llvm-mirror/tools/yaml2obj/yaml2elf.cpp
George Rimar f0e500c351 [yaml2obj] - Allow overriding the sh_size field.
There is no way to set broken sh_size field currently
for sections. It can be usefull for writing the
test cases. 

Differential revision: https://reviews.llvm.org/D64401

llvm-svn: 365766
2019-07-11 12:59:29 +00:00

1072 lines
37 KiB
C++

//===- yaml2elf - Convert YAML to a ELF object file -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// The ELF component of yaml2obj.
///
//===----------------------------------------------------------------------===//
#include "yaml2obj.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/StringTableBuilder.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/ObjectYAML/ELFYAML.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/WithColor.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
// This class is used to build up a contiguous binary blob while keeping
// track of an offset in the output (which notionally begins at
// `InitialOffset`).
namespace {
class ContiguousBlobAccumulator {
const uint64_t InitialOffset;
SmallVector<char, 128> Buf;
raw_svector_ostream OS;
/// \returns The new offset.
uint64_t padToAlignment(unsigned Align) {
if (Align == 0)
Align = 1;
uint64_t CurrentOffset = InitialOffset + OS.tell();
uint64_t AlignedOffset = alignTo(CurrentOffset, Align);
OS.write_zeros(AlignedOffset - CurrentOffset);
return AlignedOffset; // == CurrentOffset;
}
public:
ContiguousBlobAccumulator(uint64_t InitialOffset_)
: InitialOffset(InitialOffset_), Buf(), OS(Buf) {}
template <class Integer>
raw_ostream &getOSAndAlignedOffset(Integer &Offset, unsigned Align) {
Offset = padToAlignment(Align);
return OS;
}
void writeBlobToStream(raw_ostream &Out) { Out << OS.str(); }
};
} // end anonymous namespace
// Used to keep track of section and symbol names, so that in the YAML file
// sections and symbols can be referenced by name instead of by index.
namespace {
class NameToIdxMap {
StringMap<unsigned> Map;
public:
/// \Returns false if name is already present in the map.
bool addName(StringRef Name, unsigned Ndx) {
return Map.insert({Name, Ndx}).second;
}
/// \Returns false if name is not present in the map.
bool lookup(StringRef Name, unsigned &Idx) const {
auto I = Map.find(Name);
if (I == Map.end())
return false;
Idx = I->getValue();
return true;
}
/// Asserts if name is not present in the map.
unsigned get(StringRef Name) const {
unsigned Idx;
if (lookup(Name, Idx))
return Idx;
assert(false && "Expected section not found in index");
return 0;
}
unsigned size() const { return Map.size(); }
};
} // end anonymous namespace
template <class T>
static size_t arrayDataSize(ArrayRef<T> A) {
return A.size() * sizeof(T);
}
template <class T>
static void writeArrayData(raw_ostream &OS, ArrayRef<T> A) {
OS.write((const char *)A.data(), arrayDataSize(A));
}
template <class T>
static void zero(T &Obj) {
memset(&Obj, 0, sizeof(Obj));
}
namespace {
/// "Single point of truth" for the ELF file construction.
/// TODO: This class still has a ways to go before it is truly a "single
/// point of truth".
template <class ELFT>
class ELFState {
typedef typename ELFT::Ehdr Elf_Ehdr;
typedef typename ELFT::Phdr Elf_Phdr;
typedef typename ELFT::Shdr Elf_Shdr;
typedef typename ELFT::Sym Elf_Sym;
typedef typename ELFT::Rel Elf_Rel;
typedef typename ELFT::Rela Elf_Rela;
typedef typename ELFT::Relr Elf_Relr;
typedef typename ELFT::Dyn Elf_Dyn;
enum class SymtabType { Static, Dynamic };
/// The future ".strtab" section.
StringTableBuilder DotStrtab{StringTableBuilder::ELF};
/// The future ".shstrtab" section.
StringTableBuilder DotShStrtab{StringTableBuilder::ELF};
/// The future ".dynstr" section.
