llvm-mirror/docs/ProgrammersManual.html
Chris Lattner 48d5a78063 checkin reid's docpatch
llvm-svn: 10200
2003-11-25 01:02:51 +00:00

1683 lines
86 KiB
HTML

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<title>LLVM Programmer's Manual</title>
</head>
<body style="background-color: white;">
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp; <font size="+3" color="#eeeeff"
face="Georgia,Palatino,Times,Roman"><b>LLVM Programmer's Manual</b></font></td>
</tr>
</tbody>
</table>
<ol>
<li><a href="#introduction">Introduction</a> </li>
<li><a href="#general">General Information</a>
<ul>
<li><a href="#stl">The C++ Standard Template Library</a><!--
<li>The <tt>-time-passes</tt> option
<li>How to use the LLVM Makefile system
<li>How to write a regression test
--> </li>
</ul>
</li>
<li><a href="#apis">Important and useful LLVM APIs</a>
<ul>
<li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
<li><a href="#DEBUG">The <tt>DEBUG()</tt> macro &amp; <tt>-debug</tt>
option</a>
<ul>
<li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
and the <tt>-debug-only</tt> option</a> </li>
</ul>
</li>
<li><a href="#Statistic">The <tt>Statistic</tt> template &amp; <tt>-stats</tt>
option</a><!--
<li>The <tt>InstVisitor</tt> template
<li>The general graph API
--> </li>
</ul>
</li>
<li><a href="#common">Helpful Hints for Common Operations</a>
<ul>
<li><a href="#inspection">Basic Inspection and Traversal Routines</a>
<ul>
<li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
in a <tt>Function</tt></a> </li>
<li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
in a <tt>BasicBlock</tt></a> </li>
<li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
in a <tt>Function</tt></a> </li>
<li><a href="#iterate_convert">Turning an iterator into a
class pointer</a> </li>
<li><a href="#iterate_complex">Finding call sites: a more
complex example</a> </li>
<li><a href="#calls_and_invokes">Treating calls and invokes
the same way</a> </li>
<li><a href="#iterate_chains">Iterating over def-use &amp;
use-def chains</a> </li>
</ul>
</li>
<li><a href="#simplechanges">Making simple changes</a>
<ul>
<li><a href="#schanges_creating">Creating and inserting new
<tt>Instruction</tt>s</a> </li>
<li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
<li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
with another <tt>Value</tt></a> </li>
</ul>
<!--
<li>Working with the Control Flow Graph
<ul>
<li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
<li>
<li>
</ul>
--> </li>
</ul>
</li>
<li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
<ul>
<li><a href="#Value">The <tt>Value</tt> class</a>
<ul>
<li><a href="#User">The <tt>User</tt> class</a>
<ul>
<li><a href="#Instruction">The <tt>Instruction</tt> class</a>
<ul>
<li> <a href="#GetElementPtrInst">The <span
style="font-family: monospace;">GetElementPtrInst</span> class</a><br>
</li>
</ul>
</li>
<li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
<ul>
<li><a href="#BasicBlock">The <tt>BasicBlock</tt>
class</a> </li>
<li><a href="#Function">The <tt>Function</tt> class</a> </li>
<li><a href="#GlobalVariable">The <tt>GlobalVariable</tt>
class</a> </li>
</ul>
</li>
<li><a href="#Module">The <tt>Module</tt> class</a> </li>
<li><a href="#Constant">The <tt>Constant</tt> class</a>
<ul>
<li> <br>
</li>
<li> <br>
</li>
</ul>
</li>
</ul>
</li>
<li><a href="#Type">The <tt>Type</tt> class</a> </li>
<li><a href="#Argument">The <tt>Argument</tt> class</a> </li>
</ul>
</li>
<li>The <tt>SymbolTable</tt> class </li>
<li>The <tt>ilist</tt> and <tt>iplist</tt> classes
<ul>
<li>Creating, inserting, moving and deleting from LLVM lists </li>
</ul>
</li>
<li>Important iterator invalidation semantics to be aware of </li>
</ul>
<p><b>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,<a
href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>, and <a
href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a></b></p>
<p> </p>
</li>
</ol>
<!-- *********************************************************************** -->
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td align="center"><font color="#eeeeff" size="+2"
face="Georgia,Palatino"><b> <a name="introduction">Introduction </a></b></font></td>
</tr>
</tbody>
</table>
<ul>
<!-- *********************************************************************** -->
This document is meant to highlight some of the important classes and
interfaces available in the LLVM source-base. This manual is not
intended to explain what LLVM is, how it works, and what LLVM code looks
like. It assumes that you know the basics of LLVM and are interested
in writing transformations or otherwise analyzing or manipulating the
code.
<p> This document should get you oriented so that you can find your
way in the continuously growing source code that makes up the LLVM
infrastructure. Note that this manual is not intended to serve as a
replacement for reading the source code, so if you think there should be
a method in one of these classes to do something, but it's not listed,
check the source. Links to the <a href="/doxygen/">doxygen</a> sources
are provided to make this as easy as possible.</p>
<p> The first section of this document describes general information
that is useful to know when working in the LLVM infrastructure, and the
second describes the Core LLVM classes. In the future this manual will
be extended with information describing how to use extension libraries,
such as dominator information, CFG traversal routines, and useful
utilities like the <tt><a href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt>
template.</p>
<p><!-- *********************************************************************** --> </p>
</ul>
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td align="center"><font color="#eeeeff" size="+2"
face="Georgia,Palatino"><b> <a name="general">General Information </a></b></font></td>
</tr>
</tbody>
</table>
<ul>
<!-- *********************************************************************** -->
This section contains general information that is useful if you are
working in the LLVM source-base, but that isn't specific to any
particular API.
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="stl">The C++ Standard Template
Library</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
LLVM makes heavy use of the C++ Standard Template Library (STL),
perhaps much more than you are used to, or have seen before. Because of
this, you might want to do a little background reading in the
techniques used and capabilities of the library. There are many good
pages that discuss the STL, and several books on the subject that you
can get, so it will not be discussed in this document.
<p> Here are some useful links:</p>
<p> </p>
<ol>
<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++
Library reference</a> - an excellent reference for the STL and other
parts of the standard C++ library. </li>
<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> -
This is an O'Reilly book in the making. It has a decent <a
href="http://www.tempest-sw.com/cpp/ch13-libref.html">Standard Library
Reference</a> that rivals Dinkumware's, and is actually free until the
book is published. </li>
<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently
Asked Questions</a> </li>
<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's
Guide</a> - Contains a useful <a
href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction
to the STL</a>. </li>
<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne
Stroustrup's C++ Page</a> </li>
</ol>
<p> You are also encouraged to take a look at the <a
href="CodingStandards.html">LLVM Coding Standards</a> guide which
focuses on how to write maintainable code more than where to put your
curly braces.</p>
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="stl">Other useful references</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
LLVM is currently using CVS as its source versioning system. You may
find this reference handy:
<p> </p>
<ol>
<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
Branch and Tag Primer</a></li>
</ol>
<p><!-- *********************************************************************** --> </p>
</ul>
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td align="center"><font color="#eeeeff" size="+2"
face="Georgia,Palatino"><b> <a name="apis">Important and useful LLVM
APIs </a></b></font></td>
</tr>
</tbody>
</table>
<ul>
<!-- *********************************************************************** -->
Here we highlight some LLVM APIs that are generally useful and good to
know about when writing transformations.
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="isa">The isa&lt;&gt;,
cast&lt;&gt; and dyn_cast&lt;&gt; templates</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
The LLVM source-base makes extensive use of a custom form of RTTI.
These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
operator, but they don't have some drawbacks (primarily stemming from
the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
have a v-table). Because they are used so often, you must know what they
do and how they work. All of these templates are defined in the <a
href="/doxygen/Casting_8h-source.html"><tt>Support/Casting.h</tt></a>
file (note that you very rarely have to include this file directly).
<p> </p>
<dl>
<dt><tt>isa&lt;&gt;</tt>: </dt>
<dd>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java "<tt>instanceof</tt>"
operator. It returns true or false depending on whether a reference or
pointer points to an instance of the specified class. This can be very
useful for constraint checking of various sorts (example below).
