llvm/lib/Target/X86/SSEDomainFix.cpp

494 lines
15 KiB
C++
Raw Normal View History

//===- SSEDomainFix.cpp - Use proper int/float domain for SSE ---*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the SSEDomainFix pass.
//
// Some SSE instructions like mov, and, or, xor are available in different
// variants for different operand types. These variant instructions are
// equivalent, but on Nehalem and newer cpus there is extra latency
// transferring data between integer and floating point domains.
//
// This pass changes the variant instructions to minimize domain crossings.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sse-domain-fix"
#include "X86InstrInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
/// Allocate objects from a pool, allow objects to be recycled, and provide a
/// way of deleting everything.
template<typename T, unsigned PageSize = 64>
class PoolAllocator {
std::vector<T*> Pages, Avail;
public:
~PoolAllocator() { Clear(); }
T* Alloc() {
if (Avail.empty()) {
T *p = new T[PageSize];
Pages.push_back(p);
Avail.reserve(PageSize);
for (unsigned n = 0; n != PageSize; ++n)
Avail.push_back(p+n);
}
T *p = Avail.back();
Avail.pop_back();
return p;
}
// Allow object to be reallocated. It won't be reconstructed.
void Recycle(T *p) {
p->clear();
Avail.push_back(p);
}
// Destroy all objects, make sure there are no external pointers to them.
void Clear() {
Avail.clear();
while (!Pages.empty()) {
delete[] Pages.back();
Pages.pop_back();
}
}
};
/// A DomainValue is a bit like LiveIntervals' ValNo, but it laso keeps track
/// of execution domains.
///
/// An open DomainValue represents a set of instructions that can still switch
/// execution domain. Multiple registers may refer to the same open
/// DomainValue - they will eventually be collapsed to the same execution
/// domain.
///
/// A collapsed DomainValue represents a single register that has been forced
/// into one of more execution domains. There is a separate collapsed
/// DomainValue for each register, but it may contain multiple execution
/// domains. A register value is initially created in a single execution
/// domain, but if we were forced to pay the penalty of a domain crossing, we
/// keep track of the fact the the register is now available in multiple
/// domains.
struct DomainValue {
// Basic reference counting.
unsigned Refs;
// Available domains. For an open DomainValue, it is the still possible
// domains for collapsing. For a collapsed DomainValue it is the domains where
// the register is available for free.
unsigned Mask;
// Position of the last defining instruction.
unsigned Dist;
// Twiddleable instructions using or defining these registers.
SmallVector<MachineInstr*, 8> Instrs;
// Collapsed DomainValue have no instructions to twiddle - it simply keeps
// track of the domains where the registers are already available.
bool collapsed() const { return Instrs.empty(); }
// Is any domain in mask available?
bool compat(unsigned mask) const {
return Mask & mask;
}
// Mark domain as available.
void add(unsigned domain) {
Mask |= 1u << domain;
}
// First domain available in mask.
unsigned firstDomain() const {
return CountTrailingZeros_32(Mask);
}
DomainValue() { clear(); }
void clear() {
Refs = Mask = Dist = 0;
Instrs.clear();
}
};
static const unsigned NumRegs = 16;
class SSEDomainFixPass : public MachineFunctionPass {
static char ID;
PoolAllocator<DomainValue> Pool;
MachineFunction *MF;
const X86InstrInfo *TII;
const TargetRegisterInfo *TRI;
MachineBasicBlock *MBB;
DomainValue **LiveRegs;
typedef DenseMap<MachineBasicBlock*,DomainValue**> LiveOutMap;
LiveOutMap LiveOuts;
unsigned Distance;
public:
SSEDomainFixPass() : MachineFunctionPass(&ID) {}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "SSE execution domain fixup";
}
private:
// Register mapping.
int RegIndex(unsigned Reg);
// LiveRegs manipulations.
