llvm/lib/CodeGen/TailDuplication.cpp

940 lines
34 KiB
C++
Raw Normal View History

//===-- TailDuplication.cpp - Duplicate blocks into predecessors' tails ---===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass duplicates basic blocks ending in unconditional branches into
// the tails of their predecessors.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "tailduplication"
#include "llvm/Function.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumTails , "Number of tails duplicated");
STATISTIC(NumTailDups , "Number of tail duplicated blocks");
STATISTIC(NumInstrDups , "Additional instructions due to tail duplication");
STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
STATISTIC(NumAddedPHIs , "Number of phis added");
// Heuristic for tail duplication.
static cl::opt<unsigned>
TailDuplicateSize("tail-dup-size",
cl::desc("Maximum instructions to consider tail duplicating"),
cl::init(2), cl::Hidden);
static cl::opt<bool>
TailDupVerify("tail-dup-verify",
cl::desc("Verify sanity of PHI instructions during taildup"),
cl::init(false), cl::Hidden);
static cl::opt<unsigned>
TailDupLimit("tail-dup-limit", cl::init(~0U), cl::Hidden);
typedef std::vector<std::pair<MachineBasicBlock*,unsigned> > AvailableValsTy;
namespace {
/// TailDuplicatePass - Perform tail duplication.
class TailDuplicatePass : public MachineFunctionPass {
bool PreRegAlloc;
const TargetInstrInfo *TII;
MachineModuleInfo *MMI;
MachineRegisterInfo *MRI;
// SSAUpdateVRs - A list of virtual registers for which to update SSA form.
SmallVector<unsigned, 16> SSAUpdateVRs;
// SSAUpdateVals - For each virtual register in SSAUpdateVals keep a list of
// source virtual registers.
DenseMap<unsigned, AvailableValsTy> SSAUpdateVals;
public:
static char ID;
explicit TailDuplicatePass(bool PreRA) :
MachineFunctionPass(ID), PreRegAlloc(PreRA) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const { return "Tail Duplication"; }
private:
void AddSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
MachineBasicBlock *BB);
void ProcessPHI(MachineInstr *MI, MachineBasicBlock *TailBB,
MachineBasicBlock *PredBB,
DenseMap<unsigned, unsigned> &LocalVRMap,
SmallVector<std::pair<unsigned,unsigned>, 4> &Copies,
const DenseSet<unsigned> &UsedByPhi,
bool Remove);
void DuplicateInstruction(MachineInstr *MI,
MachineBasicBlock *TailBB,
MachineBasicBlock *PredBB,
MachineFunction &MF,
DenseMap<unsigned, unsigned> &LocalVRMap,
const DenseSet<unsigned> &UsedByPhi);
void UpdateSuccessorsPHIs(MachineBasicBlock *FromBB, bool isDead,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallSetVector<MachineBasicBlock*, 8> &Succs);
bool TailDuplicateBlocks(MachineFunction &MF);
bool shouldTailDuplicate(const MachineFunction &MF,
bool IsSimple, MachineBasicBlock &TailBB);
bool isSimpleBB(MachineBasicBlock *TailBB);
bool canCompletelyDuplicateBB(MachineBasicBlock &BB);
bool duplicateSimpleBB(MachineBasicBlock *TailBB,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
const DenseSet<unsigned> &RegsUsedByPhi,
SmallVector<MachineInstr*, 16> &Copies);
bool TailDuplicate(MachineBasicBlock *TailBB,
bool IsSimple,
MachineFunction &MF,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallVector<MachineInstr*, 16> &Copies);
bool TailDuplicateAndUpdate(MachineBasicBlock *MBB,
bool IsSimple,
MachineFunction &MF);
void RemoveDeadBlock(MachineBasicBlock *MBB);
};
char TailDuplicatePass::ID = 0;
}
FunctionPass *llvm::createTailDuplicatePass(bool PreRegAlloc) {
return new TailDuplicatePass(PreRegAlloc);
}
bool TailDuplicatePass::runOnMachineFunction(MachineFunction &MF) {
TII = MF.getTarget().getInstrInfo();
MRI = &MF.getRegInfo();
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
bool MadeChange = false;
while (TailDuplicateBlocks(MF))
MadeChange = true;
return MadeChange;
}
static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = I;