<p> </p>
</dd>
<dt><tt>cast&lt;&gt;</tt>: </dt>
<dd>The <tt>cast&lt;&gt;</tt> operator is a "checked cast"
operation. It converts a pointer or reference from a base class to a
derived cast, causing an assertion failure if it is not really an
instance of the right type. This should be used in cases where you have
some information that makes you believe that something is of the right
type. An example of the <tt>isa&lt;&gt;</tt> and <tt>cast&lt;&gt;</tt>
template is:
<p> </p>
<pre>static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {<br> if (isa&lt;<a
href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a
href="#GlobalValue">GlobalValue</a>&gt;(V))<br> return true;<br><br> <i>// Otherwise, it must be an instruction...</i><br> return !L-&gt;contains(cast&lt;<a
href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());<br></pre>
<p> Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt>
test followed by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
operator.</p>
<p> </p>
</dd>
<dt><tt>dyn_cast&lt;&gt;</tt>: </dt>
<dd>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast"
operation. It checks to see if the operand is of the specified type, and
if so, returns a pointer to it (this operator does not work with
references). If the operand is not of the correct type, a null pointer
is returned. Thus, this works very much like the <tt>dynamic_cast</tt>
operator in C++, and should be used in the same circumstances.
Typically, the <tt>dyn_cast&lt;&gt;</tt> operator is used in an <tt>if</tt>
statement or some other flow control statement like this:
<p> </p>
<pre> if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a
href="#AllocationInst">AllocationInst</a>&gt;(Val)) {<br> ...<br> }<br></pre>
<p> This form of the <tt>if</tt> statement effectively combines
together a call to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt>
into one statement, which is very convenient.</p>
<p> Another common example is:</p>
<p> </p>
<pre> <i>// Loop over all of the phi nodes in a basic block</i><br> BasicBlock::iterator BBI = BB-&gt;begin();<br> for (; <a
href="#PhiNode">PHINode</a> *PN = dyn_cast&lt;<a href="#PHINode">PHINode</a>&gt;(BBI); ++BBI)<br> cerr &lt;&lt; *PN;<br></pre>
<p> Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s <tt>dynamic_cast</tt>
or Java's <tt>instanceof</tt> operator, can be abused. In particular
you should not use big chained <tt>if/then/else</tt> blocks to check for
lots of different variants of classes. If you find yourself wanting to
do this, it is much cleaner and more efficient to use the InstVisitor
class to dispatch over the instruction type directly.</p>
<p> </p>
</dd>
<dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
<dd>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the <tt>cast&lt;&gt;</tt>
operator, except that it allows for a null pointer as an argument (which
it then propagates). This can sometimes be useful, allowing you to
combine several null checks into one.
<p> </p>
</dd>
<dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
<dd>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like
the <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null
pointer as an argument (which it then propagates). This can sometimes
be useful, allowing you to combine several null checks into one.
<p> </p>
</dd>
</dl>
These five templates can be used with any classes, whether they have a
v-table or not. To add support for these templates, you simply need to
add <tt>classof</tt> static methods to the class you are interested
casting to. Describing this is currently outside the scope of this
document, but there are lots of examples in the LLVM source base.
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="DEBUG">The <tt>DEBUG()</tt> macro
&amp; <tt>-debug</tt> option</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
Often when working on your pass you will put a bunch of debugging
printouts and other code into your pass. After you get it working, you
want to remove it... but you may need it again in the future (to work
out new bugs that you run across).
<p> Naturally, because of this, you don't want to delete the debug
printouts, but you don't want them to always be noisy. A standard
compromise is to comment them out, allowing you to enable them if you
need them in the future.</p>
<p> The "<tt><a href="/doxygen/Debug_8h-source.html">Support/Debug.h</a></tt>"
file provides a macro named <tt>DEBUG()</tt> that is a much nicer
solution to this problem. Basically, you can put arbitrary code into
the argument of the <tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>'
(or any other tool) is run with the '<tt>-debug</tt>' command line
argument: </p>
<pre> ... <br> DEBUG(std::cerr &lt;&lt; "I am here!\n");<br> ...<br></pre>
<p> Then you can run your pass like this:</p>
<p> </p>
<pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> I am here!<br> $<br></pre>
<p> Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution
allows you to now have to create "yet another" command line option for
the debug output for your pass. Note that <tt>DEBUG()</tt> macros are
disabled for optimized builds, so they do not cause a performance impact
at all (for the same reason, they should also not contain
side-effects!).</p>
<p> One additional nice thing about the <tt>DEBUG()</tt> macro is that
you can enable or disable it directly in gdb. Just use "<tt>set
DebugFlag=0</tt>" or "<tt>set DebugFlag=1</tt>" from the gdb if the
program is running. If the program hasn't been started yet, you can
always just run it with <tt>-debug</tt>.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4><a name="DEBUG_TYPE">
<hr size="1">Fine grained debug info with <tt>DEBUG_TYPE()</tt> and the <tt>-debug-only</tt>
option</a> </h4>
<ul>
Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
just turns on <b>too much</b> information (such as when working on the
code generator). If you want to enable debug information with more
fine-grained control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt>
only option as follows:
<p> </p>
<pre> ...<br> DEBUG(std::cerr &lt;&lt; "No debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "foo"<br> DEBUG(std::cerr &lt;&lt; "'foo' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE "bar"<br> DEBUG(std::cerr &lt;&lt; "'bar' debug type\n");<br> #undef DEBUG_TYPE<br> #define DEBUG_TYPE ""<br> DEBUG(std::cerr &lt;&lt; "No debug type (2)\n");<br> ...<br></pre>
<p> Then you can run your pass like this:</p>
<p> </p>
<pre> $ opt &lt; a.bc &gt; /dev/null -mypass<br> &lt;no output&gt;<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug<br> No debug type<br> 'foo' debug type<br> 'bar' debug type<br> No debug type (2)<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo<br> 'foo' debug type<br> $ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar<br> 'bar' debug type<br> $<br></pre>
<p> Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at
the top of a file, to specify the debug type for the entire module (if
you do this before you <tt>#include "Support/Debug.h"</tt>, you don't
have to insert the ugly <tt>#undef</tt>'s). Also, you should use names
more meaningful than "foo" and "bar", because there is no system in
place to ensure that names do not conflict. If two different modules
use the same string, they will all be turned on when the name is
specified. This allows, for example, all debug information for
instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
even if the source lives in multiple files.</p>
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Statistic">The <tt>Statistic</tt>
template &amp; <tt>-stats</tt> option</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
The "<tt><a href="/doxygen/Statistic_8h-source.html">Support/Statistic.h</a></tt>"
file provides a template named <tt>Statistic</tt> that is used as a
unified way to keep track of what the LLVM compiler is doing and how
effective various optimizations are. It is useful to see what
optimizations are contributing to making a particular program run
faster.
<p> Often you may run your pass on some big program, and you're
interested to see how many times it makes a certain transformation.
