llvm-mirror/lib/VMCore/AsmWriter.cpp
Vikram S. Adve ca1f1c58e1 Added support to write out ConstantExpr nodes.
Also, avoid asserting out when writing out an invalid tree
since the assembly writer is used when debugging.

llvm-svn: 2902
2002-07-14 23:14:45 +00:00

917 lines
30 KiB
C++

//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
//
// This library implements the functionality defined in llvm/Assembly/Writer.h
//
// Note that these routines must be extremely tolerant of various errors in the
// LLVM code, because of of the primary uses of it is for debugging
// transformations.
//
//===----------------------------------------------------------------------===//
#include "llvm/Assembly/CachedWriter.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/SlotCalculator.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Instruction.h"
#include "llvm/Module.h"
#include "llvm/Constants.h"
#include "llvm/iMemory.h"
#include "llvm/iTerminators.h"
#include "llvm/iPHINode.h"
#include "llvm/iOther.h"
#include "llvm/SymbolTable.h"
#include "Support/StringExtras.h"
#include "Support/STLExtras.h"
#include <algorithm>
using std::string;
using std::map;
using std::vector;
using std::ostream;
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
map<const Type *, string> &TypeTable,
SlotCalculator *Table);
static const Module *getModuleFromVal(const Value *V) {
if (const Argument *MA = dyn_cast<const Argument>(V))
return MA->getParent() ? MA->getParent()->getParent() : 0;
else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V))
return BB->getParent() ? BB->getParent()->getParent() : 0;
else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
const Function *M = I->getParent() ? I->getParent()->getParent() : 0;
return M ? M->getParent() : 0;
} else if (const GlobalValue *GV = dyn_cast<const GlobalValue>(V))
return GV->getParent();
return 0;
}
static SlotCalculator *createSlotCalculator(const Value *V) {
assert(!isa<Type>(V) && "Can't create an SC for a type!");
if (const Argument *FA = dyn_cast<const Argument>(V)) {
return new SlotCalculator(FA->getParent(), true);
} else if (const Instruction *I = dyn_cast<const Instruction>(V)) {
return new SlotCalculator(I->getParent()->getParent(), true);
} else if (const BasicBlock *BB = dyn_cast<const BasicBlock>(V)) {
return new SlotCalculator(BB->getParent(), true);
} else if (const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V)){
return new SlotCalculator(GV->getParent(), true);
} else if (const Function *Func = dyn_cast<const Function>(V)) {
return new SlotCalculator(Func, true);
}
return 0;
}
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
static void fillTypeNameTable(const Module *M,
map<const Type *, string> &TypeNames) {
if (M && M->hasSymbolTable()) {
const SymbolTable *ST = M->getSymbolTable();
SymbolTable::const_iterator PI = ST->find(Type::TypeTy);
if (PI != ST->end()) {
SymbolTable::type_const_iterator I = PI->second.begin();
for (; I != PI->second.end(); ++I) {
// As a heuristic, don't insert pointer to primitive types, because
// they are used too often to have a single useful name.
//
const Type *Ty = cast<const Type>(I->second);
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
TypeNames.insert(std::make_pair(Ty, "%"+I->first));
}
}
}
}
static string calcTypeName(const Type *Ty, vector<const Type *> &TypeStack,
map<const Type *, string> &TypeNames) {
if (Ty->isPrimitiveType()) return Ty->getDescription(); // Base case
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return I->second;
// Check to see if the Type is already on the stack...
unsigned Slot = 0, CurSize = TypeStack.size();
while (Slot < CurSize && TypeStack[Slot] != Ty) ++Slot; // Scan for type
// This is another base case for the recursion. In this case, we know
// that we have looped back to a type that we have previously visited.
// Generate the appropriate upreference to handle this.
//
if (Slot < CurSize)
return "\\" + utostr(CurSize-Slot); // Here's the upreference
TypeStack.push_back(Ty); // Recursive case: Add us to the stack..
string Result;
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *FTy = cast<const FunctionType>(Ty);
Result = calcTypeName(FTy->getReturnType(), TypeStack, TypeNames) + " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Result += ", ";
Result += "...";
}
Result += ")";
break;
}
case Type::StructTyID: {
const StructType *STy = cast<const StructType>(Ty);
Result = "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Result += ", ";
Result += calcTypeName(*I, TypeStack, TypeNames);
}
Result += " }";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeStack, TypeNames) + "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
Result = "[" + utostr(ATy->getNumElements()) + " x ";
Result += calcTypeName(ATy->getElementType(), TypeStack, TypeNames) + "]";
break;
}
default:
Result = "<unrecognized-type>";
}
TypeStack.pop_back(); // Remove self from stack...
return Result;
}
// printTypeInt - The internal guts of printing out a type that has a
// potentially named portion.