SmallSetVector<MachineBasicBlock*, 8> Preds(MBB->pred_begin(),
MBB->pred_end());
MachineBasicBlock::iterator MI = MBB->begin();
while (MI != MBB->end()) {
if (!MI->isPHI())
break;
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
bool Found = false;
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
MachineBasicBlock *PHIBB = MI->getOperand(i+1).getMBB();
if (PHIBB == PredBB) {
Found = true;
break;
}
}
if (!Found) {
dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
dbgs() << " missing input from predecessor BB#"
<< PredBB->getNumber() << '\n';
llvm_unreachable(0);
}
}
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
MachineBasicBlock *PHIBB = MI->getOperand(i+1).getMBB();
if (CheckExtra && !Preds.count(PHIBB)) {
dbgs() << "Warning: malformed PHI in BB#" << MBB->getNumber()
<< ": " << *MI;
dbgs() << " extra input from predecessor BB#"
<< PHIBB->getNumber() << '\n';
llvm_unreachable(0);
}
if (PHIBB->getNumber() < 0) {
dbgs() << "Malformed PHI in BB#" << MBB->getNumber() << ": " << *MI;
dbgs() << " non-existing BB#" << PHIBB->getNumber() << '\n';
llvm_unreachable(0);
}
}
++MI;
}
}
}
/// TailDuplicateAndUpdate - Tail duplicate the block and cleanup.
bool
TailDuplicatePass::TailDuplicateAndUpdate(MachineBasicBlock *MBB,
bool IsSimple,
MachineFunction &MF) {
// Save the successors list.
SmallSetVector<MachineBasicBlock*, 8> Succs(MBB->succ_begin(),
MBB->succ_end());
SmallVector<MachineBasicBlock*, 8> TDBBs;
SmallVector<MachineInstr*, 16> Copies;
if (!TailDuplicate(MBB, IsSimple, MF, TDBBs, Copies))
return false;
++NumTails;
SmallVector<MachineInstr*, 8> NewPHIs;
MachineSSAUpdater SSAUpdate(MF, &NewPHIs);
// TailBB's immediate successors are now successors of those predecessors
// which duplicated TailBB. Add the predecessors as sources to the PHI
// instructions.
bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
if (PreRegAlloc)
UpdateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
// If it is dead, remove it.
if (isDead) {
NumInstrDups -= MBB->size();
RemoveDeadBlock(MBB);
++NumDeadBlocks;
}
// Update SSA form.
if (!SSAUpdateVRs.empty()) {
for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
unsigned VReg = SSAUpdateVRs[i];
SSAUpdate.Initialize(VReg);
// If the original definition is still around, add it as an available
// value.
MachineInstr *DefMI = MRI->getVRegDef(VReg);
MachineBasicBlock *DefBB = 0;
if (DefMI) {
DefBB = DefMI->getParent();
SSAUpdate.AddAvailableValue(DefBB, VReg);
}
// Add the new vregs as available values.
DenseMap<unsigned, AvailableValsTy>::iterator LI =
SSAUpdateVals.find(VReg);
for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
MachineBasicBlock *SrcBB = LI->second[j].first;
unsigned SrcReg = LI->second[j].second;
SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
}
// Rewrite uses that are outside of the original def's block.
MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
while (UI != MRI->use_end()) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = &*UI;
++UI;
if (UseMI->isDebugValue()) {
// SSAUpdate can replace the use with an undef. That creates
// a debug instruction that is a kill.
// FIXME: Should it SSAUpdate job to delete debug instructions
// instead of replacing the use with undef?
UseMI->eraseFromParent();
continue;
}
if (UseMI->getParent() == DefBB && !UseMI->isPHI())
continue;
SSAUpdate.RewriteUse(UseMO);
}
}
SSAUpdateVRs.clear();
SSAUpdateVals.clear();
}
// Eliminate some of the copies inserted by tail duplication to maintain
// SSA form.
for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
MachineInstr *Copy = Copies[i];
if (!Copy->isCopy())
continue;
unsigned Dst = Copy->getOperand(0).getReg();
unsigned Src = Copy->getOperand(1).getReg();
MachineRegisterInfo::use_iterator UI = MRI->use_begin(Src);
if (++UI == MRI->use_end()) {
// Copy is the only use. Do trivial copy propagation here.