void SetLiveReg(int rx, DomainValue *DV);
void Kill(int rx);
void Force(int rx, unsigned domain);
void Collapse(DomainValue *dv, unsigned domain);
bool Merge(DomainValue *A, DomainValue *B);
void enterBasicBlock();
void visitGenericInstr(MachineInstr*);
void visitSoftInstr(MachineInstr*, unsigned mask);
void visitHardInstr(MachineInstr*, unsigned domain);
};
}
char SSEDomainFixPass::ID = 0;
/// Translate TRI register number to an index into our smaller tables of
/// interesting registers. Return -1 for boring registers.
int SSEDomainFixPass::RegIndex(unsigned reg) {
// Registers are sorted lexicographically.
// We just need them to be consecutive, ordering doesn't matter.
assert(X86::XMM9 == X86::XMM0+NumRegs-1 && "Unexpected sort");
reg -= X86::XMM0;
return reg < NumRegs ? reg : -1;
}
/// Set LiveRegs[rx] = dv, updating reference counts.
void SSEDomainFixPass::SetLiveReg(int rx, DomainValue *dv) {
assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs)
LiveRegs = (DomainValue**)calloc(sizeof(DomainValue*), NumRegs);
if (LiveRegs[rx] == dv)
return;
if (LiveRegs[rx]) {
assert(LiveRegs[rx]->Refs && "Bad refcount");
if (--LiveRegs[rx]->Refs == 0) Pool.Recycle(LiveRegs[rx]);
}
LiveRegs[rx] = dv;
if (dv) ++dv->Refs;
}
// Kill register rx, recycle or collapse any DomainValue.
void SSEDomainFixPass::Kill(int rx) {
assert(unsigned(rx) < NumRegs && "Invalid index");
if (!LiveRegs || !LiveRegs[rx]) return;
// Before killing the last reference to an open DomainValue, collapse it to
// the first available domain.
if (LiveRegs[rx]->Refs == 1 && !LiveRegs[rx]->collapsed())
Collapse(LiveRegs[rx], LiveRegs[rx]->firstDomain());
else
SetLiveReg(rx, 0);
}
/// Force register rx into domain.
void SSEDomainFixPass::Force(int rx, unsigned domain) {
assert(unsigned(rx) < NumRegs && "Invalid index");
DomainValue *dv;
if (LiveRegs && (dv = LiveRegs[rx])) {
if (dv->collapsed())
dv->add(domain);
else
Collapse(dv, domain);
} else {
// Set up basic collapsed DomainValue.
dv = Pool.Alloc();
dv->Dist = Distance;
dv->add(domain);
SetLiveReg(rx, dv);
}
}
/// Collapse open DomainValue into given domain. If there are multiple
/// registers using dv, they each get a unique collapsed DomainValue.
void SSEDomainFixPass::Collapse(DomainValue *dv, unsigned domain) {
assert(dv->compat(1u << domain) && "Cannot collapse");
// Collapse all the instructions.
while (!dv->Instrs.empty()) {
MachineInstr *mi = dv->Instrs.back();
TII->SetSSEDomain(mi, domain);
dv->Instrs.pop_back();
}
dv->Mask = 1u << domain;
// If there are multiple users, give them new, unique DomainValues.
if (LiveRegs && dv->Refs > 1) {
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == dv) {
DomainValue *dv2 = Pool.Alloc();
dv2->Dist = Distance;
dv2->add(domain);
SetLiveReg(rx, dv2);
}
}
}
/// Merge - All instructions and registers in B are moved to A, and B is
/// released.
bool SSEDomainFixPass::Merge(DomainValue *A, DomainValue *B) {
assert(!A->collapsed() && "Cannot merge into collapsed");
assert(!B->collapsed() && "Cannot merge from collapsed");
if (!A->compat(B->Mask))
return false;
A->Mask &= B->Mask;
A->Dist = std::max(A->Dist, B->Dist);
A->Instrs.append(B->Instrs.begin(), B->Instrs.end());
for (unsigned rx = 0; rx != NumRegs; ++rx)
if (LiveRegs[rx] == B)
SetLiveReg(rx, A);
return true;
}
void SSEDomainFixPass::enterBasicBlock() {
// Try to coalesce live-out registers from predecessors.