Although you can do this with hand inspection, or some ad-hoc method,
this is a real pain and not very useful for big programs. Using the <tt>Statistic</tt>
template makes it very easy to keep track of this information, and the
calculated information is presented in a uniform manner with the rest of
the passes being executed.</p>
<p> There are many examples of <tt>Statistic</tt> uses, but the basics
of using it are as follows:</p>
<p> </p>
<ol>
<li>Define your statistic like this:
<p> </p>
<pre>static Statistic&lt;&gt; NumXForms("mypassname", "The # of times I did stuff");<br></pre>
<p> The <tt>Statistic</tt> template can emulate just about any
data-type, but if you do not specify a template argument, it defaults to
acting like an unsigned int counter (this is usually what you want).</p>
<p> </p>
</li>
<li>Whenever you make a transformation, bump the counter:
<p> </p>
<pre> ++NumXForms; // I did stuff<br></pre>
<p> </p>
</li>
</ol>
<p> That's all you have to do. To get '<tt>opt</tt>' to print out the
statistics gathered, use the '<tt>-stats</tt>' option:</p>
<p> </p>
<pre> $ opt -stats -mypassname &lt; program.bc &gt; /dev/null<br> ... statistic output ...<br></pre>
<p> When running <tt>gccas</tt> on a C file from the SPEC benchmark
suite, it gives a report that looks like this:</p>
<p> </p>
<pre> 7646 bytecodewriter - Number of normal instructions<br> 725 bytecodewriter - Number of oversized instructions<br> 129996 bytecodewriter - Number of bytecode bytes written<br> 2817 raise - Number of insts DCEd or constprop'd<br> 3213 raise - Number of cast-of-self removed<br> 5046 raise - Number of expression trees converted<br> 75 raise - Number of other getelementptr's formed<br> 138 raise - Number of load/store peepholes<br> 42 deadtypeelim - Number of unused typenames removed from symtab<br> 392 funcresolve - Number of varargs functions resolved<br> 27 globaldce - Number of global variables removed<br> 2 adce - Number of basic blocks removed<br> 134 cee - Number of branches revectored<br> 49 cee - Number of setcc instruction eliminated<br> 532 gcse - Number of loads removed<br> 2919 gcse - Number of instructions removed<br> 86 indvars - Number of canonical indvars added<br> 87 indvars - Number of aux indvars removed<br> 25 instcombine - Number of dead inst eliminate<br> 434 instcombine - Number of insts combined<br> 248 licm - Number of load insts hoisted<br> 1298 licm - Number of insts hoisted to a loop pre-header<br> 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)<br> 75 mem2reg - Number of alloca's promoted<br> 1444 cfgsimplify - Number of blocks simplified<br></pre>
<p> Obviously, with so many optimizations, having a unified framework
for this stuff is very nice. Making your pass fit well into the
framework makes it more maintainable and useful.</p>
<p><!-- *********************************************************************** --> </p>
</ul>
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td align="center"><font color="#eeeeff" size="+2"
face="Georgia,Palatino"><b> <a name="common">Helpful Hints for Common
Operations </a></b></font></td>
</tr>
</tbody>
</table>
<ul>
<!--
*********************************************************************** -->
This section describes how to perform some very simple transformations
of LLVM code. This is meant to give examples of common idioms used,
showing the practical side of LLVM transformations.
<p> Because this is a "how-to" section, you should also read about the
main classes that you will be working with. The <a href="#coreclasses">Core
LLVM Class Hierarchy Reference</a> contains details and descriptions of
the main classes that you should know about.</p>
<p><!-- NOTE: this section should be heavy on example code --><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="inspection">Basic Inspection and
Traversal Routines</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
The LLVM compiler infrastructure have many different data structures
that may be traversed. Following the example of the C++ standard
template library, the techniques used to traverse these various data
structures are all basically the same. For a enumerable sequence of
values, the <tt>XXXbegin()</tt> function (or method) returns an iterator
to the start of the sequence, the <tt>XXXend()</tt> function returns an
iterator pointing to one past the last valid element of the sequence,
and there is some <tt>XXXiterator</tt> data type that is common between
the two operations.
<p> Because the pattern for iteration is common across many different
aspects of the program representation, the standard template library
algorithms may be used on them, and it is easier to remember how to
iterate. First we show a few common examples of the data structures that
need to be traversed. Other data structures are traversed in very
similar ways.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="iterate_function">Iterating over the </a><a
href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a href="#Function"><tt>Function</tt></a> </h4>
<ul>
It's quite common to have a <tt>Function</tt> instance that you'd like
to transform in some way; in particular, you'd like to manipulate its <tt>BasicBlock</tt>s.
To facilitate this, you'll need to iterate over all of the <tt>BasicBlock</tt>s
that constitute the <tt>Function</tt>. The following is an example
that prints the name of a <tt>BasicBlock</tt> and the number of <tt>Instruction</tt>s
it contains:
<pre> // func is a pointer to a Function instance<br> for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i) {<br><br> // print out the name of the basic block if it has one, and then the<br> // number of instructions that it contains<br><br> cerr &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has " <br> &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";<br> }<br></pre>
Note that i can be used as if it were a pointer for the purposes of
invoking member functions of the <tt>Instruction</tt> class. This is
because the indirection operator is overloaded for the iterator
classes. In the above code, the expression <tt>i-&gt;size()</tt> is
exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.<!-- _______________________________________________________________________ -->
</ul>
<h4>
<hr size="1"><a name="iterate_basicblock">Iterating over the </a><a
href="#Instruction"><tt>Instruction</tt></a>s in a <a
href="#BasicBlock"><tt>BasicBlock</tt></a> </h4>
<ul>
Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s,
it's easy to iterate over the individual instructions that make up <tt>BasicBlock</tt>s.
Here's a code snippet that prints out each instruction in a <tt>BasicBlock</tt>:
<pre> // blk is a pointer to a BasicBlock instance<br> for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)<br> // the next statement works since operator&lt;&lt;(ostream&amp;,...) <br> // is overloaded for Instruction&amp;<br> cerr &lt;&lt; *i &lt;&lt; "\n";<br></pre>
However, this isn't really the best way to print out the contents of a <tt>BasicBlock</tt>!
Since the ostream operators are overloaded for virtually anything
you'll care about, you could have just invoked the print routine on the
basic block itself: <tt>cerr &lt;&lt; *blk &lt;&lt; "\n";</tt>.
<p> Note that currently operator&lt;&lt; is implemented for <tt>Value*</tt>,
so it will print out the contents of the pointer, instead of the
pointer value you might expect. This is a deprecated interface that
will be removed in the future, so it's best not to depend on it. To
print out the pointer value for now, you must cast to <tt>void*</tt>.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="iterate_institer">Iterating over the </a><a
href="#Instruction"><tt>Instruction</tt></a>s in a <a href="#Function"><tt>Function</tt></a></h4>
<ul>
If you're finding that you commonly iterate over a <tt>Function</tt>'s <tt>BasicBlock</tt>s
and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s, <tt>InstIterator</tt>
should be used instead. You'll need to include <a
href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
and then instantiate <tt>InstIterator</tt>s explicitly in your code.
Here's a small example that shows how to dump all instructions in a
function to stderr (<b>Note:</b> Dereferencing an <tt>InstIterator</tt>
yields an <tt>Instruction*</tt>, <i>not</i> an <tt>Instruction&amp;</tt>!):
<pre>#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"<br>...<br>// Suppose F is a ptr to a function<br>for (inst_iterator i = inst_begin(F), e = inst_end(F); i != e; ++i)<br> cerr &lt;&lt; **i &lt;&lt; "\n";<br></pre>
Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
worklist with its initial contents. For example, if you wanted to
initialize a worklist to contain all instructions in a <tt>Function</tt>
F, all you would need to do is something like:
<pre>std::set&lt;Instruction*&gt; worklist;<br>worklist.insert(inst_begin(F), inst_end(F));<br></pre>
The STL set <tt>worklist</tt> would now contain all instructions in the <tt>Function</tt>
pointed to by F.<!-- _______________________________________________________________________ -->
</ul>
<h4>
<hr size="1"><a name="iterate_convert">Turning an iterator into a class
pointer (and vice-versa) </a></h4>
<ul>
Sometimes, it'll be useful to grab a reference (or pointer) to a class
instance when all you've got at hand is an iterator. Well, extracting
a reference or a pointer from an iterator is very straightforward.
Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
is a <tt>BasicBlock::const_iterator</tt>:
<pre> Instruction&amp; inst = *i; // grab reference to instruction reference<br> Instruction* pinst = &amp;*i; // grab pointer to instruction reference<br> const Instruction&amp; inst = *j;<br></pre>
However, the iterators you'll be working with in the LLVM framework are
special: they will automatically convert to a ptr-to-instance type
whenever they need to. Instead of dereferencing the iterator and then
taking the address of the result, you can simply assign the iterator to
the proper pointer type and you get the dereference and address-of
operation as a result of the assignment (behind the scenes, this is a
result of overloading casting mechanisms). Thus the last line of the
last example,
<pre>Instruction* pinst = &amp;*i;</pre>
is semantically equivalent to
<pre>Instruction* pinst = i;</pre>
It's also possible to turn a class pointer into the corresponding
iterator. Usually, this conversion is quite inexpensive. The
following code snippet illustrates use of the conversion constructors
provided by LLVM iterators. By using these, you can explicitly grab
the iterator of something without actually obtaining it via iteration
over some structure:
<pre>void printNextInstruction(Instruction* inst) {<br> BasicBlock::iterator it(inst);<br> ++it; // after this line, it refers to the instruction after *inst.<br> if (it != inst-&gt;getParent()-&gt;end()) cerr &lt;&lt; *it &lt;&lt; "\n";<br>}<br></pre>
Of course, this example is strictly pedagogical, because it'd be much
better to explicitly grab the next instruction directly from inst.<!--_______________________________________________________________________-->
</ul>
<h4>
<hr size="1"><a name="iterate_complex">Finding call sites: a slightly
more complex example </a></h4>
<ul>
Say that you're writing a FunctionPass and would like to count all the
locations in the entire module (that is, across every <tt>Function</tt>)
where a certain function (i.e., some <tt>Function</tt>*) is already in
scope. As you'll learn later, you may want to use an <tt>InstVisitor</tt>
to accomplish this in a much more straightforward manner, but this
example will allow us to explore how you'd do it if you didn't have <tt>InstVisitor</tt>
around. In pseudocode, this is what we want to do:
<pre>initialize callCounter to zero<br>for each Function f in the Module<br> for each BasicBlock b in f<br> for each Instruction i in b<br> if (i is a CallInst and calls the given function)<br> increment callCounter<br></pre>
And the actual code is (remember, since we're writing a <tt>FunctionPass</tt>,
our <tt>FunctionPass</tt>-derived class simply has to override the <tt>runOnFunction</tt>
method...):
<pre>Function* targetFunc = ...;<br><br>class OurFunctionPass : public FunctionPass {<br> public:<br> OurFunctionPass(): callCounter(0) { }<br><br> virtual runOnFunction(Function&amp; F) {<br> for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {<br> for (BasicBlock::iterator i = b-&gt;begin(); ie = b-&gt;end(); i != ie; ++i) {<br> if (<a
href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
href="#CallInst">CallInst</a>&gt;(&amp;*i)) {<br> // we know we've encountered a call instruction, so we<br> // need to determine if it's a call to the<br> // function pointed to by m_func or not.<br> <br> if (callInst-&gt;getCalledFunction() == targetFunc)<br> ++callCounter;<br> }<br> }<br> }<br> <br> private:<br> unsigned callCounter;<br>};<br></pre>
<!--_______________________________________________________________________-->
</ul>
<h4>
<hr size="1"><a name="calls_and_invokes">Treating calls and invokes the
same way</a></h4>
<ul>
<p>You may have noticed that the previous example was a bit
oversimplified in that it did not deal with call sites generated by
'invoke' instructions. In this, and in other situations, you may find
that you want to treat <tt>CallInst</tt>s and <tt>InvokeInst</tt>s
the same way, even though their most-specific common base class is <tt>Instruction</tt>,
which includes lots of less closely-related things. For these cases,
LLVM provides a handy wrapper class called <a
href="http://llvm.cs.uiuc.edu/doxygen/classCallSite.html"><tt>CallSite </tt></a>.
It is essentially a wrapper around an <tt>Instruction</tt> pointer,
with some methods that provide functionality common to <tt>CallInst</tt>s
and <tt>InvokeInst</tt>s.</p>
<p>This class is supposed to have "value semantics". So it should be
passed by value, not by reference; it should not be dynamically
allocated or deallocated using <tt>operator new</tt> or <tt>operator
delete</tt>. It is efficiently copyable, assignable and constructable,
with costs equivalents to that of a bare pointer. (You will notice, if
you look at its definition, that it has only a single data member.)</p>
<!--_______________________________________________________________________-->
</ul>
<h4>
<hr size="1"><a name="iterate_chains">Iterating over def-use &amp;
use-def chains</a></h4>
<ul>
Frequently, we might have an instance of the <a
href="/doxygen/classValue.html">Value Class</a> and we want to
determine which <tt>User</tt>s use the <tt>Value</tt>. The list of
all <tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i>
chain. For example, let's say we have a <tt>Function*</tt> named <tt>F</tt>
to a particular function <tt>foo</tt>. Finding all of the instructions
that <i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i>
chain of <tt>F</tt>:
<pre>Function* F = ...;<br><br>for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i) {<br> if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {<br> cerr &lt;&lt; "F is used in instruction:\n";<br> cerr &lt;&lt; *Inst &lt;&lt; "\n";<br> }<br>}<br></pre>
Alternately, it's common to have an instance of the <a
href="/doxygen/classUser.html">User Class</a> and need to know what <tt>Value</tt>s
are used by it. The list of all <tt>Value</tt>s used by a <tt>User</tt>
is known as a <i>use-def</i> chain. Instances of class <tt>Instruction</tt>
are common <tt>User</tt>s, so we might want to iterate over all of the
values that a particular instruction uses (that is, the operands of the
particular <tt>Instruction</tt>):
<pre>Instruction* pi = ...;<br><br>for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {<br> Value* v = *i;<br> ...<br>}<br></pre>
<!--
def-use chains ("finding all users of"): Value::use_begin/use_end
use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
--><!-- ======================================================================= -->
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="simplechanges">Making simple
changes</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
There are some primitive transformation operations present in the LLVM
infrastructure that are worth knowing about. When performing
transformations, it's fairly common to manipulate the contents of basic
blocks. This section describes some of the common methods for doing so
and gives example code.<!--_______________________________________________________________________-->
</ul>
<h4>
<hr size="1"><a name="schanges_creating">Creating and inserting new <tt>Instruction</tt>s</a></h4>
<ul>
<i>Instantiating Instructions</i>
<p>Creation of <tt>Instruction</tt>s is straightforward: simply call
the constructor for the kind of instruction to instantiate and provide
the necessary parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i>
a (const-ptr-to) <tt>Type</tt>. Thus: </p>
<pre>AllocaInst* ai = new AllocaInst(Type::IntTy);</pre>
will create an <tt>AllocaInst</tt> instance that represents the
allocation of one integer in the current stack frame, at runtime. Each <tt>Instruction</tt>
subclass is likely to have varying default parameters which change the
semantics of the instruction, so refer to the <a
href="/doxygen/classInstruction.html">doxygen documentation for the
subclass of Instruction</a> that you're interested in instantiating.
<p><i>Naming values</i></p>
<p> It is very useful to name the values of instructions when you're
able to, as this facilitates the debugging of your transformations. If
you end up looking at generated LLVM machine code, you definitely want
to have logical names associated with the results of instructions! By
supplying a value for the <tt>Name</tt> (default) parameter of the <tt>Instruction</tt>
constructor, you associate a logical name with the result of the
instruction's execution at runtime. For example, say that I'm writing a
transformation that dynamically allocates space for an integer on the
stack, and that integer is going to be used as some kind of index by
some other code. To accomplish this, I place an <tt>AllocaInst</tt> at
the first point in the first <tt>BasicBlock</tt> of some <tt>Function</tt>,
and I'm intending to use it within the same <tt>Function</tt>. I
might do: </p>
<pre>AllocaInst* pa = new AllocaInst(Type::IntTy, 0, "indexLoc");</pre>
where <tt>indexLoc</tt> is now the logical name of the instruction's
execution value, which is a pointer to an integer on the runtime stack.