MRI->replaceRegWith(Dst, Src);
Copy->eraseFromParent();
}
}
if (NewPHIs.size())
NumAddedPHIs += NewPHIs.size();
return true;
}
/// TailDuplicateBlocks - Look for small blocks that are unconditionally
/// branched to and do not fall through. Tail-duplicate their instructions
/// into their predecessors to eliminate (dynamic) branches.
bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
bool MadeChange = false;
if (PreRegAlloc && TailDupVerify) {
DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
VerifyPHIs(MF, true);
}
for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
MachineBasicBlock *MBB = I++;
if (NumTails == TailDupLimit)
break;
bool IsSimple = isSimpleBB(MBB);
if (!shouldTailDuplicate(MF, IsSimple, *MBB))
continue;
MadeChange |= TailDuplicateAndUpdate(MBB, IsSimple, MF);
}
if (PreRegAlloc && TailDupVerify)
VerifyPHIs(MF, false);
return MadeChange;
}
static bool isDefLiveOut(unsigned Reg, MachineBasicBlock *BB,
const MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::use_iterator UI = MRI->use_begin(Reg),
UE = MRI->use_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
if (UseMI->isDebugValue())
continue;
if (UseMI->getParent() != BB)
return true;
}
return false;
}
static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
if (MI->getOperand(i+1).getMBB() == SrcBB)
return i;
return 0;
}
// Remember which registers are used by phis in this block. This is
// used to determine which registers are liveout while modifying the
// block (which is why we need to copy the information).
static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
DenseSet<unsigned> *UsedByPhi) {
for(MachineBasicBlock::const_iterator I = BB.begin(), E = BB.end();
I != E; ++I) {
const MachineInstr &MI = *I;
if (!MI.isPHI())
break;
for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
unsigned SrcReg = MI.getOperand(i).getReg();
UsedByPhi->insert(SrcReg);
}
}
}
/// AddSSAUpdateEntry - Add a definition and source virtual registers pair for
/// SSA update.
void TailDuplicatePass::AddSSAUpdateEntry(unsigned OrigReg, unsigned NewReg,
MachineBasicBlock *BB) {
DenseMap<unsigned, AvailableValsTy>::iterator LI= SSAUpdateVals.find(OrigReg);
if (LI != SSAUpdateVals.end())
LI->second.push_back(std::make_pair(BB, NewReg));
else {
AvailableValsTy Vals;
Vals.push_back(std::make_pair(BB, NewReg));
SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
SSAUpdateVRs.push_back(OrigReg);
}
}
/// ProcessPHI - Process PHI node in TailBB by turning it into a copy in PredBB.
/// Remember the source register that's contributed by PredBB and update SSA
/// update map.
void TailDuplicatePass::ProcessPHI(MachineInstr *MI,
MachineBasicBlock *TailBB,
MachineBasicBlock *PredBB,
DenseMap<unsigned, unsigned> &LocalVRMap,
SmallVector<std::pair<unsigned,unsigned>, 4> &Copies,
const DenseSet<unsigned> &RegsUsedByPhi,
bool Remove) {
unsigned DefReg = MI->getOperand(0).getReg();
unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
assert(SrcOpIdx && "Unable to find matching PHI source?");
unsigned SrcReg = MI->getOperand(SrcOpIdx).getReg();
const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
LocalVRMap.insert(std::make_pair(DefReg, SrcReg));
// Insert a copy from source to the end of the block. The def register is the
// available value liveout of the block.
unsigned NewDef = MRI->createVirtualRegister(RC);
Copies.push_back(std::make_pair(NewDef, SrcReg));
if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
AddSSAUpdateEntry(DefReg, NewDef, PredBB);
if (!Remove)
return;
// Remove PredBB from the PHI node.