StringTableBuilder DotDynstr{StringTableBuilder::ELF};
NameToIdxMap SN2I;
NameToIdxMap SymN2I;
const ELFYAML::Object &Doc;
bool buildSectionIndex();
bool buildSymbolIndex(ArrayRef<ELFYAML::Symbol> Symbols);
void initELFHeader(Elf_Ehdr &Header);
void initProgramHeaders(std::vector<Elf_Phdr> &PHeaders);
bool initImplicitHeader(ELFState<ELFT> &State, ContiguousBlobAccumulator &CBA,
Elf_Shdr &Header, StringRef SecName,
ELFYAML::Section *YAMLSec);
bool initSectionHeaders(ELFState<ELFT> &State,
std::vector<Elf_Shdr> &SHeaders,
ContiguousBlobAccumulator &CBA);
void initSymtabSectionHeader(Elf_Shdr &SHeader, SymtabType STType,
ContiguousBlobAccumulator &CBA,
ELFYAML::Section *YAMLSec);
void initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
StringTableBuilder &STB,
ContiguousBlobAccumulator &CBA,
ELFYAML::Section *YAMLSec);
void setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
std::vector<Elf_Shdr> &SHeaders);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::RawContentSection &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::RelocationSection &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader, const ELFYAML::Group &Group,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::SymverSection &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::VerneedSection &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::VerdefSection &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::MipsABIFlags &Section,
ContiguousBlobAccumulator &CBA);
bool writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::DynamicSection &Section,
ContiguousBlobAccumulator &CBA);
std::vector<StringRef> implicitSectionNames() const;
ELFState(const ELFYAML::Object &D) : Doc(D) {}
public:
static int writeELF(raw_ostream &OS, const ELFYAML::Object &Doc);
private:
void finalizeStrings();
};
} // end anonymous namespace
template <class ELFT>
void ELFState<ELFT>::initELFHeader(Elf_Ehdr &Header) {
using namespace llvm::ELF;
zero(Header);
Header.e_ident[EI_MAG0] = 0x7f;
Header.e_ident[EI_MAG1] = 'E';
Header.e_ident[EI_MAG2] = 'L';
Header.e_ident[EI_MAG3] = 'F';
Header.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
Header.e_ident[EI_DATA] = Doc.Header.Data;
Header.e_ident[EI_VERSION] = EV_CURRENT;
Header.e_ident[EI_OSABI] = Doc.Header.OSABI;
Header.e_ident[EI_ABIVERSION] = Doc.Header.ABIVersion;
Header.e_type = Doc.Header.Type;
Header.e_machine = Doc.Header.Machine;
Header.e_version = EV_CURRENT;
Header.e_entry = Doc.Header.Entry;
Header.e_phoff = sizeof(Header);
Header.e_flags = Doc.Header.Flags;
Header.e_ehsize = sizeof(Elf_Ehdr);
Header.e_phentsize = sizeof(Elf_Phdr);
Header.e_phnum = Doc.ProgramHeaders.size();
Header.e_shentsize =
Doc.Header.SHEntSize ? (uint16_t)*Doc.Header.SHEntSize : sizeof(Elf_Shdr);
// Immediately following the ELF header and program headers.
Header.e_shoff =
Doc.Header.SHOffset
? (uint16_t)*Doc.Header.SHOffset
: sizeof(Header) + sizeof(Elf_Phdr) * Doc.ProgramHeaders.size();
Header.e_shnum =
Doc.Header.SHNum ? (uint16_t)*Doc.Header.SHNum : SN2I.size() + 1;
Header.e_shstrndx = Doc.Header.SHStrNdx ? (uint16_t)*Doc.Header.SHStrNdx
: SN2I.get(".shstrtab");
}
template <class ELFT>
void ELFState<ELFT>::initProgramHeaders(std::vector<Elf_Phdr> &PHeaders) {
for (const auto &YamlPhdr : Doc.ProgramHeaders) {
Elf_Phdr Phdr;
Phdr.p_type = YamlPhdr.Type;
Phdr.p_flags = YamlPhdr.Flags;
Phdr.p_vaddr = YamlPhdr.VAddr;
Phdr.p_paddr = YamlPhdr.PAddr;
PHeaders.push_back(Phdr);
}
}
static bool convertSectionIndex(NameToIdxMap &SN2I, StringRef SecName,
StringRef IndexSrc, unsigned &IndexDest) {
if (!SN2I.lookup(IndexSrc, IndexDest) && !to_integer(IndexSrc, IndexDest)) {
WithColor::error() << "Unknown section referenced: '" << IndexSrc
<< "' at YAML section '" << SecName << "'.\n";
return false;
}
return true;
}
template <class ELFT>
bool ELFState<ELFT>::initImplicitHeader(ELFState<ELFT> &State,
ContiguousBlobAccumulator &CBA,
Elf_Shdr &Header, StringRef SecName,
ELFYAML::Section *YAMLSec) {
// Check if the header was already initialized.
if (Header.sh_offset)
return false;
if (SecName == ".symtab")
State.initSymtabSectionHeader(Header, SymtabType::Static, CBA, YAMLSec);
else if (SecName == ".strtab")
State.initStrtabSectionHeader(Header, SecName, State.DotStrtab, CBA,
YAMLSec);
else if (SecName == ".shstrtab")
State.initStrtabSectionHeader(Header, SecName, State.DotShStrtab, CBA,
YAMLSec);
else if (SecName == ".dynsym")
State.initSymtabSectionHeader(Header, SymtabType::Dynamic, CBA, YAMLSec);
else if (SecName == ".dynstr")
State.initStrtabSectionHeader(Header, SecName, State.DotDynstr, CBA,
YAMLSec);
else
return false;
// Override the sh_offset/sh_size fields if requested.