<p><i>Inserting instructions</i></p>
<p> There are essentially two ways to insert an <tt>Instruction</tt>
into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
<ul>
<li>Insertion into an explicit instruction list
<p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt>
within that <tt>BasicBlock</tt>, and a newly-created instruction we
wish to insert before <tt>*pi</tt>, we do the following: </p>
<pre> BasicBlock *pb = ...;<br> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pb-&gt;getInstList().insert(pi, newInst); // inserts newInst before pi in pb<br></pre>
</li>
<li>Insertion into an implicit instruction list
<p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
are implicitly associated with an existing instruction list: the
instruction list of the enclosing basic block. Thus, we could have
accomplished the same thing as the above code without being given a <tt>BasicBlock</tt>
by doing: </p>
<pre> Instruction *pi = ...;<br> Instruction *newInst = new Instruction(...);<br> pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);<br></pre>
In fact, this sequence of steps occurs so frequently that the <tt>Instruction</tt>
class and <tt>Instruction</tt>-derived classes provide constructors
which take (as a default parameter) a pointer to an <tt>Instruction</tt>
which the newly-created <tt>Instruction</tt> should precede. That is, <tt>Instruction</tt>
constructors are capable of inserting the newly-created instance into
the <tt>BasicBlock</tt> of a provided instruction, immediately before
that instruction. Using an <tt>Instruction</tt> constructor with a <tt>insertBefore</tt>
(default) parameter, the above code becomes:
<pre>Instruction* pi = ...;<br>Instruction* newInst = new Instruction(..., pi);<br></pre>
which is much cleaner, especially if you're creating a lot of
instructions and adding them to <tt>BasicBlock</tt>s. </li>
</ul>
<!--_______________________________________________________________________-->
</ul>
<h4>
<hr size="1"><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
<ul>
Deleting an instruction from an existing sequence of instructions that
form a <a href="#BasicBlock"><tt>BasicBlock</tt></a> is very
straightforward. First, you must have a pointer to the instruction that
you wish to delete. Second, you need to obtain the pointer to that
instruction's basic block. You use the pointer to the basic block to
get its list of instructions and then use the erase function to remove
your instruction.
<p> For example:</p>
<p> </p>
<pre> <a href="#Instruction">Instruction</a> *I = .. ;<br> <a
href="#BasicBlock">BasicBlock</a> *BB = I-&gt;getParent();<br> BB-&gt;getInstList().erase(I);<br></pre>
<p><!--_______________________________________________________________________--> </p>
</ul>
<h4>
<hr size="1"><a name="schanges_replacing">Replacing an <tt>Instruction</tt>
with another <tt>Value</tt></a></h4>
<ul>
<p><i>Replacing individual instructions</i></p>
<p> Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
and <tt>ReplaceInstWithInst</tt>. </p>
</ul>
<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
<ul>
<ul>
<li><tt>ReplaceInstWithValue</tt>
<p>This function replaces all uses (within a basic block) of a
given instruction with a value, and then removes the original
instruction. The following example illustrates the replacement of the
result of a particular <tt>AllocaInst</tt> that allocates memory for a
single integer with an null pointer to an integer.</p>
<pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> Constant::getNullValue(PointerType::get(Type::IntTy)));<br></pre>
</li>
<li><tt>ReplaceInstWithInst</tt>
<p>This function replaces a particular instruction with another
instruction. The following example illustrates the replacement of one <tt>AllocaInst</tt>
with another.</p>
<p> </p>
<pre>AllocaInst* instToReplace = ...;<br>BasicBlock::iterator ii(instToReplace);<br>ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,<br> new AllocaInst(Type::IntTy, 0, "ptrToReplacedInt"));<br></pre>
</li>
</ul>
<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
You can use <tt>Value::replaceAllUsesWith</tt> and <tt>User::replaceUsesOfWith</tt>
to change more than one use at a time. See the doxygen documentation
for the <a href="/doxygen/classValue.html">Value Class</a> and <a
href="/doxygen/classUser.html">User Class</a>, respectively, for more
information.<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
ReplaceInstWithValue, ReplaceInstWithInst
--><!-- *********************************************************************** -->
</ul>
<table width="100%" bgcolor="#330077" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td align="center"><font color="#eeeeff" size="+2"
face="Georgia,Palatino"><b> <a name="coreclasses">The Core LLVM Class
Hierarchy Reference </a></b></font></td>
</tr>
</tbody>
</table>
<ul>
<!-- *********************************************************************** -->
The Core LLVM classes are the primary means of representing the program
being inspected or transformed. The core LLVM classes are defined in
header files in the <tt>include/llvm/</tt> directory, and implemented in
the <tt>lib/VMCore</tt> directory.
<p><!-- ======================================================================= --> </p>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Value">The <tt>Value</tt> class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classValue.html">Value Class</a>
<p> The <tt>Value</tt> class is the most important class in the LLVM
Source base. It represents a typed value that may be used (among other
things) as an operand to an instruction. There are many different types
of <tt>Value</tt>s, such as <a href="#Constant"><tt>Constant</tt></a>s,<a
href="#Argument"><tt>Argument</tt></a>s. Even <a href="#Instruction"><tt>Instruction</tt></a>s
and <a href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
<p> A particular <tt>Value</tt> may be used many times in the LLVM
representation for a program. For example, an incoming argument to a
function (represented with an instance of the <a href="#Argument">Argument</a>
class) is "used" by every instruction in the function that references
the argument. To keep track of this relationship, the <tt>Value</tt>
class keeps a list of all of the <a href="#User"><tt>User</tt></a>s
that is using it (the <a href="#User"><tt>User</tt></a> class is a base
class for all nodes in the LLVM graph that can refer to <tt>Value</tt>s).
This use list is how LLVM represents def-use information in the
program, and is accessible through the <tt>use_</tt>* methods, shown
below.</p>
<p> Because LLVM is a typed representation, every LLVM <tt>Value</tt>
is typed, and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
method. In addition, all LLVM values can be named. The "name" of the <tt>Value</tt>
is a symbolic string printed in the LLVM code:</p>
<p> </p>
<pre> %<b>foo</b> = add int 1, 2<br></pre>
<a name="#nameWarning">The name of this instruction is "foo". <b>NOTE</b>
that the name of any value may be missing (an empty string), so names
should <b>ONLY</b> be used for debugging (making the source code easier
to read, debugging printouts), they should not be used to keep track of
values or map between them. For this purpose, use a <tt>std::map</tt>
of pointers to the <tt>Value</tt> itself instead.</a>
<p> One important aspect of LLVM is that there is no distinction
between an SSA variable and the operation that produces it. Because of
this, any reference to the value produced by an instruction (or the
value available as an incoming argument, for example) is represented as
a direct pointer to the class that represents this value. Although
this may take some getting used to, it simplifies the representation
and makes it easier to manipulate.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_Value">Important Public Members of the <tt>Value</tt>
class</a></h4>
<ul>
<li><tt>Value::use_iterator</tt> - Typedef for iterator over the
use-list<br>
<tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
the use-list<br>
<tt>unsigned use_size()</tt> - Returns the number of users of the
value.<br>
<tt>bool use_empty()</tt> - Returns true if there are no users.<br>
<tt>use_iterator use_begin()</tt> - Get an iterator to the start of
the use-list.<br>
<tt>use_iterator use_end()</tt> - Get an iterator to the end of the
use-list.<br>
<tt><a href="#User">User</a> *use_back()</tt> - Returns the last
element in the list.
<p> These methods are the interface to access the def-use
information in LLVM. As with all other iterators in LLVM, the naming
conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
<p> </p>
</li>
<li><tt><a href="#Type">Type</a> *getType() const</tt>
<p> This method returns the Type of the Value. </p>
</li>
<li><tt>bool hasName() const</tt><br>
<tt>std::string getName() const</tt><br>
<tt>void setName(const std::string &amp;Name)</tt>
<p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
be aware of the <a href="#nameWarning">precaution above</a>.</p>
<p> </p>
</li>
<li><tt>void replaceAllUsesWith(Value *V)</tt>
<p> This method traverses the use list of a <tt>Value</tt> changing
all <a href="#User"><tt>User</tt>s</a> of the current value to refer to "<tt>V</tt>"
instead. For example, if you detect that an instruction always
produces a constant value (for example through constant folding), you
can replace all uses of the instruction with the constant like this:</p>
<p> </p>
<pre> Inst-&gt;replaceAllUsesWith(ConstVal);<br></pre>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="User">The <tt>User</tt> class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classUser.html">User Class</a><br>
Superclass: <a href="#Value"><tt>Value</tt></a>
<p> The <tt>User</tt> class is the common base class of all LLVM nodes
that may refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a
list of "Operands" that are all of the <a href="#Value"><tt>Value</tt></a>s
that the User is referring to. The <tt>User</tt> class itself is a
subclass of <tt>Value</tt>.</p>
<p> The operands of a <tt>User</tt> point directly to the LLVM <a
href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses
Static Single Assignment (SSA) form, there can only be one definition
referred to, allowing this direct connection. This connection provides
the use-def information in LLVM.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_User">Important Public Members of the <tt>User</tt>
class</a></h4>
<ul>
The <tt>User</tt> class exposes the operand list in two ways: through
an index access interface and through an iterator based interface.