MI->RemoveOperand(SrcOpIdx+1);
MI->RemoveOperand(SrcOpIdx);
if (MI->getNumOperands() == 1)
MI->eraseFromParent();
}
/// DuplicateInstruction - Duplicate a TailBB instruction to PredBB and update
/// the source operands due to earlier PHI translation.
void TailDuplicatePass::DuplicateInstruction(MachineInstr *MI,
MachineBasicBlock *TailBB,
MachineBasicBlock *PredBB,
MachineFunction &MF,
DenseMap<unsigned, unsigned> &LocalVRMap,
const DenseSet<unsigned> &UsedByPhi) {
MachineInstr *NewMI = TII->duplicate(MI, MF);
for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = NewMI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!TargetRegisterInfo::isVirtualRegister(Reg))
continue;
if (MO.isDef()) {
const TargetRegisterClass *RC = MRI->getRegClass(Reg);
unsigned NewReg = MRI->createVirtualRegister(RC);
MO.setReg(NewReg);
LocalVRMap.insert(std::make_pair(Reg, NewReg));
if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
AddSSAUpdateEntry(Reg, NewReg, PredBB);
} else {
DenseMap<unsigned, unsigned>::iterator VI = LocalVRMap.find(Reg);
if (VI != LocalVRMap.end())
MO.setReg(VI->second);
}
}
PredBB->insert(PredBB->end(), NewMI);
}
/// UpdateSuccessorsPHIs - After FromBB is tail duplicated into its predecessor
/// blocks, the successors have gained new predecessors. Update the PHI
/// instructions in them accordingly.
void
TailDuplicatePass::UpdateSuccessorsPHIs(MachineBasicBlock *FromBB, bool isDead,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallSetVector<MachineBasicBlock*,8> &Succs) {
for (SmallSetVector<MachineBasicBlock*, 8>::iterator SI = Succs.begin(),
SE = Succs.end(); SI != SE; ++SI) {
MachineBasicBlock *SuccBB = *SI;
for (MachineBasicBlock::iterator II = SuccBB->begin(), EE = SuccBB->end();
II != EE; ++II) {
if (!II->isPHI())
break;
unsigned Idx = 0;
for (unsigned i = 1, e = II->getNumOperands(); i != e; i += 2) {
MachineOperand &MO = II->getOperand(i+1);
if (MO.getMBB() == FromBB) {
Idx = i;
break;
}
}
assert(Idx != 0);
MachineOperand &MO0 = II->getOperand(Idx);
unsigned Reg = MO0.getReg();
if (isDead) {
// Folded into the previous BB.
// There could be duplicate phi source entries. FIXME: Should sdisel
// or earlier pass fixed this?
for (unsigned i = II->getNumOperands()-2; i != Idx; i -= 2) {
MachineOperand &MO = II->getOperand(i+1);
if (MO.getMBB() == FromBB) {
II->RemoveOperand(i+1);
II->RemoveOperand(i);
}
}
} else
Idx = 0;
// If Idx is set, the operands at Idx and Idx+1 must be removed.
// We reuse the location to avoid expensive RemoveOperand calls.
DenseMap<unsigned,AvailableValsTy>::iterator LI=SSAUpdateVals.find(Reg);
if (LI != SSAUpdateVals.end()) {
// This register is defined in the tail block.
for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
MachineBasicBlock *SrcBB = LI->second[j].first;
// If we didn't duplicate a bb into a particular predecessor, we
// might still have added an entry to SSAUpdateVals to correcly
// recompute SSA. If that case, avoid adding a dummy extra argument
// this PHI.
if (!SrcBB->isSuccessor(SuccBB))
continue;
unsigned SrcReg = LI->second[j].second;
if (Idx != 0) {
II->getOperand(Idx).setReg(SrcReg);
II->getOperand(Idx+1).setMBB(SrcBB);
Idx = 0;
} else {
II->addOperand(MachineOperand::CreateReg(SrcReg, false));
II->addOperand(MachineOperand::CreateMBB(SrcBB));
}
}
} else {
// Live in tail block, must also be live in predecessors.