if (YAMLSec) {
if (YAMLSec->ShOffset)
Header.sh_offset = *YAMLSec->ShOffset;
if (YAMLSec->ShSize)
Header.sh_size = *YAMLSec->ShSize;
}
return true;
}
static StringRef dropUniqueSuffix(StringRef S) {
size_t SuffixPos = S.rfind(" [");
if (SuffixPos == StringRef::npos)
return S;
return S.substr(0, SuffixPos);
}
template <class ELFT>
bool ELFState<ELFT>::initSectionHeaders(ELFState<ELFT> &State,
std::vector<Elf_Shdr> &SHeaders,
ContiguousBlobAccumulator &CBA) {
// Build a list of sections we are going to add implicitly.
std::vector<StringRef> ImplicitSections;
for (StringRef Name : State.implicitSectionNames())
if (State.SN2I.get(Name) > Doc.Sections.size())
ImplicitSections.push_back(Name);
// Ensure SHN_UNDEF entry is present. An all-zero section header is a
// valid SHN_UNDEF entry since SHT_NULL == 0.
SHeaders.resize(Doc.Sections.size() + ImplicitSections.size() + 1);
zero(SHeaders[0]);
for (size_t I = 1; I < Doc.Sections.size() + ImplicitSections.size() + 1; ++I) {
Elf_Shdr &SHeader = SHeaders[I];
zero(SHeader);
ELFYAML::Section *Sec =
I > Doc.Sections.size() ? nullptr : Doc.Sections[I - 1].get();
// We have a few sections like string or symbol tables that are usually
// added implicitly to the end. However, if they are explicitly specified
// in the YAML, we need to write them here. This ensures the file offset
// remains correct.
StringRef SecName =
Sec ? Sec->Name : ImplicitSections[I - Doc.Sections.size() - 1];
if (initImplicitHeader(State, CBA, SHeader, SecName, Sec))
continue;
assert(Sec && "It can't be null unless it is an implicit section. But all "
"implicit sections should already have been handled above.");
SHeader.sh_name = DotShStrtab.getOffset(dropUniqueSuffix(SecName));
SHeader.sh_type = Sec->Type;
if (Sec->Flags)
SHeader.sh_flags = *Sec->Flags;
SHeader.sh_addr = Sec->Address;
SHeader.sh_addralign = Sec->AddressAlign;
if (!Sec->Link.empty()) {
unsigned Index;
if (!convertSectionIndex(SN2I, Sec->Name, Sec->Link, Index))
return false;
SHeader.sh_link = Index;
}
if (auto S = dyn_cast<ELFYAML::RawContentSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::RelocationSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::Group>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::MipsABIFlags>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::NoBitsSection>(Sec)) {
SHeader.sh_entsize = 0;
SHeader.sh_size = S->Size;
// SHT_NOBITS section does not have content
// so just to setup the section offset.
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
} else if (auto S = dyn_cast<ELFYAML::DynamicSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::SymverSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::VerneedSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else if (auto S = dyn_cast<ELFYAML::VerdefSection>(Sec)) {
if (!writeSectionContent(SHeader, *S, CBA))
return false;
} else
llvm_unreachable("Unknown section type");
// Override the sh_offset/sh_size fields if requested.
if (Sec) {
if (Sec->ShOffset)
SHeader.sh_offset = *Sec->ShOffset;
if (Sec->ShSize)
SHeader.sh_size = *Sec->ShSize;
}
}
return true;
}
static size_t findFirstNonGlobal(ArrayRef<ELFYAML::Symbol> Symbols) {
for (size_t I = 0; I < Symbols.size(); ++I)
if (Symbols[I].Binding.value != ELF::STB_LOCAL)
return I;
return Symbols.size();
}
static uint64_t writeRawSectionData(raw_ostream &OS,
const ELFYAML::RawContentSection &RawSec) {
size_t ContentSize = 0;
if (RawSec.Content) {
RawSec.Content->writeAsBinary(OS);
ContentSize = RawSec.Content->binary_size();
}
if (!RawSec.Size)
return ContentSize;
OS.write_zeros(*RawSec.Size - ContentSize);
return *RawSec.Size;
}
template <class ELFT>
static std::vector<typename ELFT::Sym>
toELFSymbols(NameToIdxMap &SN2I, ArrayRef<ELFYAML::Symbol> Symbols,
const StringTableBuilder &Strtab) {
using Elf_Sym = typename ELFT::Sym;
std::vector<Elf_Sym> Ret;
Ret.resize(Symbols.size() + 1);
size_t I = 0;
for (const auto &Sym : Symbols) {
Elf_Sym &Symbol = Ret[++I];
// If NameIndex, which contains the name offset, is explicitly specified, we
// use it. This is useful for preparing broken objects. Otherwise, we add
// the specified Name to the string table builder to get its offset.
if (Sym.NameIndex)
Symbol.st_name = *Sym.NameIndex;
else if (!Sym.Name.empty())
Symbol.st_name = Strtab.getOffset(dropUniqueSuffix(Sym.Name));
Symbol.setBindingAndType(Sym.Binding, Sym.Type);
if (!Sym.Section.empty()) {
unsigned Index;
if (!SN2I.lookup(Sym.Section, Index)) {
WithColor::error() << "Unknown section referenced: '" << Sym.Section
<< "' by YAML symbol " << Sym.Name << ".\n";
exit(1);
}
Symbol.st_shndx = Index;
} else if (Sym.Index) {
Symbol.st_shndx = *Sym.Index;
}
// else Symbol.st_shndex == SHN_UNDEF (== 0), since it was zero'd earlier.
