llvm/lib/CodeGen/TwoAddressInstructionPass.cpp

162 lines
5.6 KiB
C++
Raw Normal View History

//===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the TwoAddress instruction pass which is used
// by most register allocators. Two-Address instructions are rewritten
// from:
//
// A = B op C
//
// to:
//
// A = B
// A op= C
//
// Note that if a register allocator chooses to use this pass, that it
// has to be capable of handling the non-SSA nature of these rewritten
// virtual registers.
//
// It is also worth noting that the duplicate operand of the two
// address instruction is removed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "twoaddrinstr"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Function.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
namespace {
Statistic<> numTwoAddressInstrs("twoaddressinstruction",
"Number of two-address instructions");
struct TwoAddressInstructionPass : public MachineFunctionPass {
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
/// runOnMachineFunction - pass entry point
bool runOnMachineFunction(MachineFunction&);
};
RegisterPass<TwoAddressInstructionPass>
X("twoaddressinstruction", "Two-Address instruction pass");
};
const PassInfo *llvm::TwoAddressInstructionPassID = X.getPassInfo();
void TwoAddressInstructionPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
MachineFunctionPass::getAnalysisUsage(AU);
}
/// runOnMachineFunction - Reduce two-address instructions to two
/// operands.
///
bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
DEBUG(std::cerr << "Machine Function\n");
const TargetMachine &TM = MF.getTarget();
const MRegisterInfo &MRI = *TM.getRegisterInfo();
const TargetInstrInfo &TII = *TM.getInstrInfo();
LiveVariables* LV = getAnalysisToUpdate<LiveVariables>();
bool MadeChange = false;
DEBUG(std::cerr << "********** REWRITING TWO-ADDR INSTRS **********\n");
DEBUG(std::cerr << "********** Function: "
<< MF.getFunction()->getName() << '\n');
for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
mbbi != mbbe; ++mbbi) {
for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
mi != me; ++mi) {
unsigned opcode = mi->getOpcode();
// ignore if it is not a two-address instruction
if (!TII.isTwoAddrInstr(opcode))
continue;
++numTwoAddressInstrs;
DEBUG(std::cerr << '\t'; mi->print(std::cerr, &TM));
assert(mi->getOperand(1).isRegister() && mi->getOperand(1).getReg() &&
mi->getOperand(1).isUse() && "two address instruction invalid");
// if the two operands are the same we just remove the use
// and mark the def as def&use, otherwise we have to insert a copy.
if (mi->getOperand(0).getReg() != mi->getOperand(1).getReg()) {
// rewrite:
// a = b op c
// to:
// a = b
// a = a op c
unsigned regA = mi->getOperand(0).getReg();
unsigned regB = mi->getOperand(1).getReg();
assert(MRegisterInfo::isVirtualRegister(regA) &&
MRegisterInfo::isVirtualRegister(regB) &&
"cannot update physical register live information");
// first make sure we do not have a use of a in the
// instruction (a = b + a for example) because our
// transformation will not work. This should never occur
// because we are in SSA form.
#ifndef NDEBUG
for (unsigned i = 1; i != mi->getNumOperands(); ++i)
assert(!mi->getOperand(i).isRegister() ||
mi->getOperand(i).getReg() != regA);
#endif
const TargetRegisterClass* rc = MF.getSSARegMap()->getRegClass(regA);
MRI.copyRegToReg(*mbbi, mi, regA, regB, rc);
MachineBasicBlock::iterator prevMi = prior(mi);
DEBUG(std::cerr << "\t\tprepend:\t"; prevMi->print(std::cerr, &TM));
if (LV) {
// update live variables for regA
LiveVariables::VarInfo& varInfo = LV->getVarInfo(regA);
varInfo.DefInst = prevMi;
// update live variables for regB
if (LV->removeVirtualRegisterKilled(regB, mbbi, mi))
LV->addVirtualRegisterKilled(regB, prevMi);
if (LV->removeVirtualRegisterDead(regB, mbbi, mi))
LV->addVirtualRegisterDead(regB, prevMi);
}
// replace all occurences of regB with regA
for (unsigned i = 1, e = mi->getNumOperands(); i != e; ++i) {
if (mi->getOperand(i).isRegister() &&
mi->getOperand(i).getReg() == regB)
mi->SetMachineOperandReg(i, regA);
}
}
assert(mi->getOperand(0).isDef());
mi->getOperand(0).setUse();
mi->RemoveOperand(1);
MadeChange = true;
DEBUG(std::cerr << "\t\trewrite to:\t"; mi->print(std::cerr, &TM));
}
}
return MadeChange;
}