for (unsigned j = 0, ee = TDBBs.size(); j != ee; ++j) {
MachineBasicBlock *SrcBB = TDBBs[j];
if (Idx != 0) {
II->getOperand(Idx).setReg(Reg);
II->getOperand(Idx+1).setMBB(SrcBB);
Idx = 0;
} else {
II->addOperand(MachineOperand::CreateReg(Reg, false));
II->addOperand(MachineOperand::CreateMBB(SrcBB));
}
}
}
if (Idx != 0) {
II->RemoveOperand(Idx+1);
II->RemoveOperand(Idx);
}
}
}
}
/// shouldTailDuplicate - Determine if it is profitable to duplicate this block.
bool
TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
bool IsSimple,
MachineBasicBlock &TailBB) {
// Only duplicate blocks that end with unconditional branches.
if (TailBB.canFallThrough())
return false;
// Don't try to tail-duplicate single-block loops.
if (TailBB.isSuccessor(&TailBB))
return false;
// Set the limit on the cost to duplicate. When optimizing for size,
// duplicate only one, because one branch instruction can be eliminated to
// compensate for the duplication.
unsigned MaxDuplicateCount;
if (TailDuplicateSize.getNumOccurrences() == 0 &&
MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
MaxDuplicateCount = 1;
else
MaxDuplicateCount = TailDuplicateSize;
// If the target has hardware branch prediction that can handle indirect
// branches, duplicating them can often make them predictable when there
// are common paths through the code. The limit needs to be high enough
// to allow undoing the effects of tail merging and other optimizations
// that rearrange the predecessors of the indirect branch.
bool HasIndirectbr = false;
if (!TailBB.empty())
HasIndirectbr = TailBB.back().getDesc().isIndirectBranch();
if (HasIndirectbr && PreRegAlloc)
MaxDuplicateCount = 20;
// Check the instructions in the block to determine whether tail-duplication
// is invalid or unlikely to be profitable.
unsigned InstrCount = 0;
for (MachineBasicBlock::const_iterator I = TailBB.begin(); I != TailBB.end();
++I) {
// Non-duplicable things shouldn't be tail-duplicated.
if (I->getDesc().isNotDuplicable())
return false;
// Do not duplicate 'return' instructions if this is a pre-regalloc run.
// A return may expand into a lot more instructions (e.g. reload of callee
// saved registers) after PEI.
if (PreRegAlloc && I->getDesc().isReturn())
return false;
// Avoid duplicating calls before register allocation. Calls presents a
// barrier to register allocation so duplicating them may end up increasing
// spills.
if (PreRegAlloc && I->getDesc().isCall())
return false;
if (!I->isPHI() && !I->isDebugValue())
InstrCount += 1;
if (InstrCount > MaxDuplicateCount)
return false;
}
if (HasIndirectbr && PreRegAlloc)
return true;
if (IsSimple)
return true;
if (!PreRegAlloc)
return true;
return canCompletelyDuplicateBB(TailBB);
}
/// isSimpleBB - True if this BB has only one unconditional jump.