Symbol.st_value = Sym.Value;
Symbol.st_other = Sym.Other;
Symbol.st_size = Sym.Size;
}
return Ret;
}
template <class ELFT>
void ELFState<ELFT>::initSymtabSectionHeader(Elf_Shdr &SHeader,
SymtabType STType,
ContiguousBlobAccumulator &CBA,
ELFYAML::Section *YAMLSec) {
bool IsStatic = STType == SymtabType::Static;
const auto &Symbols = IsStatic ? Doc.Symbols : Doc.DynamicSymbols;
ELFYAML::RawContentSection *RawSec =
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
if (RawSec && !Symbols.empty() && (RawSec->Content || RawSec->Size)) {
if (RawSec->Content)
WithColor::error() << "Cannot specify both `Content` and " +
(IsStatic ? Twine("`Symbols`")
: Twine("`DynamicSymbols`")) +
" for symbol table section '"
<< RawSec->Name << "'.\n";
if (RawSec->Size)
WithColor::error() << "Cannot specify both `Size` and " +
(IsStatic ? Twine("`Symbols`")
: Twine("`DynamicSymbols`")) +
" for symbol table section '"
<< RawSec->Name << "'.\n";
exit(1);
}
zero(SHeader);
SHeader.sh_name = DotShStrtab.getOffset(IsStatic ? ".symtab" : ".dynsym");
if (YAMLSec)
SHeader.sh_type = YAMLSec->Type;
else
SHeader.sh_type = IsStatic ? ELF::SHT_SYMTAB : ELF::SHT_DYNSYM;
if (RawSec && !RawSec->Link.empty()) {
// If the Link field is explicitly defined in the document,
// we should use it.
unsigned Index;
if (!convertSectionIndex(SN2I, RawSec->Name, RawSec->Link, Index))
return;
SHeader.sh_link = Index;
} else {
// When we describe the .dynsym section in the document explicitly, it is
// allowed to omit the "DynamicSymbols" tag. In this case .dynstr is not
// added implicitly and we should be able to leave the Link zeroed if
// .dynstr is not defined.
unsigned Link = 0;
if (IsStatic)
Link = SN2I.get(".strtab");
else
SN2I.lookup(".dynstr", Link);
SHeader.sh_link = Link;
}
if (YAMLSec && YAMLSec->Flags)
SHeader.sh_flags = *YAMLSec->Flags;
else if (!IsStatic)
SHeader.sh_flags = ELF::SHF_ALLOC;
// If the symbol table section is explicitly described in the YAML
// then we should set the fields requested.
SHeader.sh_info = (RawSec && RawSec->Info) ? (unsigned)(*RawSec->Info)
: findFirstNonGlobal(Symbols) + 1;
SHeader.sh_entsize = (YAMLSec && YAMLSec->EntSize)
? (uint64_t)(*YAMLSec->EntSize)
: sizeof(Elf_Sym);
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 8;
SHeader.sh_addr = YAMLSec ? (uint64_t)YAMLSec->Address : 0;
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
if (RawSec && (RawSec->Content || RawSec->Size)) {
assert(Symbols.empty());
SHeader.sh_size = writeRawSectionData(OS, *RawSec);
return;
}
std::vector<Elf_Sym> Syms =
toELFSymbols<ELFT>(SN2I, Symbols, IsStatic ? DotStrtab : DotDynstr);
writeArrayData(OS, makeArrayRef(Syms));
SHeader.sh_size = arrayDataSize(makeArrayRef(Syms));
}
template <class ELFT>
void ELFState<ELFT>::initStrtabSectionHeader(Elf_Shdr &SHeader, StringRef Name,
StringTableBuilder &STB,
ContiguousBlobAccumulator &CBA,
ELFYAML::Section *YAMLSec) {
zero(SHeader);
SHeader.sh_name = DotShStrtab.getOffset(Name);
SHeader.sh_type = YAMLSec ? YAMLSec->Type : ELF::SHT_STRTAB;
SHeader.sh_addralign = YAMLSec ? (uint64_t)YAMLSec->AddressAlign : 1;
ELFYAML::RawContentSection *RawSec =
dyn_cast_or_null<ELFYAML::RawContentSection>(YAMLSec);
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
if (RawSec && (RawSec->Content || RawSec->Size)) {
SHeader.sh_size = writeRawSectionData(OS, *RawSec);
} else {
STB.write(OS);
SHeader.sh_size = STB.getSize();
}
if (YAMLSec && YAMLSec->EntSize)
SHeader.sh_entsize = *YAMLSec->EntSize;
if (RawSec && RawSec->Info)
SHeader.sh_info = *RawSec->Info;
if (YAMLSec && YAMLSec->Flags)
SHeader.sh_flags = *YAMLSec->Flags;
else if (Name == ".dynstr")
SHeader.sh_flags = ELF::SHF_ALLOC;
// If the section is explicitly described in the YAML
// then we want to use its section address.