//
static ostream &printTypeInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
//
if (Ty->isPrimitiveType()) return Out << Ty->getDescription();
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
vector<const Type *> TypeStack;
string TypeName = calcTypeName(Ty, TypeStack, TypeNames);
TypeNames.insert(std::make_pair(Ty, TypeName));//Cache type name for later use
return Out << TypeName;
}
// WriteTypeSymbolic - This attempts to write the specified type as a symbolic
// type, iff there is an entry in the modules symbol table for the specified
// type or one of it's component types. This is slower than a simple x << Type;
//
ostream &WriteTypeSymbolic(ostream &Out, const Type *Ty, const Module *M) {
Out << " ";
// If they want us to print out a type, attempt to make it symbolic if there
// is a symbol table in the module...
if (M && M->hasSymbolTable()) {
map<const Type *, string> TypeNames;
fillTypeNameTable(M, TypeNames);
return printTypeInt(Out, Ty, TypeNames);
} else {
return Out << Ty->getDescription();
}
}
static void WriteConstantInt(ostream &Out, const Constant *CV, bool PrintName,
map<const Type *, string> &TypeTable,
SlotCalculator *Table) {
if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
Out << (CB == ConstantBool::True ? "true" : "false");
} else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV)) {
Out << CI->getValue();
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
// We would like to output the FP constant value in exponential notation,
// but we cannot do this if doing so will lose precision. Check here to
// make sure that we only output it in exponential format if we can parse
// the value back and get the same value.
//
std::string StrVal = ftostr(CFP->getValue());
// Check to make sure that the stringized number is not some string like
// "Inf" or NaN, that atof will accept, but the lexer will not. Check that
// the string matches the "[-+]?[0-9]" regex.
//
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
((StrVal[0] == '-' || StrVal[0] == '+') &&
(StrVal[0] >= '0' && StrVal[0] <= '9')))
// Reparse stringized version!
if (atof(StrVal.c_str()) == CFP->getValue()) {
Out << StrVal; return;
}
// Otherwise we could not reparse it to exactly the same value, so we must
// output the string in hexadecimal format!
//
// Behave nicely in the face of C TBAA rules... see:
// http://www.nullstone.com/htmls/category/aliastyp.htm
//
double Val = CFP->getValue();
char *Ptr = (char*)&Val;
assert(sizeof(double) == sizeof(uint64_t) && sizeof(double) == 8 &&
"assuming that double is 64 bits!");
Out << "0x" << utohexstr(*(uint64_t*)Ptr);
} else if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
// As a special case, print the array as a string if it is an array of
// ubytes or an array of sbytes with positive values.
//
const Type *ETy = CA->getType()->getElementType();
bool isString = (ETy == Type::SByteTy || ETy == Type::UByteTy);
if (ETy == Type::SByteTy)
for (unsigned i = 0; i < CA->getNumOperands(); ++i)
if (cast<ConstantSInt>(CA->getOperand(i))->getValue() < 0) {
isString = false;
break;
}
if (isString) {
Out << "c\"";
for (unsigned i = 0; i < CA->getNumOperands(); ++i) {
unsigned char C = (ETy == Type::SByteTy) ?
(unsigned char)cast<ConstantSInt>(CA->getOperand(i))->getValue() :
(unsigned char)cast<ConstantUInt>(CA->getOperand(i))->getValue();
if (isprint(C)) {
Out << C;
} else {
Out << '\\'
<< (char) ((C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'))
<< (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
}
}
Out << "\"";
} else { // Cannot output in string format...
