llvm/lib/Transforms/IPO/IPConstantPropagation.cpp

191 lines
7.0 KiB
C++
Raw Normal View History

//===-- IPConstantPropagation.cpp - Propagate constants through calls -----===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements an _extremely_ simple interprocedural constant
// propagation pass. It could certainly be improved in many different ways,
// like using a worklist. This pass makes arguments dead, but does not remove
// them. The existing dead argument elimination pass should be run after this
// to clean up the mess.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/IPO.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/CallSite.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
namespace {
Statistic<> NumArgumentsProped("ipconstprop",
"Number of args turned into constants");
Statistic<> NumReturnValProped("ipconstprop",
"Number of return values turned into constants");
/// IPCP - The interprocedural constant propagation pass
///
struct IPCP : public ModulePass {
bool runOnModule(Module &M);
private:
bool PropagateConstantsIntoArguments(Function &F);
bool PropagateConstantReturn(Function &F);
};
RegisterOpt<IPCP> X("ipconstprop", "Interprocedural constant propagation");
}
ModulePass *llvm::createIPConstantPropagationPass() { return new IPCP(); }
bool IPCP::runOnModule(Module &M) {
bool Changed = false;
bool LocalChange = true;
// FIXME: instead of using smart algorithms, we just iterate until we stop
// making changes.
while (LocalChange) {
LocalChange = false;
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
if (!I->isExternal()) {
// Delete any klingons.
I->removeDeadConstantUsers();
if (I->hasInternalLinkage())
LocalChange |= PropagateConstantsIntoArguments(*I);
Changed |= PropagateConstantReturn(*I);
}
Changed |= LocalChange;
}
return Changed;
}
/// PropagateConstantsIntoArguments - Look at all uses of the specified
/// function. If all uses are direct call sites, and all pass a particular
/// constant in for an argument, propagate that constant in as the argument.
///
bool IPCP::PropagateConstantsIntoArguments(Function &F) {
if (F.aempty() || F.use_empty()) return false; // No arguments? Early exit.
std::vector<std::pair<Constant*, bool> > ArgumentConstants;
ArgumentConstants.resize(F.asize());
unsigned NumNonconstant = 0;
for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I)
if (!isa<Instruction>(*I))
return false; // Used by a non-instruction, do not transform
else {
CallSite CS = CallSite::get(cast<Instruction>(*I));
if (CS.getInstruction() == 0 ||
CS.getCalledFunction() != &F)
return false; // Not a direct call site?
// Check out all of the potentially constant arguments
CallSite::arg_iterator AI = CS.arg_begin();
Function::aiterator Arg = F.abegin();
for (unsigned i = 0, e = ArgumentConstants.size(); i != e;
++i, ++AI, ++Arg) {
if (*AI == &F) return false; // Passes the function into itself
if (!ArgumentConstants[i].second) {
if (Constant *C = dyn_cast<Constant>(*AI)) {
if (!ArgumentConstants[i].first)
ArgumentConstants[i].first = C;
else if (ArgumentConstants[i].first != C) {
// Became non-constant
ArgumentConstants[i].second = true;
++NumNonconstant;
if (NumNonconstant == ArgumentConstants.size()) return false;
}
} else if (*AI != &*Arg) { // Ignore recursive calls with same arg
// This is not a constant argument. Mark the argument as
// non-constant.
ArgumentConstants[i].second = true;
++NumNonconstant;
if (NumNonconstant == ArgumentConstants.size()) return false;
}
}
}
}
// If we got to this point, there is a constant argument!
assert(NumNonconstant != ArgumentConstants.size());
Function::aiterator AI = F.abegin();
bool MadeChange = false;
for (unsigned i = 0, e = ArgumentConstants.size(); i != e; ++i, ++AI)
// Do we have a constant argument!?
if (!ArgumentConstants[i].second && !AI->use_empty()) {
Value *V = ArgumentConstants[i].first;
if (V == 0) V = UndefValue::get(AI->getType());
AI->replaceAllUsesWith(V);
++NumArgumentsProped;
MadeChange = true;
}
return MadeChange;
}
// Check to see if this function returns a constant. If so, replace all callers
// that user the return value with the returned valued. If we can replace ALL
// callers,
bool IPCP::PropagateConstantReturn(Function &F) {
if (F.getReturnType() == Type::VoidTy)
return false; // No return value.
// Check to see if this function returns a constant.
Value *RetVal = 0;
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
if (isa<UndefValue>(RI->getOperand(0))) {
// Ignore.
} else if (Constant *C = dyn_cast<Constant>(RI->getOperand(0))) {
if (RetVal == 0)
RetVal = C;
else if (RetVal != C)
return false; // Does not return the same constant.
} else {
return false; // Does not return a constant.
}
if (RetVal == 0) RetVal = UndefValue::get(F.getReturnType());
// If we got here, the function returns a constant value. Loop over all
// users, replacing any uses of the return value with the returned constant.
bool ReplacedAllUsers = true;
bool MadeChange = false;
for (Value::use_iterator I = F.use_begin(), E = F.use_end(); I != E; ++I)
if (!isa<Instruction>(*I))
ReplacedAllUsers = false;
else {
CallSite CS = CallSite::get(cast<Instruction>(*I));
if (CS.getInstruction() == 0 ||
CS.getCalledFunction() != &F) {
ReplacedAllUsers = false;
} else {
if (!CS.getInstruction()->use_empty()) {
CS.getInstruction()->replaceAllUsesWith(RetVal);
MadeChange = true;
}
}
}
// If we replace all users with the returned constant, and there can be no
// other callers of the function, replace the constant being returned in the
// function with an undef value.
if (ReplacedAllUsers && F.hasInternalLinkage() && !isa<UndefValue>(RetVal)) {
Value *RV = UndefValue::get(RetVal->getType());
for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
RI->setOperand(0, RV);
MadeChange = true;
}
if (MadeChange) ++NumReturnValProped;
return MadeChange;
}