if (YAMLSec)
SHeader.sh_addr = YAMLSec->Address;
}
template <class ELFT>
void ELFState<ELFT>::setProgramHeaderLayout(std::vector<Elf_Phdr> &PHeaders,
std::vector<Elf_Shdr> &SHeaders) {
uint32_t PhdrIdx = 0;
for (auto &YamlPhdr : Doc.ProgramHeaders) {
Elf_Phdr &PHeader = PHeaders[PhdrIdx++];
std::vector<Elf_Shdr *> Sections;
for (const ELFYAML::SectionName &SecName : YamlPhdr.Sections) {
unsigned Index;
if (!SN2I.lookup(SecName.Section, Index)) {
WithColor::error() << "Unknown section referenced: '" << SecName.Section
<< "' by program header.\n";
exit(1);
}
Sections.push_back(&SHeaders[Index]);
}
if (YamlPhdr.Offset) {
PHeader.p_offset = *YamlPhdr.Offset;
} else {
if (YamlPhdr.Sections.size())
PHeader.p_offset = UINT32_MAX;
else
PHeader.p_offset = 0;
// Find the minimum offset for the program header.
for (Elf_Shdr *SHeader : Sections)
PHeader.p_offset = std::min(PHeader.p_offset, SHeader->sh_offset);
}
// Find the maximum offset of the end of a section in order to set p_filesz,
// if not set explicitly.
if (YamlPhdr.FileSize) {
PHeader.p_filesz = *YamlPhdr.FileSize;
} else {
PHeader.p_filesz = 0;
for (Elf_Shdr *SHeader : Sections) {
uint64_t EndOfSection;
if (SHeader->sh_type == llvm::ELF::SHT_NOBITS)
EndOfSection = SHeader->sh_offset;
else
EndOfSection = SHeader->sh_offset + SHeader->sh_size;
uint64_t EndOfSegment = PHeader.p_offset + PHeader.p_filesz;
EndOfSegment = std::max(EndOfSegment, EndOfSection);
PHeader.p_filesz = EndOfSegment - PHeader.p_offset;
}
}
// If not set explicitly, find the memory size by adding the size of
// sections at the end of the segment. These should be empty (size of zero)
// and NOBITS sections.
if (YamlPhdr.MemSize) {
PHeader.p_memsz = *YamlPhdr.MemSize;
} else {
PHeader.p_memsz = PHeader.p_filesz;
for (Elf_Shdr *SHeader : Sections)
if (SHeader->sh_offset == PHeader.p_offset + PHeader.p_filesz)
PHeader.p_memsz += SHeader->sh_size;
}
// Set the alignment of the segment to be the same as the maximum alignment
// of the sections with the same offset so that by default the segment
// has a valid and sensible alignment.
if (YamlPhdr.Align) {
PHeader.p_align = *YamlPhdr.Align;
} else {
PHeader.p_align = 1;
for (Elf_Shdr *SHeader : Sections)
if (SHeader->sh_offset == PHeader.p_offset)
PHeader.p_align = std::max(PHeader.p_align, SHeader->sh_addralign);
}
}
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(
Elf_Shdr &SHeader, const ELFYAML::RawContentSection &Section,
ContiguousBlobAccumulator &CBA) {
raw_ostream &OS =
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
SHeader.sh_size = writeRawSectionData(OS, Section);
if (Section.EntSize)
SHeader.sh_entsize = *Section.EntSize;
else if (Section.Type == llvm::ELF::SHT_RELR)
SHeader.sh_entsize = sizeof(Elf_Relr);
else
SHeader.sh_entsize = 0;
if (Section.Info)
SHeader.sh_info = *Section.Info;
return true;
}
static bool isMips64EL(const ELFYAML::Object &Doc) {
return Doc.Header.Machine == ELFYAML::ELF_EM(llvm::ELF::EM_MIPS) &&
Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64) &&
Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
}
template <class ELFT>
bool
ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::RelocationSection &Section,
ContiguousBlobAccumulator &CBA) {
assert((Section.Type == llvm::ELF::SHT_REL ||
Section.Type == llvm::ELF::SHT_RELA) &&
"Section type is not SHT_REL nor SHT_RELA");
bool IsRela = Section.Type == llvm::ELF::SHT_RELA;
SHeader.sh_entsize = IsRela ? sizeof(Elf_Rela) : sizeof(Elf_Rel);
SHeader.sh_size = SHeader.sh_entsize * Section.Relocations.size();
// For relocation section set link to .symtab by default.
