llvm/lib/CodeGen/StrongPHIElimination.cpp

346 lines
11 KiB
C++
Raw Normal View History

//===- StrongPhiElimination.cpp - Eliminate PHI nodes by inserting copies -===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Owen Anderson and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions, using an intelligent copy-folding technique based on
// dominator information. This is technique is derived from:
//
// Budimlic, et al. Fast copy coalescing and live-range identification.
// In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language
// Design and Implementation (Berlin, Germany, June 17 - 19, 2002).
// PLDI '02. ACM, New York, NY, 25-32.
// DOI= http://doi.acm.org/10.1145/512529.512534
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "strongphielim"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/BreakCriticalMachineEdge.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
namespace {
struct VISIBILITY_HIDDEN StrongPHIElimination : public MachineFunctionPass {
static char ID; // Pass identification, replacement for typeid
StrongPHIElimination() : MachineFunctionPass((intptr_t)&ID) {}
bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequired<MachineDominatorTree>();
AU.addRequired<LiveVariables>();
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
preorder.clear();
maxpreorder.clear();
waiting.clear();
}
private:
struct DomForestNode {
private:
std::vector<DomForestNode*> children;
unsigned reg;
void addChild(DomForestNode* DFN) { children.push_back(DFN); }
public:
typedef std::vector<DomForestNode*>::iterator iterator;
DomForestNode(unsigned r, DomForestNode* parent) : reg(r) {
if (parent)
parent->addChild(this);
}
~DomForestNode() {
for (iterator I = begin(), E = end(); I != E; ++I)
delete *I;
}
inline unsigned getReg() { return reg; }
inline DomForestNode::iterator begin() { return children.begin(); }
inline DomForestNode::iterator end() { return children.end(); }
};
DenseMap<MachineBasicBlock*, unsigned> preorder;
DenseMap<MachineBasicBlock*, unsigned> maxpreorder;
DenseMap<MachineBasicBlock*, std::vector<MachineInstr*> > waiting;
void computeDFS(MachineFunction& MF);
void processBlock(MachineBasicBlock* MBB);
std::vector<DomForestNode*> computeDomForest(std::set<unsigned>& instrs);
void breakCriticalEdges(MachineFunction &Fn);
};
char StrongPHIElimination::ID = 0;
RegisterPass<StrongPHIElimination> X("strong-phi-node-elimination",
"Eliminate PHI nodes for register allocation, intelligently");
}
const PassInfo *llvm::StrongPHIEliminationID = X.getPassInfo();
/// computeDFS - Computes the DFS-in and DFS-out numbers of the dominator tree
/// of the given MachineFunction. These numbers are then used in other parts
/// of the PHI elimination process.
void StrongPHIElimination::computeDFS(MachineFunction& MF) {
SmallPtrSet<MachineDomTreeNode*, 8> frontier;
SmallPtrSet<MachineDomTreeNode*, 8> visited;
unsigned time = 0;
MachineDominatorTree& DT = getAnalysis<MachineDominatorTree>();
MachineDomTreeNode* node = DT.getRootNode();
std::vector<MachineDomTreeNode*> worklist;
worklist.push_back(node);
while (!worklist.empty()) {
MachineDomTreeNode* currNode = worklist.back();
if (!frontier.count(currNode)) {
frontier.insert(currNode);
++time;
preorder.insert(std::make_pair(currNode->getBlock(), time));
}
bool inserted = false;
for (MachineDomTreeNode::iterator I = node->begin(), E = node->end();
I != E; ++I)
if (!frontier.count(*I) && !visited.count(*I)) {
worklist.push_back(*I);
inserted = true;
break;
}
if (!inserted) {
frontier.erase(currNode);
visited.insert(currNode);
maxpreorder.insert(std::make_pair(currNode->getBlock(), time));
worklist.pop_back();
}
}
}
/// PreorderSorter - a helper class that is used to sort registers
/// according to the preorder number of their defining blocks
class PreorderSorter {
private:
DenseMap<MachineBasicBlock*, unsigned>& preorder;
LiveVariables& LV;
public:
PreorderSorter(DenseMap<MachineBasicBlock*, unsigned>& p,
LiveVariables& L) : preorder(p), LV(L) { }
bool operator()(unsigned A, unsigned B) {
if (A == B)
return false;
MachineBasicBlock* ABlock = LV.getVarInfo(A).DefInst->getParent();
MachineBasicBlock* BBlock = LV.getVarInfo(A).DefInst->getParent();
if (preorder[ABlock] < preorder[BBlock])
return true;
else if (preorder[ABlock] > preorder[BBlock])
return false;
assert(0 && "Error sorting by dominance!");
return false;
}
};
/// computeDomForest - compute the subforest of the DomTree corresponding
/// to the defining blocks of the registers in question
std::vector<StrongPHIElimination::DomForestNode*>
StrongPHIElimination::computeDomForest(std::set<unsigned>& regs) {
LiveVariables& LV = getAnalysis<LiveVariables>();
DomForestNode* VirtualRoot = new DomForestNode(0, 0);
maxpreorder.insert(std::make_pair((MachineBasicBlock*)0, ~0UL));
std::vector<unsigned> worklist;
worklist.reserve(regs.size());
for (std::set<unsigned>::iterator I = regs.begin(), E = regs.end();
I != E; ++I)
worklist.push_back(*I);
PreorderSorter PS(preorder, LV);
std::sort(worklist.begin(), worklist.end(), PS);
DomForestNode* CurrentParent = VirtualRoot;
std::vector<DomForestNode*> stack;
stack.push_back(VirtualRoot);
for (std::vector<unsigned>::iterator I = worklist.begin(), E = worklist.end();
I != E; ++I) {
unsigned pre = preorder[LV.getVarInfo(*I).DefInst->getParent()];
MachineBasicBlock* parentBlock =
LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
while (pre > maxpreorder[parentBlock]) {
stack.pop_back();
CurrentParent = stack.back();
parentBlock = LV.getVarInfo(CurrentParent->getReg()).DefInst->getParent();
}
DomForestNode* child = new DomForestNode(*I, CurrentParent);
stack.push_back(child);
CurrentParent = child;
}
std::vector<DomForestNode*> ret;
ret.insert(ret.end(), VirtualRoot->begin(), VirtualRoot->end());
return ret;
}
/// isLiveIn - helper method that determines, from a VarInfo, if a register
/// is live into a block
bool isLiveIn(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
if (V.AliveBlocks.test(MBB->getNumber()))
return true;
if (V.DefInst->getParent() != MBB &&
V.UsedBlocks.test(MBB->getNumber()))
return true;
return false;
}
/// isLiveOut - help method that determines, from a VarInfo, if a register is
/// live out of a block.