Out << "[";
if (CA->getNumOperands()) {
Out << " ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(0),
PrintName, TypeTable, Table);
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
Out << ", ";
printTypeInt(Out, ETy, TypeTable);
WriteAsOperandInternal(Out, CA->getOperand(i), PrintName,
TypeTable, Table);
}
}
Out << " ]";
}
} else if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
Out << "{";
if (CS->getNumOperands()) {
Out << " ";
printTypeInt(Out, CS->getOperand(0)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(0),
PrintName, TypeTable, Table);
for (unsigned i = 1; i < CS->getNumOperands(); i++) {
Out << ", ";
printTypeInt(Out, CS->getOperand(i)->getType(), TypeTable);
WriteAsOperandInternal(Out, CS->getOperand(i),
PrintName, TypeTable, Table);
}
}
Out << " }";
} else if (isa<ConstantPointerNull>(CV)) {
Out << "null";
} else if (const ConstantPointerRef *PR = dyn_cast<ConstantPointerRef>(CV)) {
const GlobalValue *V = PR->getValue();
if (V->hasName()) {
Out << "%" << V->getName();
} else if (Table) {
int Slot = Table->getValSlot(V);
if (Slot >= 0)
Out << "%" << Slot;
else
Out << "<pointer reference badref>";
} else {
Out << "<pointer reference without context info>";
}
} else if (const ConstantExpr *CE=dyn_cast<ConstantExpr>(CV)) {
Out << CE->getOpcodeName();
bool isGEP = CE->getOpcode() == Instruction::GetElementPtr;
Out << (isGEP? " (" : " ");
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
printTypeInt(Out, (*OI)->getType(), TypeTable);
WriteAsOperandInternal(Out, *OI, PrintName, TypeTable, Table);
if (OI+1 != CE->op_end())
Out << ", "; // ((isGEP && OI == CE->op_begin())? " " : ", ");
}
if (isGEP)
Out << ")";
} else {
Out << "<placeholder or erroneous Constant>";
}
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
static void WriteAsOperandInternal(ostream &Out, const Value *V, bool PrintName,
map<const Type *, string> &TypeTable,
SlotCalculator *Table) {
Out << " ";
if (PrintName && V->hasName()) {
Out << "%" << V->getName();
} else {
if (const Constant *CV = dyn_cast<const Constant>(V)) {
WriteConstantInt(Out, CV, PrintName, TypeTable, Table);
} else {
int Slot;
if (Table) {
Slot = Table->getValSlot(V);
} else {
if (const Type *Ty = dyn_cast<const Type>(V)) {
Out << Ty->getDescription();
return;
}
Table = createSlotCalculator(V);
if (Table == 0) { Out << "BAD VALUE TYPE!"; return; }
Slot = Table->getValSlot(V);
delete Table;
}
if (Slot >= 0) Out << "%" << Slot;
else if (PrintName)
Out << "<badref>"; // Not embeded into a location?
}
}
}
// WriteAsOperand - Write the name of the specified value out to the specified
// ostream. This can be useful when you just want to print int %reg126, not the
// whole instruction that generated it.
//
ostream &WriteAsOperand(ostream &Out, const Value *V, bool PrintType,
bool PrintName, const Module *Context) {
map<const Type *, string> TypeNames;
if (Context == 0) Context = getModuleFromVal(V);
if (Context && Context->hasSymbolTable())
fillTypeNameTable(Context, TypeNames);
if (PrintType)
printTypeInt(Out, V->getType(), TypeNames);
WriteAsOperandInternal(Out, V, PrintName, TypeNames, 0);
return Out;
}
class AssemblyWriter {
ostream &Out;
SlotCalculator &Table;
const Module *TheModule;
map<const Type *, string> TypeNames;
public:
inline AssemblyWriter(ostream &o, SlotCalculator &Tab, const Module *M)
: Out(o), Table(Tab), TheModule(M) {
// If the module has a symbol table, take all global types and stuff their
// names into the TypeNames map.
//
fillTypeNameTable(M, TypeNames);
}
inline void write(const Module *M) { printModule(M); }
inline void write(const GlobalVariable *G) { printGlobal(G); }
inline void write(const Function *F) { printFunction(F); }
inline void write(const BasicBlock *BB) { printBasicBlock(BB); }
inline void write(const Instruction *I) { printInstruction(*I); }
inline void write(const Constant *CPV) { printConstant(CPV); }
inline void write(const Type *Ty) { printType(Ty); }
void writeOperand(const Value *Op, bool PrintType, bool PrintName = true);
private :
void printModule(const Module *M);
void printSymbolTable(const SymbolTable &ST);
void printConstant(const Constant *CPV);
void printGlobal(const GlobalVariable *GV);
void printFunction(const Function *F);
void printArgument(const Argument *FA);
void printBasicBlock(const BasicBlock *BB);
void printInstruction(const Instruction &I);
// printType - Go to extreme measures to attempt to print out a short,
// symbolic version of a type name.