if (Section.Link.empty())
SHeader.sh_link = SN2I.get(".symtab");
unsigned Index = 0;
if (!Section.RelocatableSec.empty() &&
!convertSectionIndex(SN2I, Section.Name, Section.RelocatableSec, Index))
return false;
SHeader.sh_info = Index;
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
for (const auto &Rel : Section.Relocations) {
unsigned SymIdx = 0;
// If a relocation references a symbol, try to look one up in the symbol
// table. If it is not there, treat the value as a symbol index.
if (Rel.Symbol && !SymN2I.lookup(*Rel.Symbol, SymIdx) &&
!to_integer(*Rel.Symbol, SymIdx)) {
WithColor::error() << "Unknown symbol referenced: '" << *Rel.Symbol
<< "' at YAML section '" << Section.Name << "'.\n";
return false;
}
if (IsRela) {
Elf_Rela REntry;
zero(REntry);
REntry.r_offset = Rel.Offset;
REntry.r_addend = Rel.Addend;
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
OS.write((const char *)&REntry, sizeof(REntry));
} else {
Elf_Rel REntry;
zero(REntry);
REntry.r_offset = Rel.Offset;
REntry.setSymbolAndType(SymIdx, Rel.Type, isMips64EL(Doc));
OS.write((const char *)&REntry, sizeof(REntry));
}
}
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::Group &Section,
ContiguousBlobAccumulator &CBA) {
assert(Section.Type == llvm::ELF::SHT_GROUP &&
"Section type is not SHT_GROUP");
SHeader.sh_entsize = 4;
SHeader.sh_size = SHeader.sh_entsize * Section.Members.size();
unsigned SymIdx;
if (!SymN2I.lookup(Section.Signature, SymIdx) &&
!to_integer(Section.Signature, SymIdx)) {
WithColor::error() << "Unknown symbol referenced: '" << Section.Signature
<< "' at YAML section '" << Section.Name << "'.\n";
return false;
}
SHeader.sh_info = SymIdx;
raw_ostream &OS =
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
for (const ELFYAML::SectionOrType &Member : Section.Members) {
unsigned int SectionIndex = 0;
if (Member.sectionNameOrType == "GRP_COMDAT")
SectionIndex = llvm::ELF::GRP_COMDAT;
else if (!convertSectionIndex(SN2I, Section.Name, Member.sectionNameOrType,
SectionIndex))
return false;
support::endian::write<uint32_t>(OS, SectionIndex, ELFT::TargetEndianness);
}
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::SymverSection &Section,
ContiguousBlobAccumulator &CBA) {
raw_ostream &OS =
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
for (uint16_t Version : Section.Entries)
support::endian::write<uint16_t>(OS, Version, ELFT::TargetEndianness);
SHeader.sh_entsize = 2;
SHeader.sh_size = Section.Entries.size() * SHeader.sh_entsize;
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::VerdefSection &Section,
ContiguousBlobAccumulator &CBA) {
typedef typename ELFT::Verdef Elf_Verdef;
typedef typename ELFT::Verdaux Elf_Verdaux;
raw_ostream &OS =
CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
uint64_t AuxCnt = 0;
for (size_t I = 0; I < Section.Entries.size(); ++I) {
const ELFYAML::VerdefEntry &E = Section.Entries[I];
Elf_Verdef VerDef;
VerDef.vd_version = E.Version;
VerDef.vd_flags = E.Flags;
VerDef.vd_ndx = E.VersionNdx;
VerDef.vd_hash = E.Hash;
VerDef.vd_aux = sizeof(Elf_Verdef);
VerDef.vd_cnt = E.VerNames.size();
if (I == Section.Entries.size() - 1)
VerDef.vd_next = 0;
else
VerDef.vd_next =
sizeof(Elf_Verdef) + E.VerNames.size() * sizeof(Elf_Verdaux);
OS.write((const char *)&VerDef, sizeof(Elf_Verdef));
for (size_t J = 0; J < E.VerNames.size(); ++J, ++AuxCnt) {
Elf_Verdaux VernAux;
VernAux.vda_name = DotDynstr.getOffset(E.VerNames[J]);
if (J == E.VerNames.size() - 1)
VernAux.vda_next = 0;
else
VernAux.vda_next = sizeof(Elf_Verdaux);
OS.write((const char *)&VernAux, sizeof(Elf_Verdaux));
}
}
SHeader.sh_size = Section.Entries.size() * sizeof(Elf_Verdef) +
AuxCnt * sizeof(Elf_Verdaux);
SHeader.sh_info = Section.Info;