bool
TailDuplicatePass::isSimpleBB(MachineBasicBlock *TailBB) {
if (TailBB->succ_size() != 1)
return false;
if (TailBB->pred_empty())
return false;
MachineBasicBlock::iterator I = TailBB->begin();
MachineBasicBlock::iterator E = TailBB->end();
while (I != E && I->isDebugValue())
++I;
if (I == E)
return true;
return I->getDesc().isUnconditionalBranch();
}
static bool
bothUsedInPHI(const MachineBasicBlock &A,
SmallPtrSet<MachineBasicBlock*, 8> SuccsB) {
for (MachineBasicBlock::const_succ_iterator SI = A.succ_begin(),
SE = A.succ_end(); SI != SE; ++SI) {
MachineBasicBlock *BB = *SI;
if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
return true;
}
return false;
}
bool
TailDuplicatePass::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
SmallPtrSet<MachineBasicBlock*, 8> Succs(BB.succ_begin(), BB.succ_end());
for (MachineBasicBlock::pred_iterator PI = BB.pred_begin(),
PE = BB.pred_end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
if (PredBB->succ_size() > 1)
return false;
MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL;
SmallVector<MachineOperand, 4> PredCond;
if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
return false;
if (!PredCond.empty())
return false;
}
return true;
}
bool
TailDuplicatePass::duplicateSimpleBB(MachineBasicBlock *TailBB,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
const DenseSet<unsigned> &UsedByPhi,
SmallVector<MachineInstr*, 16> &Copies) {
SmallPtrSet<MachineBasicBlock*, 8> Succs(TailBB->succ_begin(),
TailBB->succ_end());
SmallVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
bool Changed = false;
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
if (PredBB->getLandingPadSuccessor())
continue;
if (bothUsedInPHI(*PredBB, Succs))
continue;
MachineBasicBlock *PredTBB = NULL, *PredFBB = NULL;
SmallVector<MachineOperand, 4> PredCond;
if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
continue;
Changed = true;
DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
<< "From simple Succ: " << *TailBB);
MachineBasicBlock *NewTarget = *TailBB->succ_begin();
MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(PredBB));
// Make PredFBB explicit.
if (PredCond.empty())
PredFBB = PredTBB;
// Make fall through explicit.
if (!PredTBB)
PredTBB = NextBB;
if (!PredFBB)
PredFBB = NextBB;
// Redirect
if (PredFBB == TailBB)
PredFBB = NewTarget;
if (PredTBB == TailBB)
PredTBB = NewTarget;
// Make the branch unconditional if possible
if (PredTBB == PredFBB) {
PredCond.clear();
PredFBB = NULL;
}
// Avoid adding fall through branches.
if (PredFBB == NextBB)
PredFBB = NULL;
if (PredTBB == NextBB && PredFBB == NULL)
PredTBB = NULL;
TII->RemoveBranch(*PredBB);
if (PredTBB)
TII->InsertBranch(*PredBB, PredTBB, PredFBB, PredCond, DebugLoc());
PredBB->removeSuccessor(TailBB);
unsigned NumSuccessors = PredBB->succ_size();
assert(NumSuccessors <= 1);
if (NumSuccessors == 0 || *PredBB->succ_begin() != NewTarget)
PredBB->addSuccessor(NewTarget);
TDBBs.push_back(PredBB);
}
return Changed;
}
/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB,
bool IsSimple,
MachineFunction &MF,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallVector<MachineInstr*, 16> &Copies) {
DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
DenseSet<unsigned> UsedByPhi;
getRegsUsedByPHIs(*TailBB, &UsedByPhi);
if (IsSimple)
return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi, Copies);
// Iterate through all the unique predecessors and tail-duplicate this
// block into them, if possible. Copying the list ahead of time also
// avoids trouble with the predecessor list reallocating.
bool Changed = false;
SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
assert(TailBB != PredBB &&
"Single-block loop should have been rejected earlier!");
// EH edges are ignored by AnalyzeBranch.
if (PredBB->succ_size() > 1)
continue;
MachineBasicBlock *PredTBB, *PredFBB;
SmallVector<MachineOperand, 4> PredCond;
if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
continue;
if (!PredCond.empty())
continue;
// Don't duplicate into a fall-through predecessor (at least for now).
if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
continue;
DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
<< "From Succ: " << *TailBB);
TDBBs.push_back(PredBB);
// Remove PredBB's unconditional branch.
TII->RemoveBranch(*PredBB);
// Clone the contents of TailBB into PredBB.
DenseMap<unsigned, unsigned> LocalVRMap;
SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
MachineBasicBlock::iterator I = TailBB->begin();
while (I != TailBB->end()) {
MachineInstr *MI = &*I;
++I;
if (MI->isPHI()) {
// Replace the uses of the def of the PHI with the register coming
// from PredBB.
ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
} else {
// Replace def of virtual registers with new registers, and update
// uses with PHI source register or the new registers.
DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi);
}
}
MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
TII->get(TargetOpcode::COPY),
CopyInfos[i].first).addReg(CopyInfos[i].second));
}
// Simplify
TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);
NumInstrDups += TailBB->size() - 1; // subtract one for removed branch
// Update the CFG.