//
ostream &printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
}
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
ostream &printTypeAtLeastOneLevel(const Type *Ty);
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
void printInfoComment(const Value &V);
};
// printTypeAtLeastOneLevel - Print out one level of the possibly complex type
// without considering any symbolic types that we may have equal to it.
//
ostream &AssemblyWriter::printTypeAtLeastOneLevel(const Type *Ty) {
if (const FunctionType *FTy = dyn_cast<FunctionType>(Ty)) {
printType(FTy->getReturnType()) << " (";
for (FunctionType::ParamTypes::const_iterator
I = FTy->getParamTypes().begin(),
E = FTy->getParamTypes().end(); I != E; ++I) {
if (I != FTy->getParamTypes().begin())
Out << ", ";
printType(*I);
}
if (FTy->isVarArg()) {
if (!FTy->getParamTypes().empty()) Out << ", ";
Out << "...";
}
Out << ")";
} else if (const StructType *STy = dyn_cast<StructType>(Ty)) {
Out << "{ ";
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
if (I != STy->getElementTypes().begin())
Out << ", ";
printType(*I);
}
Out << " }";
} else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
printType(PTy->getElementType()) << "*";
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
Out << "[" << ATy->getNumElements() << " x ";
printType(ATy->getElementType()) << "]";
} else if (const OpaqueType *OTy = dyn_cast<OpaqueType>(Ty)) {
Out << OTy->getDescription();
} else {
if (!Ty->isPrimitiveType())
Out << "<unknown derived type>";
printType(Ty);
}
return Out;
}
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType,
bool PrintName) {
if (PrintType) { Out << " "; printType(Operand->getType()); }
WriteAsOperandInternal(Out, Operand, PrintName, TypeNames, &Table);
}
void AssemblyWriter::printModule(const Module *M) {
// Loop over the symbol table, emitting all named constants...
if (M->hasSymbolTable())
printSymbolTable(*M->getSymbolTable());
for (Module::const_giterator I = M->gbegin(), E = M->gend(); I != E; ++I)
printGlobal(I);
Out << "\nimplementation ; Functions:\n";
// Output all of the functions...
for (Module::const_iterator I = M->begin(), E = M->end(); I != E; ++I)
printFunction(I);
}
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
if (GV->hasName()) Out << "%" << GV->getName() << " = ";
if (GV->hasInternalLinkage()) Out << "internal ";
if (!GV->hasInitializer()) Out << "uninitialized ";
Out << (GV->isConstant() ? "constant " : "global ");
printType(GV->getType()->getElementType());
if (GV->hasInitializer())
writeOperand(GV->getInitializer(), false, false);
printInfoComment(*GV);
Out << "\n";
}
// printSymbolTable - Run through symbol table looking for named constants
// if a named constant is found, emit it's declaration...
//
void AssemblyWriter::printSymbolTable(const SymbolTable &ST) {
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const Constant *CPV = dyn_cast<const Constant>(V)) {
printConstant(CPV);
} else if (const Type *Ty = dyn_cast<const Type>(V)) {
Out << "\t%" << I->first << " = type ";
// Make sure we print out at least one level of the type structure, so
// that we do not get %FILE = type %FILE
//
printTypeAtLeastOneLevel(Ty) << "\n";
}
}
}
}
// printConstant - Print out a constant pool entry...
//
void AssemblyWriter::printConstant(const Constant *CPV) {
// Don't print out unnamed constants, they will be inlined
if (!CPV->hasName()) return;
// Print out name...
Out << "\t%" << CPV->getName() << " =";
// Write the value out now...
writeOperand(CPV, true, false);
printInfoComment(*CPV);
Out << "\n";
}
// printFunction - Print all aspects of a function.
//
void AssemblyWriter::printFunction(const Function *F) {
// Print out the return type and name...
Out << "\n" << (F->isExternal() ? "declare " : "")
<< (F->hasInternalLinkage() ? "internal " : "");
printType(F->getReturnType()) << " %" << F->getName() << "(";
Table.incorporateFunction(F);
// Loop over the arguments, printing them...
const FunctionType *FT = F->getFunctionType();
if (!F->isExternal()) {
for(Function::const_aiterator I = F->abegin(), E = F->aend(); I != E; ++I)
printArgument(I);
} else {
// Loop over the arguments, printing them...
for (FunctionType::ParamTypes::const_iterator I = FT->getParamTypes().begin(),
E = FT->getParamTypes().end(); I != E; ++I) {
if (I != FT->getParamTypes().begin()) Out << ", ";
printType(*I);
}
}
// Finish printing arguments...
if (FT->isVarArg()) {
if (FT->getParamTypes().size()) Out << ", ";
Out << "..."; // Output varargs portion of signature!