<p> </p>
<li><tt>Value *getOperand(unsigned i)</tt><br>
<tt>unsigned getNumOperands()</tt>
<p> These two methods expose the operands of the <tt>User</tt> in a
convenient form for direct access.</p>
<p> </p>
</li>
<li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
list<br>
<tt>User::op_const_iterator</tt> <tt>use_iterator op_begin()</tt> -
Get an iterator to the start of the operand list.<br>
<tt>use_iterator op_end()</tt> - Get an iterator to the end of the
operand list.
<p> Together, these methods make up the iterator based interface to
the operands of a <tt>User</tt>.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Instruction">The <tt>Instruction</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "</tt><tt><a href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classInstruction.html">Instruction
Class</a><br>
Superclasses: <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a>
<p> The <tt>Instruction</tt> class is the common base class for all
LLVM instructions. It provides only a few methods, but is a very
commonly used class. The primary data tracked by the <tt>Instruction</tt>
class itself is the opcode (instruction type) and the parent <a
href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is
embedded into. To represent a specific type of instruction, one of many
subclasses of <tt>Instruction</tt> are used.</p>
<p> Because the <tt>Instruction</tt> class subclasses the <a
href="#User"><tt>User</tt></a> class, its operands can be accessed in
the same way as for other <a href="#User"><tt>User</tt></a>s (with the <tt>getOperand()</tt>/<tt>getNumOperands()</tt>
and <tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p>
<p> An important file for the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt>
file. This file contains some meta-data about the various different
types of instructions in LLVM. It describes the enum values that are
used as opcodes (for example <tt>Instruction::Add</tt> and <tt>Instruction::SetLE</tt>),
as well as the concrete sub-classes of <tt>Instruction</tt> that
implement the instruction (for example <tt><a href="#BinaryOperator">BinaryOperator</a></tt>
and <tt><a href="#SetCondInst">SetCondInst</a></tt>). Unfortunately,
the use of macros in this file confuses doxygen, so these enum values
don't show up correctly in the <a href="/doxygen/classInstruction.html">doxygen
output</a>.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
class</a></h4>
<ul>
<li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
<p> Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
this <tt>Instruction</tt> is embedded into.</p>
<p> </p>
</li>
<li><tt>bool mayWriteToMemory()</tt>
<p> Returns true if the instruction writes to memory, i.e. it is a <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>,
or <tt>store</tt>.</p>
<p> </p>
</li>
<li><tt>unsigned getOpcode()</tt>
<p> Returns the opcode for the <tt>Instruction</tt>.</p>
<p> </p>
</li>
<li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
<p> Returns another instance of the specified instruction, identical
in all ways to the original except that the instruction has no parent
(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
and it has no name</p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="BasicBlock">The <tt>BasicBlock</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classBasicBlock.html">BasicBlock Class</a><br>
Superclass: <a href="#Value"><tt>Value</tt></a>
<p> This class represents a single entry multiple exit section of the
code, commonly known as a basic block by the compiler community. The <tt>BasicBlock</tt>
class maintains a list of <a href="#Instruction"><tt>Instruction</tt></a>s,
which form the body of the block. Matching the language definition,
the last element of this list of instructions is always a terminator
instruction (a subclass of the <a href="#TerminatorInst"><tt>TerminatorInst</tt></a>
class).</p>
<p> In addition to tracking the list of instructions that make up the
block, the <tt>BasicBlock</tt> class also keeps track of the <a
href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
<p> Note that <tt>BasicBlock</tt>s themselves are <a href="#Value"><tt>Value</tt></a>s,
because they are referenced by instructions like branches and can go in
the switch tables. <tt>BasicBlock</tt>s have type <tt>label</tt>.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
class</a></h4>
<ul>
<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
href="#Function">Function</a> *Parent = 0)</tt>
<p> The <tt>BasicBlock</tt> constructor is used to create new basic
blocks for insertion into a function. The constructor optionally takes
a name for the new block, and a <a href="#Function"><tt>Function</tt></a>
to insert it into. If the <tt>Parent</tt> parameter is specified, the
new <tt>BasicBlock</tt> is automatically inserted at the end of the
specified <a href="#Function"><tt>Function</tt></a>, if not specified,
the BasicBlock must be manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p>
<p> </p>
</li>
<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list
iterator<br>
<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()
- </tt>STL style functions for accessing the instruction list.
<p> These methods and typedefs are forwarding functions that have
the same semantics as the standard library methods of the same names.
These methods expose the underlying instruction list of a basic block in
a way that is easy to manipulate. To get the full complement of
container operations (including operations to update the list), you must
use the <tt>getInstList()</tt> method.</p>
<p> </p>
</li>
<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
<p> This method is used to get access to the underlying container
that actually holds the Instructions. This method must be used when
there isn't a forwarding function in the <tt>BasicBlock</tt> class for
the operation that you would like to perform. Because there are no
forwarding functions for "updating" operations, you need to use this if
you want to update the contents of a <tt>BasicBlock</tt>.</p>
<p> </p>
</li>
<li><tt><a href="#Function">Function</a> *getParent()</tt>
<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a>
the block is embedded into, or a null pointer if it is homeless.</p>
<p> </p>
</li>
<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
<p> Returns a pointer to the terminator instruction that appears at
the end of the <tt>BasicBlock</tt>. If there is no terminator
instruction, or if the last instruction in the block is not a
terminator, then a null pointer is returned.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="GlobalValue">The <tt>GlobalValue</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classGlobalValue.html">GlobalValue
Class</a><br>
Superclasses: <a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a>
<p> Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s
or <a href="#Function"><tt>Function</tt></a>s) are the only LLVM
values that are visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
Because they are visible at global scope, they are also subject to
linking with other globals defined in different translation units. To
control the linking process, <tt>GlobalValue</tt>s know their linkage
rules. Specifically, <tt>GlobalValue</tt>s know whether they have
internal or external linkage, as defined by the <span
style="font-family: monospace;">LinkageTypes</span> enumerator.</p>
<p> If a <tt>GlobalValue</tt> has internal linkage (equivalent to
being <tt>static</tt> in C), it is not visible to code outside the
current translation unit, and does not participate in linking. If it
has external linkage, it is visible to external code, and does
participate in linking. In addition to linkage information, <tt>GlobalValue</tt>s
keep track of which <a href="#Module"><tt>Module</tt></a> they are
currently part of.</p>
<p> Because <tt>GlobalValue</tt>s are memory objects, they are always
referred to by their <span style="font-weight: bold;">address</span><span
style="font-weight: bold;">.</span> As such, the <a href="#Type"><tt>Type</tt></a>
of a global is always a pointer to its contents. It is important to
remember this when using the <span style="font-family: monospace;">GetElementPtrInst</span>
instruction because this pointer must be dereferenced first. For
example, if you have a <span style="font-family: monospace;">GlobalVariable</span>
(a subclass of <span style="font-family: monospace;">GlobalValue)</span>
that is an array of 24 ints, type <span style="font-family: monospace;">[24
x int]</span>, then the <span style="font-family: monospace;">GlobalVariable</span>
is a pointer to that array. Although the address of the first element of
this array and the value of the <span style="font-family: monospace;">GlobalVariable</span>
are the same, they have different types. The <span
style="font-family: monospace;">GlobalVariable</span>'s type is <span
style="font-family: monospace;">[24 x int]</span>. The first element's
type is <span style="font-family: monospace;">int.</span> Because of
this, accessing a global value requires you to dereference the pointer
with <span style="font-family: monospace;">GetElementPtrInst</span>
first, then its elements can be accessed.&nbsp; This is explained in
the <a href="LangRef.html#globalvars">LLVM Language Reference Manual</a>.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
class</a></h4>
<ul>
<li><tt>bool hasInternalLinkage() const</tt><br>
<tt>bool hasExternalLinkage() const</tt><br>
<tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
<p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
<p> </p>
</li>
<li><tt><a href="#Module">Module</a> *getParent()</tt>
<p> This returns the <a href="#Module"><tt>Module</tt></a> that the
GlobalValue is currently embedded into.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Function">The <tt>Function</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classFunction.html">Function Class</a><br>
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a>
<p> The <tt>Function</tt> class represents a single procedure in LLVM.
