llvm/lib/Analysis/ScalarEvolutionExpander.cpp

131 lines
5.2 KiB
C++
Raw Normal View History

//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the implementation of the scalar evolution expander,
// which is used to generate the code corresponding to a given scalar evolution
// expression.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
using namespace llvm;
Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
const Type *Ty = S->getType();
int FirstOp = 0; // Set if we should emit a subtract.
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
if (SC->getValue()->isAllOnesValue())
FirstOp = 1;
int i = S->getNumOperands()-2;
Value *V = expandInTy(S->getOperand(i+1), Ty);
// Emit a bunch of multiply instructions
for (; i >= FirstOp; --i)
V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
"tmp.", InsertPt);
// -1 * ... ---> 0 - ...
if (FirstOp == 1)
V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
return V;
}
Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
const Type *Ty = S->getType();
const Loop *L = S->getLoop();
// We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
// {X,+,F} --> X + {0,+,F}
if (!isa<SCEVConstant>(S->getStart()) ||
!cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
Value *Start = expandInTy(S->getStart(), Ty);
std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
// FIXME: look for an existing add to use.
return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
}
// {0,+,1} --> Insert a canonical induction variable into the loop!
if (S->getNumOperands() == 2 &&
S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
// Create and insert the PHI node for the induction variable in the
// specified loop.
BasicBlock *Header = L->getHeader();
PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
pred_iterator HPI = pred_begin(Header);
assert(HPI != pred_end(Header) && "Loop with zero preds???");
if (!L->contains(*HPI)) ++HPI;
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
"No backedge in loop?");
// Insert a unit add instruction right before the terminator corresponding
// to the back-edge.
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
: ConstantInt::get(Ty, 1);
Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
(*HPI)->getTerminator());
pred_iterator PI = pred_begin(Header);
if (*PI == L->getLoopPreheader())
++PI;
PN->addIncoming(Add, *PI);
return PN;
}
// Get the canonical induction variable I for this loop.
Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
// If this is a simple linear addrec, emit it now as a special case.
if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
Value *F = expandInTy(S->getOperand(1), Ty);
// IF the step is by one, just return the inserted IV.
if (ConstantIntegral *CI = dyn_cast<ConstantIntegral>(F))
if (CI->getRawValue() == 1)
return I;
// If the insert point is directly inside of the loop, emit the multiply at
// the insert point. Otherwise, L is a loop that is a parent of the insert
// point loop. If we can, move the multiply to the outer most loop that it
// is safe to be in.
Instruction *MulInsertPt = InsertPt;
Loop *InsertPtLoop = LI.getLoopFor(MulInsertPt->getParent());
if (InsertPtLoop != L && InsertPtLoop &&
L->contains(InsertPtLoop->getHeader())) {
while (InsertPtLoop != L) {
// If we cannot hoist the multiply out of this loop, don't.
if (!InsertPtLoop->isLoopInvariant(F)) break;
// Otherwise, move the insert point to the preheader of the loop.
MulInsertPt = InsertPtLoop->getLoopPreheader()->getTerminator();
InsertPtLoop = InsertPtLoop->getParentLoop();
}
}
return BinaryOperator::createMul(I, F, "tmp.", MulInsertPt);
}
// If this is a chain of recurrences, turn it into a closed form, using the
// folders, then expandCodeFor the closed form. This allows the folders to
// simplify the expression without having to build a bunch of special code
// into this folder.
SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
SCEVHandle V = S->evaluateAtIteration(IH);
//std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
return expandInTy(V, Ty);
}