}
Out << ")";
if (F->isExternal()) {
Out << "\n";
} else {
Out << " {";
// Output all of its basic blocks... for the function
for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
printBasicBlock(I);
Out << "}\n";
}
Table.purgeFunction();
}
// printArgument - This member is called for every argument that
// is passed into the function. Simply print it out
//
void AssemblyWriter::printArgument(const Argument *Arg) {
// Insert commas as we go... the first arg doesn't get a comma
if (Arg != &Arg->getParent()->afront()) Out << ", ";
// Output type...
printType(Arg->getType());
// Output name, if available...
if (Arg->hasName())
Out << " %" << Arg->getName();
else if (Table.getValSlot(Arg) < 0)
Out << "<badref>";
}
// printBasicBlock - This member is called for each basic block in a methd.
//
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
if (BB->hasName()) { // Print out the label if it exists...
Out << "\n" << BB->getName() << ":\t\t\t\t\t;[#uses="
<< BB->use_size() << "]"; // Output # uses
} else if (!BB->use_empty()) { // Don't print block # of no uses...
int Slot = Table.getValSlot(BB);
Out << "\n; <label>:";
if (Slot >= 0)
Out << Slot; // Extra newline seperates out label's
else
Out << "<badref>";
Out << "\t\t\t\t\t;[#uses=" << BB->use_size() << "]"; // Output # uses
}
Out << "\n";
// Output all of the instructions in the basic block...
for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
printInstruction(*I);
}
// printInfoComment - Print a little comment after the instruction indicating
// which slot it occupies.
//
void AssemblyWriter::printInfoComment(const Value &V) {
if (V.getType() != Type::VoidTy) {
Out << "\t\t; <";
printType(V.getType()) << ">";
if (!V.hasName()) {
int Slot = Table.getValSlot(&V); // Print out the def slot taken...
if (Slot >= 0) Out << ":" << Slot;
else Out << ":<badref>";
}
Out << " [#uses=" << V.use_size() << "]"; // Output # uses
}
}
// printInstruction - This member is called for each Instruction in a methd.
//
void AssemblyWriter::printInstruction(const Instruction &I) {
Out << "\t";
// Print out name if it exists...
if (I.hasName())
Out << "%" << I.getName() << " = ";
// Print out the opcode...
Out << I.getOpcodeName();
// Print out the type of the operands...
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : 0;
// Special case conditional branches to swizzle the condition out to the front
if (isa<BranchInst>(I) && I.getNumOperands() > 1) {
writeOperand(I.getOperand(2), true);
Out << ",";
writeOperand(Operand, true);
Out << ",";
writeOperand(I.getOperand(1), true);
} else if (isa<SwitchInst>(I)) {
// Special case switch statement to get formatting nice and correct...
writeOperand(Operand , true); Out << ",";
writeOperand(I.getOperand(1), true); Out << " [";
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; op += 2) {
Out << "\n\t\t";
writeOperand(I.getOperand(op ), true); Out << ",";
writeOperand(I.getOperand(op+1), true);
}
Out << "\n\t]";
} else if (isa<PHINode>(I)) {
Out << " ";
printType(I.getType());
Out << " ";
for (unsigned op = 0, Eop = I.getNumOperands(); op < Eop; op += 2) {
if (op) Out << ", ";
Out << "[";
writeOperand(I.getOperand(op ), false); Out << ",";
writeOperand(I.getOperand(op+1), false); Out << " ]";
}
} else if (isa<ReturnInst>(I) && !Operand) {
Out << " void";
} else if (isa<CallInst>(I)) {
const PointerType *PTy = dyn_cast<PointerType>(Operand->getType());
const FunctionType*MTy = PTy ? dyn_cast<FunctionType>(PTy->getElementType()):0;
const Type *RetTy = MTy ? MTy->getReturnType() : 0;
// If possible, print out the short form of the call instruction, but we can
// only do this if the first argument is a pointer to a nonvararg function,
// and if the value returned is not a pointer to a function.