It is actually one of the more complex classes in the LLVM heirarchy
because it must keep track of a large amount of data. The <tt>Function</tt>
class keeps track of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s,
a list of formal <a href="#Argument"><tt>Argument</tt></a>s, and a <a
href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
<p> The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the
most commonly used part of <tt>Function</tt> objects. The list imposes
an implicit ordering of the blocks in the function, which indicate how
the code will be layed out by the backend. Additionally, the first <a
href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node
for the <tt>Function</tt>. It is not legal in LLVM to explicitly
branch to this initial block. There are no implicit exit nodes, and in
fact there may be multiple exit nodes from a single <tt>Function</tt>.
If the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty,
this indicates that the <tt>Function</tt> is actually a function
declaration: the actual body of the function hasn't been linked in yet.</p>
<p> In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s,
the <tt>Function</tt> class also keeps track of the list of formal <a
href="#Argument"><tt>Argument</tt></a>s that the function receives.
This container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list
does for the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
<p> The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very
rarely used LLVM feature that is only used when you have to look up a
value by name. Aside from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
is used internally to make sure that there are not conflicts between the
names of <a href="#Instruction"><tt>Instruction</tt></a>s, <a
href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a href="#Argument"><tt>Argument</tt></a>s
in the function body.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_Function">Important Public Members of the <tt>Function</tt>
class</a></h4>
<ul>
<li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
*Ty, bool isInternal, const std::string &amp;N = "", Module* Parent = 0)</tt>
<p> Constructor used when you need to create new <tt>Function</tt>s
to add the the program. The constructor must specify the type of the
function to create and whether or not it should start out with internal
or external linkage. The&nbsp;<a href="#FunctionType"
style="font-family: monospace;">FunctionType</a> argument specifies the
formal arguments and return value for the function. The same <a
href="#FunctionTypel" style="font-family: monospace;">FunctionType</a>
value can be used to create multiple functions. The <span
style="font-family: monospace;">Parent</span> argument specifies the
Module in which the function is defined. If this argument is provided,
the function will automatically be inserted into that module's list of
functions.</p>
<p> </p>
</li>
<li><tt>bool isExternal()</tt>
<p> Return whether or not the <tt>Function</tt> has a body defined.
If the function is "external", it does not have a body, and thus must be
resolved by linking with a function defined in a different translation
unit.</p>
<p> </p>
</li>
<li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
<tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()</tt>
<p> These are forwarding methods that make it easy to access the
contents of a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
list.</p>
<p> </p>
</li>
<li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
<p> Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.
This is necessary to use when you need to update the list or perform a
complex action that doesn't have a forwarding method.</p>
<p> </p>
</li>
<li><tt>Function::aiterator</tt> - Typedef for the argument list
iterator<br>
<tt>Function::const_aiterator</tt> - Typedef for const_iterator.<br>
<tt>abegin()</tt>, <tt>aend()</tt>, <tt>afront()</tt>, <tt>aback()</tt>,<tt>asize()</tt>,<tt>aempty()</tt>,<tt>arbegin()</tt>,<tt>arend()</tt>
<p> These are forwarding methods that make it easy to access the
contents of a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
list.</p>
<p> </p>
</li>
<li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
<p> Returns the list of <a href="#Argument"><tt>Argument</tt></a>s.
This is necessary to use when you need to update the list or perform a
complex action that doesn't have a forwarding method.</p>
<p> </p>
</li>
<li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
<p> Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a>
for the function. Because the entry block for the function is always
the first block, this returns the first block of the <tt>Function</tt>.</p>
<p> </p>
</li>
<li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
<tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
<p> This traverses the <a href="#Type"><tt>Type</tt></a> of the <tt>Function</tt>
and returns the return type of the function, or the <a
href="#FunctionType"><tt>FunctionType</tt></a> of the actual function.</p>
<p> </p>
</li>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
<p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
for this <tt>Function</tt>.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="GlobalVariable">The <tt>GlobalVariable</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classGlobalVariable.html">GlobalVariable
Class</a><br>
Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>, <a
href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a>
<p> Global variables are represented with the (suprise suprise) <tt>GlobalVariable</tt>
class. Like functions, <tt>GlobalVariable</tt>s are also subclasses of <a
href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are always
referenced by their address (global values must live in memory, so their
"name" refers to their address). See <a href="#GlobalValue"><span
style="font-family: monospace;">GlobalValue</span></a> for more on
this. Global variables may have an initial value (which must be a <a
href="#Constant"><tt>Constant</tt></a>), and if they have an
initializer, they may be marked as "constant" themselves (indicating
that their contents never change at runtime). &nbsp;</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_GlobalVariable">Important Public Members of the <tt>GlobalVariable</tt>
class</a></h4>
<ul>
<li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty,
bool isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
*Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
<p> Create a new global variable of the specified type. If <tt>isConstant</tt>
is true then the global variable will be marked as unchanging for the
program. The Linkage parameter specifies the type of linkage (internal,
external, weak, linkonce, appending) for the variable. If the linkage
is InternalLinkage, WeakLinkage, or LinkOnceLinkage,&nbsp; then the
resultant global variable will have internal linkage. AppendingLinkage
concatenates together all instances (in different translation units) of
the variable into a single variable but is only applicable to arrays.
&nbsp;See the <a href="LangRef.html#modulestructure">LLVM Language
Reference</a> for further details on linkage types. Optionally an
initializer, a name, and the module to put the variable into may be
specified for the global variable as well.</p>
<p> </p>
</li>
<li><tt>bool isConstant() const</tt>
<p> Returns true if this is a global variable that is known not to
be modified at runtime.</p>
<p> </p>
</li>
<li><tt>bool hasInitializer()</tt>
<p> Returns true if this <tt>GlobalVariable</tt> has an intializer.</p>
<p> </p>
</li>
<li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
<p> Returns the intial value for a <tt>GlobalVariable</tt>. It is
not legal to call this method if there is no initializer.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Module">The <tt>Module</tt> class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
<tt>#include "<a href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br>
doxygen info: <a href="/doxygen/classModule.html">Module Class</a>
<p> The <tt>Module</tt> class represents the top level structure
present in LLVM programs. An LLVM module is effectively either a
translation unit of the original program or a combination of several
translation units merged by the linker. The <tt>Module</tt> class keeps
track of a list of <a href="#Function"><tt>Function</tt></a>s, a list
of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it
contains a few helpful member functions that try to make common
operations easy.</p>
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_Module">Important Public Members of the <tt>Module</tt>
class<span style="font-family: monospace;"></span></a></h4>
<ul>
<li><span style="font-family: monospace;">Module::Module( std::string
name = "" ) </span></li>
</ul>
<p style="margin-left: 40px;">Constructing a <a href="#Module">Module</a>
is easy. You can optionally provide a name for it (probably based on the
name of the translation unit).</p>
<ul>
<li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
<tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,<tt>size()</tt>,<tt>empty()</tt>,<tt>rbegin()</tt>,<tt>rend()</tt>
<p> These are forwarding methods that make it easy to access the
contents of a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
list.</p>
<p> </p>
</li>
<li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
<p> Returns the list of <a href="#Function"><tt>Function</tt></a>s.
This is necessary to use when you need to update the list or perform a
complex action that doesn't have a forwarding method.</p>
<p><!-- Global Variable --> </p>
<hr size="1"> </li>
<li><tt>Module::giterator</tt> - Typedef for global variable list
iterator<br>
<tt>Module::const_giterator</tt> - Typedef for const_iterator.<br>
<tt>gbegin()</tt>, <tt>gend()</tt>, <tt>gfront()</tt>, <tt>gback()</tt>,<tt>gsize()</tt>,<tt>gempty()</tt>,<tt>grbegin()</tt>,<tt>grend()</tt>
<p> These are forwarding methods that make it easy to access the
contents of a <tt>Module</tt> object's <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>
list.</p>
<p> </p>
</li>
<li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
<p> Returns the list of <a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s.
