of the created reader.
ErrorOr<std::unique_ptr<SampleProfileReader>>
SampleProfileReader::create(std::unique_ptr<MemoryBuffer> &B, LLVMContext &C,
const std::string RemapFilename) {
std::unique_ptr<SampleProfileReader> Reader;
if (SampleProfileReaderRawBinary::hasFormat(*B))
Reader.reset(new SampleProfileReaderRawBinary(std::move(B), C));
else if (SampleProfileReaderExtBinary::hasFormat(*B))
Reader.reset(new SampleProfileReaderExtBinary(std::move(B), C));
else if (SampleProfileReaderCompactBinary::hasFormat(*B))
Reader.reset(new SampleProfileReaderCompactBinary(std::move(B), C));
else if (SampleProfileReaderGCC::hasFormat(*B))
Reader.reset(new SampleProfileReaderGCC(std::move(B), C));
else if (SampleProfileReaderText::hasFormat(*B))
Reader.reset(new SampleProfileReaderText(std::move(B), C));
else
return sampleprof_error::unrecognized_format;
if (!RemapFilename.empty()) {
auto ReaderOrErr =
SampleProfileReaderItaniumRemapper::create(RemapFilename, *Reader, C);
if (std::error_code EC = ReaderOrErr.getError()) {
std::string Msg = "Could not create remapper: " + EC.message();
C.diagnose(DiagnosticInfoSampleProfile(RemapFilename, Msg));
return EC;
}
Reader->Remapper = std::move(ReaderOrErr.get());
}
FunctionSamples::Format = Reader->getFormat();
if (std::error_code EC = Reader->readHeader()) {
return EC;
}
return std::move(Reader);
}
// For text and GCC file formats, we compute the summary after reading the
// profile. Binary format has the profile summary in its header.
void SampleProfileReader::computeSummary() {
SampleProfileSummaryBuilder Builder(ProfileSummaryBuilder::DefaultCutoffs);
for (const auto &I : Profiles) {
const FunctionSamples &Profile = I.second;
Builder.addRecord(Profile);
}
Summary = Builder.getSummary();
}