//
if (RetTy && MTy && !MTy->isVarArg() &&
(!isa<PointerType>(RetTy) ||
!isa<FunctionType>(cast<PointerType>(RetTy)))) {
Out << " "; printType(RetTy);
writeOperand(Operand, false);
} else {
writeOperand(Operand, true);
}
Out << "(";
if (I.getNumOperands() > 1) writeOperand(I.getOperand(1), true);
for (unsigned op = 2, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I.getOperand(op), true);
}
Out << " )";
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
// TODO: Should try to print out short form of the Invoke instruction
writeOperand(Operand, true);
Out << "(";
if (I.getNumOperands() > 3) writeOperand(I.getOperand(3), true);
for (unsigned op = 4, Eop = I.getNumOperands(); op < Eop; ++op) {
Out << ",";
writeOperand(I.getOperand(op), true);
}
Out << " )\n\t\t\tto";
writeOperand(II->getNormalDest(), true);
Out << " except";
writeOperand(II->getExceptionalDest(), true);
} else if (const AllocationInst *AI = dyn_cast<AllocationInst>(&I)) {
Out << " ";
printType(AI->getType()->getElementType());
if (AI->isArrayAllocation()) {
Out << ",";
writeOperand(AI->getArraySize(), true);
}
} else if (isa<CastInst>(I)) {
if (Operand) writeOperand(Operand, true);
Out << " to ";
printType(I.getType());
} else if (Operand) { // Print the normal way...
// PrintAllTypes - Instructions who have operands of all the same type
// omit the type from all but the first operand. If the instruction has
// different type operands (for example br), then they are all printed.
bool PrintAllTypes = false;
const Type *TheType = Operand->getType();
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
Operand = I.getOperand(i);
if (Operand->getType() != TheType) {
PrintAllTypes = true; // We have differing types! Print them all!
break;
}
}
// Shift Left & Right print both types even for Ubyte LHS
if (isa<ShiftInst>(I)) PrintAllTypes = true;
if (!PrintAllTypes) {
Out << " ";
printType(I.getOperand(0)->getType());
}
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
if (i) Out << ",";
writeOperand(I.getOperand(i), PrintAllTypes);
}
}
printInfoComment(I);
Out << "\n";
}
//===----------------------------------------------------------------------===//
// External Interface declarations
//===----------------------------------------------------------------------===//
void Module::print(std::ostream &o) const {
SlotCalculator SlotTable(this, true);
AssemblyWriter W(o, SlotTable, this);
W.write(this);
}
void GlobalVariable::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable, getParent());
W.write(this);
}
void Function::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable, getParent());
W.write(this);
}
void BasicBlock::print(std::ostream &o) const {
SlotCalculator SlotTable(getParent(), true);
AssemblyWriter W(o, SlotTable,
getParent() ? getParent()->getParent() : 0);
W.write(this);
}
void Instruction::print(std::ostream &o) const {
const Function *F = getParent() ? getParent()->getParent() : 0;
SlotCalculator SlotTable(F, true);
AssemblyWriter W(o, SlotTable, F ? F->getParent() : 0);
W.write(this);
}
void Constant::print(std::ostream &o) const {
if (this == 0) { o << "<null> constant value\n"; return; }
o << " " << getType()->getDescription() << " ";
map<const Type *, string> TypeTable;
WriteConstantInt(o, this, false, TypeTable, 0);
}
void Type::print(std::ostream &o) const {
if (this == 0)
o << "<null Type>";
else
o << getDescription();
}
void Argument::print(std::ostream &o) const {
o << getType() << " " << getName();
}
void Value::dump() const { print(std::cerr); }
//===----------------------------------------------------------------------===//
// CachedWriter Class Implementation
//===----------------------------------------------------------------------===//
void CachedWriter::setModule(const Module *M) {
delete SC; delete AW;
if (M) {
SC = new SlotCalculator(M, true);
AW = new AssemblyWriter(Out, *SC, M);
} else {
SC = 0; AW = 0;
}
}
CachedWriter::~CachedWriter() {
delete AW;
delete SC;
}
CachedWriter &CachedWriter::operator<<(const Value *V) {
assert(AW && SC && "CachedWriter does not have a current module!");
switch (V->getValueType()) {
case Value::ConstantVal:
case Value::ArgumentVal: AW->writeOperand(V, true, true); break;
case Value::TypeVal: AW->write(cast<const Type>(V)); break;
case Value::InstructionVal: AW->write(cast<Instruction>(V)); break;
case Value::BasicBlockVal: AW->write(cast<BasicBlock>(V)); break;
case Value::FunctionVal: AW->write(cast<Function>(V)); break;
case Value::GlobalVariableVal: AW->write(cast<GlobalVariable>(V)); break;
default: Out << "<unknown value type: " << V->getValueType() << ">"; break;
}
return *this;
}