This is necessary to use when you need to update the list or perform a
complex action that doesn't have a forwarding method.</p>
<p><!-- Symbol table stuff --> </p>
<hr size="1"> </li>
<li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
<p> Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
for this <tt>Module</tt>.</p>
<p><!-- Convenience methods --> </p>
<hr size="1"> </li>
<li><tt><a href="#Function">Function</a> *getFunction(const
std::string &amp;Name, const <a href="#FunctionType">FunctionType</a>
*Ty)</tt>
<p> Look up the specified function in the <tt>Module</tt> <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist,
return <tt>null</tt>.</p>
<p> </p>
</li>
<li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
<p> Look up the specified function in the <tt>Module</tt> <a
href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist,
add an external declaration for the function and return it.</p>
<p> </p>
</li>
<li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
<p> If there is at least one entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
for the specified <a href="#Type"><tt>Type</tt></a>, return it.
Otherwise return the empty string.</p>
<p> </p>
</li>
<li><tt>bool addTypeName(const std::string &amp;Name, const <a
href="#Type">Type</a> *Ty)</tt>
<p> Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for
this name, true is returned and the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
is not modified.</p>
<p><!-- ======================================================================= --> </p>
</li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Constant">The <tt>Constant</tt>
class and subclasses</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
Constant represents a base class for different types of constants. It
is subclassed by ConstantBool, ConstantInt, ConstantSInt, ConstantUInt,
ConstantArray etc for representing the various types of Constants.
<p><!-- _______________________________________________________________________ --> </p>
</ul>
<h4>
<hr size="1"><a name="m_Value">Important Public Methods</a></h4>
<ul>
<li><tt>bool isConstantExpr()</tt>: Returns true if it is a
ConstantExpr
<hr> Important Subclasses of Constant
<p> </p>
<ul>
<li>ConstantSInt : This subclass of Constant represents a signed
integer constant.
<ul>
<li><tt>int64_t getValue() const</tt>: Returns the underlying value of
this constant. </li>
</ul>
</li>
<li>ConstantUInt : This class represents an unsigned integer.
<ul>
<li><tt>uint64_t getValue() const</tt>: Returns the underlying value
of this constant. </li>
</ul>
</li>
<li>ConstantFP : This class represents a floating point constant.
<ul>
<li><tt>double getValue() const</tt>: Returns the underlying value of
this constant. </li>
</ul>
</li>
<li>ConstantBool : This represents a boolean constant.
<ul>
<li><tt>bool getValue() const</tt>: Returns the underlying value of
this constant. </li>
</ul>
</li>
<li>ConstantArray : This represents a constant array.
<ul>
<li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
Returns a Vecotr of component constants that makeup this array. </li>
</ul>
</li>
<li>ConstantStruct : This represents a constant struct.
<ul>
<li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>:
Returns a Vecotr of component constants that makeup this array. </li>
</ul>
</li>
<li>ConstantPointerRef : This represents a constant pointer value
that is initialized to point to a global value, which lies at a
constant fixed address.
<ul>
<li><tt>GlobalValue *getValue()</tt>: Returns the global
value to which this pointer is pointing to. </li>
</ul>
</li>
</ul>
<!-- ======================================================================= --> </li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Type">The <tt>Type</tt> class and
Derived Types</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
Type as noted earlier is also a subclass of a Value class. Any
primitive type (like int, short etc) in LLVM is an instance of Type
Class. All other types are instances of subclasses of type like
FunctionType, ArrayType etc. DerivedType is the interface for all such
dervied types including FunctionType, ArrayType, PointerType,
StructType. Types can have names. They can be recursive (StructType).
There exists exactly one instance of any type structure at a time. This
allows using pointer equality of Type *s for comparing types.<!-- _______________________________________________________________________ -->
</ul>
<h4>
<hr size="1"><a name="m_Value">Important Public Methods</a></h4>
<ul>
<li><tt>PrimitiveID getPrimitiveID() const</tt>: Returns the base
type of the type. </li>
<li><tt> bool isSigned() const</tt>: Returns whether an integral
numeric type is signed. This is true for SByteTy, ShortTy, IntTy,
LongTy. Note that this is not true for Float and Double. </li>
<li><tt>bool isUnsigned() const</tt>: Returns whether a numeric type
is unsigned. This is not quite the complement of isSigned... nonnumeric
types return false as they do with isSigned. This returns true for
UByteTy, UShortTy, UIntTy, and ULongTy. </li>
<li><tt> bool isInteger() const</tt>: Equilivent to isSigned() ||
isUnsigned(), but with only a single virtual function invocation. </li>
<li><tt>bool isIntegral() const</tt>: Returns true if this is an
integral type, which is either Bool type or one of the Integer types. </li>
<li><tt>bool isFloatingPoint()</tt>: Return true if this is one of
the two floating point types. </li>
<li><tt>bool isRecursive() const</tt>: Returns rue if the type graph
contains a cycle. </li>
<li><tt>isLosslesslyConvertableTo (const Type *Ty) const</tt>: Return
true if this type can be converted to 'Ty' without any reinterpretation
of bits. For example, uint to int. </li>
<li><tt>bool isPrimitiveType() const</tt>: Returns true if it is a
primitive type. </li>
<li><tt>bool isDerivedType() const</tt>: Returns true if it is a
derived type. </li>
<li><tt>const Type * getContainedType (unsigned i) const</tt>: This
method is used to implement the type iterator. For derived types, this
returns the types 'contained' in the derived type, returning 0 when 'i'
becomes invalid. This allows the user to iterate over the types in a
struct, for example, really easily. </li>
<li><tt>unsigned getNumContainedTypes() const</tt>: Return the number
of types in the derived type.
<p> </p>
<hr> Derived Types
<p> </p>
<ul>
<li>SequentialType : This is subclassed by ArrayType and
PointerType
<ul>
<li><tt>const Type * getElementType() const</tt>: Returns the type of
each of the elements in the sequential type. </li>
</ul>
</li>
<li>ArrayType : This is a subclass of SequentialType and defines
interface for array types.
<ul>
<li><tt>unsigned getNumElements() const</tt>: Returns the number of
elements in the array. </li>
</ul>
</li>
<li>PointerType : Subclass of SequentialType for pointer types. </li>
<li>StructType : subclass of DerivedTypes for struct types </li>
<li>FunctionType : subclass of DerivedTypes for function types.
<ul>
<li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
function </li>
<li><tt> const Type * getReturnType() const</tt>: Returns the
return type of the function. </li>
<li><tt> const ParamTypes &amp;getParamTypes() const</tt>:
Returns a vector of parameter types. </li>
<li><tt>const Type * getParamType (unsigned i)</tt>: Returns
the type of the ith parameter. </li>
<li><tt> const unsigned getNumParams() const</tt>: Returns the
number of formal parameters. </li>
</ul>
</li>
</ul>
<!-- ======================================================================= --> </li>
</ul>
<table width="100%" bgcolor="#441188" border="0" cellpadding="4"
cellspacing="0">
<tbody>
<tr>
<td>&nbsp;</td>
<td width="100%">&nbsp; <font color="#eeeeff"
face="Georgia,Palatino"><b> <a name="Argument">The <tt>Argument</tt>
class</a> </b></font></td>
</tr>
</tbody>
</table>
<ul>
This subclass of Value defines the interface for incoming formal
arguments to a function. A Function maitanis a list of its formal
arguments. An argument has a pointer to the parent Function.<!-- *********************************************************************** -->
</ul>
<!-- *********************************************************************** -->
<hr><font size-1="">
<address>By: <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>
and <a href="mailto:sabre@nondot.org">Chris Lattner</a></address>
</font><font size-1=""><a href="http://llvm.cs.uiuc.edu">The LLVM
Compiler Infrastructure</a> <br>
<!-- Created: Tue Aug 6 15:00:33 CDT 2002 --><!-- hhmts start --> Last
modified: Fri Nov 7 13:24:22 CST 2003<!-- hhmts end --> </font>
</body>
</html>