bool isLiveOut(LiveVariables::VarInfo& V, MachineBasicBlock* MBB) {
if (MBB == V.DefInst->getParent() ||
V.UsedBlocks.test(MBB->getNumber())) {
for (std::vector<MachineInstr*>::iterator I = V.Kills.begin(),
E = V.Kills.end(); I != E; ++I)
if ((*I)->getParent() == MBB)
return false;
return true;
}
return false;
}
/// processBlock - Eliminate PHIs in the given block
void StrongPHIElimination::processBlock(MachineBasicBlock* MBB) {
LiveVariables& LV = getAnalysis<LiveVariables>();
// Holds names that have been added to a set in any PHI within this block
// before the current one.
std::set<unsigned> ProcessedNames;
MachineBasicBlock::iterator P = MBB->begin();
while (P->getOpcode() == TargetInstrInfo::PHI) {
LiveVariables::VarInfo& PHIInfo = LV.getVarInfo(P->getOperand(0).getReg());
// Hold the names that are currently in the candidate set.
std::set<unsigned> PHIUnion;
std::set<MachineBasicBlock*> UnionedBlocks;
for (int i = P->getNumOperands() - 1; i >= 2; i-=2) {
unsigned SrcReg = P->getOperand(i-1).getReg();
LiveVariables::VarInfo& SrcInfo = LV.getVarInfo(SrcReg);
if (isLiveIn(SrcInfo, P->getParent())) {
// add a copy from a_i to p in Waiting[From[a_i]]
} else if (isLiveOut(PHIInfo, SrcInfo.DefInst->getParent())) {
// add a copy to Waiting[From[a_i]]
} else if (PHIInfo.DefInst->getOpcode() == TargetInstrInfo::PHI &&
isLiveIn(PHIInfo, SrcInfo.DefInst->getParent())) {
// add a copy to Waiting[From[a_i]]
} else if (ProcessedNames.count(SrcReg)) {
// add a copy to Waiting[From[a_i]]
} else if (UnionedBlocks.count(SrcInfo.DefInst->getParent())) {
// add a copy to Waiting[From[a_i]]
} else {
PHIUnion.insert(SrcReg);
UnionedBlocks.insert(SrcInfo.DefInst->getParent());
}
}
std::vector<StrongPHIElimination::DomForestNode*> DF =
computeDomForest(PHIUnion);
// DO STUFF HERE
ProcessedNames.insert(PHIUnion.begin(), PHIUnion.end());
++P;
}
}
/// breakCriticalEdges - Break critical edges coming into blocks with PHI
/// nodes, preserving dominator and livevariable info.
void StrongPHIElimination::breakCriticalEdges(MachineFunction &Fn) {
typedef std::pair<MachineBasicBlock*, MachineBasicBlock*> MBB_pair;
MachineDominatorTree& MDT = getAnalysis<MachineDominatorTree>();
LiveVariables& LV = getAnalysis<LiveVariables>();
// Find critical edges
std::vector<MBB_pair> criticals;
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
if (!I->empty() &&
I->begin()->getOpcode() == TargetInstrInfo::PHI &&
I->pred_size() > 1)
for (MachineBasicBlock::pred_iterator PI = I->pred_begin(),
PE = I->pred_end(); PI != PE; ++PI)
if ((*PI)->succ_size() > 1)
criticals.push_back(std::make_pair(*PI, I));
for (std::vector<MBB_pair>::iterator I = criticals.begin(),
E = criticals.end(); I != E; ++I) {
// Split the edge
MachineBasicBlock* new_bb = SplitCriticalMachineEdge(I->first, I->second);
// Update dominators
MDT.splitBlock(I->first);
// Update livevariables
for (unsigned var = 1024; var < Fn.getSSARegMap()->getLastVirtReg(); ++var)
if (isLiveOut(LV.getVarInfo(var), I->first))
LV.getVarInfo(var).AliveBlocks.set(new_bb->getNumber());
}
}
bool StrongPHIElimination::runOnMachineFunction(MachineFunction &Fn) {
breakCriticalEdges(Fn);
computeDFS(Fn);
for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
if (!I->empty() &&
I->begin()->getOpcode() == TargetInstrInfo::PHI)
processBlock(I);
return false;
}