PredBB->removeSuccessor(PredBB->succ_begin());
assert(PredBB->succ_empty() &&
"TailDuplicate called on block with multiple successors!");
for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
E = TailBB->succ_end(); I != E; ++I)
PredBB->addSuccessor(*I);
Changed = true;
++NumTailDups;
}
// If TailBB was duplicated into all its predecessors except for the prior
// block, which falls through unconditionally, move the contents of this
// block into the prior block.
MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB));
MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
SmallVector<MachineOperand, 4> PriorCond;
// This has to check PrevBB->succ_size() because EH edges are ignored by
// AnalyzeBranch.
if (PrevBB->succ_size() == 1 &&
!TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
!TailBB->hasAddressTaken()) {
DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
<< "From MBB: " << *TailBB);
if (PreRegAlloc) {
DenseMap<unsigned, unsigned> LocalVRMap;
SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
MachineBasicBlock::iterator I = TailBB->begin();
// Process PHI instructions first.
while (I != TailBB->end() && I->isPHI()) {
// Replace the uses of the def of the PHI with the register coming
// from PredBB.
MachineInstr *MI = &*I++;
ProcessPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi, true);
if (MI->getParent())
MI->eraseFromParent();
}
// Now copy the non-PHI instructions.
while (I != TailBB->end()) {
// Replace def of virtual registers with new registers, and update
// uses with PHI source register or the new registers.
MachineInstr *MI = &*I++;
DuplicateInstruction(MI, TailBB, PrevBB, MF, LocalVRMap, UsedByPhi);
MI->eraseFromParent();
}
MachineBasicBlock::iterator Loc = PrevBB->getFirstTerminator();
for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
Copies.push_back(BuildMI(*PrevBB, Loc, DebugLoc(),
TII->get(TargetOpcode::COPY),
CopyInfos[i].first)
.addReg(CopyInfos[i].second));
}
} else {
// No PHIs to worry about, just splice the instructions over.
PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
}
PrevBB->removeSuccessor(PrevBB->succ_begin());
assert(PrevBB->succ_empty());
PrevBB->transferSuccessors(TailBB);
TDBBs.push_back(PrevBB);
Changed = true;
}
// If this is after register allocation, there are no phis to fix.
if (!PreRegAlloc)
return Changed;
// If we made no changes so far, we are safe.
if (!Changed)
return Changed;
// Handle the nasty case in that we duplicated a block that is part of a loop
// into some but not all of its predecessors. For example:
// 1 -> 2 <-> 3 |
// \ |
// \---> rest |
// if we duplicate 2 into 1 but not into 3, we end up with
// 12 -> 3 <-> 2 -> rest |
// \ / |
// \----->-----/ |
// If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
// with a phi in 3 (which now dominates 2).
// What we do here is introduce a copy in 3 of the register defined by the
// phi, just like when we are duplicating 2 into 3, but we don't copy any
// real instructions or remove the 3 -> 2 edge from the phi in 2.
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
if (std::find(TDBBs.begin(), TDBBs.end(), PredBB) != TDBBs.end())
continue;
// EH edges
if (PredBB->succ_size() != 1)
continue;
DenseMap<unsigned, unsigned> LocalVRMap;
SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
MachineBasicBlock::iterator I = TailBB->begin();
// Process PHI instructions first.
while (I != TailBB->end() && I->isPHI()) {
// Replace the uses of the def of the PHI with the register coming
// from PredBB.
MachineInstr *MI = &*I++;
ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
}
MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
TII->get(TargetOpcode::COPY),
CopyInfos[i].first).addReg(CopyInfos[i].second));
}
}
return Changed;
}
/// RemoveDeadBlock - Remove the specified dead machine basic block from the
/// function, updating the CFG.
void TailDuplicatePass::RemoveDeadBlock(MachineBasicBlock *MBB) {
assert(MBB->pred_empty() && "MBB must be dead!");
DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
// Remove all successors.
while (!MBB->succ_empty())
MBB->removeSuccessor(MBB->succ_end()-1);
// Remove the block.
MBB->eraseFromParent();
}