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::VerneedSection &Section,
ContiguousBlobAccumulator &CBA) {
typedef typename ELFT::Verneed Elf_Verneed;
typedef typename ELFT::Vernaux Elf_Vernaux;
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
uint64_t AuxCnt = 0;
for (size_t I = 0; I < Section.VerneedV.size(); ++I) {
const ELFYAML::VerneedEntry &VE = Section.VerneedV[I];
Elf_Verneed VerNeed;
VerNeed.vn_version = VE.Version;
VerNeed.vn_file = DotDynstr.getOffset(VE.File);
if (I == Section.VerneedV.size() - 1)
VerNeed.vn_next = 0;
else
VerNeed.vn_next =
sizeof(Elf_Verneed) + VE.AuxV.size() * sizeof(Elf_Vernaux);
VerNeed.vn_cnt = VE.AuxV.size();
VerNeed.vn_aux = sizeof(Elf_Verneed);
OS.write((const char *)&VerNeed, sizeof(Elf_Verneed));
for (size_t J = 0; J < VE.AuxV.size(); ++J, ++AuxCnt) {
const ELFYAML::VernauxEntry &VAuxE = VE.AuxV[J];
Elf_Vernaux VernAux;
VernAux.vna_hash = VAuxE.Hash;
VernAux.vna_flags = VAuxE.Flags;
VernAux.vna_other = VAuxE.Other;
VernAux.vna_name = DotDynstr.getOffset(VAuxE.Name);
if (J == VE.AuxV.size() - 1)
VernAux.vna_next = 0;
else
VernAux.vna_next = sizeof(Elf_Vernaux);
OS.write((const char *)&VernAux, sizeof(Elf_Vernaux));
}
}
SHeader.sh_size = Section.VerneedV.size() * sizeof(Elf_Verneed) +
AuxCnt * sizeof(Elf_Vernaux);
SHeader.sh_info = Section.Info;
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::MipsABIFlags &Section,
ContiguousBlobAccumulator &CBA) {
assert(Section.Type == llvm::ELF::SHT_MIPS_ABIFLAGS &&
"Section type is not SHT_MIPS_ABIFLAGS");
object::Elf_Mips_ABIFlags<ELFT> Flags;
zero(Flags);
SHeader.sh_entsize = sizeof(Flags);
SHeader.sh_size = SHeader.sh_entsize;
auto &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
Flags.version = Section.Version;
Flags.isa_level = Section.ISALevel;
Flags.isa_rev = Section.ISARevision;
Flags.gpr_size = Section.GPRSize;
Flags.cpr1_size = Section.CPR1Size;
Flags.cpr2_size = Section.CPR2Size;
Flags.fp_abi = Section.FpABI;
Flags.isa_ext = Section.ISAExtension;
Flags.ases = Section.ASEs;
Flags.flags1 = Section.Flags1;
Flags.flags2 = Section.Flags2;
OS.write((const char *)&Flags, sizeof(Flags));
return true;
}
template <class ELFT>
bool ELFState<ELFT>::writeSectionContent(Elf_Shdr &SHeader,
const ELFYAML::DynamicSection &Section,
ContiguousBlobAccumulator &CBA) {
typedef typename ELFT::uint uintX_t;
assert(Section.Type == llvm::ELF::SHT_DYNAMIC &&
"Section type is not SHT_DYNAMIC");
if (!Section.Entries.empty() && Section.Content) {
WithColor::error()
<< "Cannot specify both raw content and explicit entries "
"for dynamic section '"
<< Section.Name << "'.\n";
return false;
}
if (Section.Content)
SHeader.sh_size = Section.Content->binary_size();
else
SHeader.sh_size = 2 * sizeof(uintX_t) * Section.Entries.size();
if (Section.EntSize)
SHeader.sh_entsize = *Section.EntSize;
else
SHeader.sh_entsize = sizeof(Elf_Dyn);
raw_ostream &OS = CBA.getOSAndAlignedOffset(SHeader.sh_offset, SHeader.sh_addralign);
for (const ELFYAML::DynamicEntry &DE : Section.Entries) {
support::endian::write<uintX_t>(OS, DE.Tag, ELFT::TargetEndianness);
support::endian::write<uintX_t>(OS, DE.Val, ELFT::TargetEndianness);
}
if (Section.Content)
Section.Content->writeAsBinary(OS);
return true;
}
template <class ELFT> bool ELFState<ELFT>::buildSectionIndex() {
for (unsigned i = 0, e = Doc.Sections.size(); i != e; ++i) {
StringRef Name = Doc.Sections[i]->Name;
DotShStrtab.add(dropUniqueSuffix(Name));
// "+ 1" to take into account the SHT_NULL entry.
if (!SN2I.addName(Name, i + 1)) {
WithColor::error() << "Repeated section name: '" << Name
<< "' at YAML section number " << i << ".\n";
return false;
}
}
auto SecNo = 1 + Doc.Sections.size();
// Add special sections after input sections, if necessary.
for (StringRef Name : implicitSectionNames())
if (SN2I.addName(Name, SecNo)) {
// Account for this section, since it wasn't in the Doc
++SecNo;
DotShStrtab.add(Name);
}
DotShStrtab.finalize();
return true;
}
template <class ELFT>
bool ELFState<ELFT>::buildSymbolIndex(ArrayRef<ELFYAML::Symbol> Symbols) {
bool GlobalSymbolSeen = false;
std::size_t I = 0;
for (const auto &Sym : Symbols) {
++I;
StringRef Name = Sym.Name;
if (Sym.Binding.value == ELF::STB_LOCAL && GlobalSymbolSeen) {
WithColor::error() << "Local symbol '" + Name +
"' after global in Symbols list.\n";
return false;
}
if (Sym.Binding.value != ELF::STB_LOCAL)
GlobalSymbolSeen = true;
if (!Name.empty() && !SymN2I.addName(Name, I)) {
WithColor::error() << "Repeated symbol name: '" << Name << "'.\n";
return false;
}
}
return true;
}
template <class ELFT> void ELFState<ELFT>::finalizeStrings() {
// Add the regular symbol names to .strtab section.
for (const ELFYAML::Symbol &Sym : Doc.Symbols)
DotStrtab.add(dropUniqueSuffix(Sym.Name));
DotStrtab.finalize();
// Add the dynamic symbol names to .dynstr section.
for (const ELFYAML::Symbol &Sym : Doc.DynamicSymbols)
DotDynstr.add(dropUniqueSuffix(Sym.Name));
// SHT_GNU_verdef and SHT_GNU_verneed sections might also
// add strings to .dynstr section.
for (const std::unique_ptr<ELFYAML::Section> &Sec : Doc.Sections) {
if (auto VerNeed = dyn_cast<ELFYAML::VerneedSection>(Sec.get())) {
for (const ELFYAML::VerneedEntry &VE : VerNeed->VerneedV) {
DotDynstr.add(VE.File);
for (const ELFYAML::VernauxEntry &Aux : VE.AuxV)
DotDynstr.add(Aux.Name);
}
} else if (auto VerDef = dyn_cast<ELFYAML::VerdefSection>(Sec.get())) {
for (const ELFYAML::VerdefEntry &E : VerDef->Entries)
for (StringRef Name : E.VerNames)
DotDynstr.add(Name);
}
}
DotDynstr.finalize();
}
template <class ELFT>
int ELFState<ELFT>::writeELF(raw_ostream &OS, const ELFYAML::Object &Doc) {
ELFState<ELFT> State(Doc);
// Finalize .strtab and .dynstr sections. We do that early because want to
// finalize the string table builders before writing the content of the
// sections that might want to use them.
State.finalizeStrings();
if (!State.buildSectionIndex())
return 1;
if (!State.buildSymbolIndex(Doc.Symbols))
return 1;
Elf_Ehdr Header;
State.initELFHeader(Header);
// TODO: Flesh out section header support.
std::vector<Elf_Phdr> PHeaders;
State.initProgramHeaders(PHeaders);
// XXX: This offset is tightly coupled with the order that we write
// things to `OS`.
const size_t SectionContentBeginOffset = Header.e_ehsize +
Header.e_phentsize * Header.e_phnum +
Header.e_shentsize * Header.e_shnum;
ContiguousBlobAccumulator CBA(SectionContentBeginOffset);
std::vector<Elf_Shdr> SHeaders;
if (!State.initSectionHeaders(State, SHeaders, CBA))
return 1;
// Now we can decide segment offsets
State.setProgramHeaderLayout(PHeaders, SHeaders);
OS.write((const char *)&Header, sizeof(Header));
writeArrayData(OS, makeArrayRef(PHeaders));
writeArrayData(OS, makeArrayRef(SHeaders));
CBA.writeBlobToStream(OS);
return 0;
}
template <class ELFT>
std::vector<StringRef> ELFState<ELFT>::implicitSectionNames() const {
if (Doc.DynamicSymbols.empty())
return {".symtab", ".strtab", ".shstrtab"};
return {".symtab", ".strtab", ".shstrtab", ".dynsym", ".dynstr"};
}
int yaml2elf(llvm::ELFYAML::Object &Doc, raw_ostream &Out) {
bool IsLE = Doc.Header.Data == ELFYAML::ELF_ELFDATA(ELF::ELFDATA2LSB);
bool Is64Bit = Doc.Header.Class == ELFYAML::ELF_ELFCLASS(ELF::ELFCLASS64);
if (Is64Bit) {
if (IsLE)
return ELFState<object::ELF64LE>::writeELF(Out, Doc);
return ELFState<object::ELF64BE>::writeELF(Out, Doc);
}
if (IsLE)
return ELFState<object::ELF32LE>::writeELF(Out, Doc);
return ELFState<object::ELF32BE>::writeELF(Out, Doc);
}