for (MachineBasicBlock::const_livein_iterator i = MBB->livein_begin(),
e = MBB->livein_end(); i != e; ++i) {
int rx = RegIndex(*i);
if (rx < 0) continue;
for (MachineBasicBlock::const_pred_iterator pi = MBB->pred_begin(),
pe = MBB->pred_end(); pi != pe; ++pi) {
LiveOutMap::const_iterator fi = LiveOuts.find(*pi);
if (fi == LiveOuts.end()) continue;
DomainValue *pdv = fi->second[rx];
if (!pdv) continue;
if (!LiveRegs || !LiveRegs[rx])
SetLiveReg(rx, pdv);
else {
// We have a live DomainValue from more than one predecessor.
if (LiveRegs[rx]->collapsed()) {
// We are already collapsed, but predecessor is not. Force him.
if (!pdv->collapsed())
Collapse(pdv, LiveRegs[rx]->firstDomain());
} else {
// Currently open, merge in predecessor.
if (!pdv->collapsed())
Merge(LiveRegs[rx], pdv);
else
Collapse(LiveRegs[rx], pdv->firstDomain());
}
}
}
}
}
// A hard instruction only works in one domain. All input registers will be
// forced into that domain.
void SSEDomainFixPass::visitHardInstr(MachineInstr *mi, unsigned domain) {
// Collapse all uses.
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Force(rx, domain);
}
// Kill all defs and force them.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Kill(rx);
Force(rx, domain);
}
}
// A soft instruction can be changed to work in other domains given by mask.
void SSEDomainFixPass::visitSoftInstr(MachineInstr *mi, unsigned mask) {
// Scan the explicit use operands for incoming domains.
unsigned collmask = mask;
SmallVector<int, 4> used;
if (LiveRegs)
for (unsigned i = mi->getDesc().getNumDefs(),
e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
if (DomainValue *dv = LiveRegs[rx]) {
// Is it possible to use this collapsed register for free?
if (dv->collapsed()) {
if (unsigned m = collmask & dv->Mask)
collmask = m;
} else if (dv->compat(collmask))
used.push_back(rx);
else
Kill(rx);
}
}
// If the collapsed operands force a single domain, propagate the collapse.
if (isPowerOf2_32(collmask)) {
unsigned domain = CountTrailingZeros_32(collmask);
TII->SetSSEDomain(mi, domain);
visitHardInstr(mi, domain);
return;
}
// Kill off any remaining uses that don't match collmask, and build a list of
// incoming DomainValue that we want to merge.
SmallVector<DomainValue*,4> doms;
for (SmallVector<int, 4>::iterator i=used.begin(), e=used.end(); i!=e; ++i) {
int rx = *i;
DomainValue *dv = LiveRegs[rx];
// This useless DomainValue could have been missed above.
if (!dv->compat(collmask)) {
Kill(*i);
continue;
}
// sorted, uniqued insert.
bool inserted = false;
for (SmallVector<DomainValue*,4>::iterator i = doms.begin(), e = doms.end();
i != e && !inserted; ++i) {
if (dv == *i)
inserted = true;
else if (dv->Dist < (*i)->Dist) {
inserted = true;
doms.insert(i, dv);
}
}
if (!inserted)
doms.push_back(dv);
}
// doms are now sorted in order of appearance. Try to merge them all, giving
// priority to the latest ones.
DomainValue *dv = 0;
while (!doms.empty()) {
if (!dv)
dv = doms.back();
else if (!Merge(dv, doms.back()))
for (SmallVector<int,4>::iterator i=used.begin(), e=used.end(); i!=e; ++i)
if (LiveRegs[*i] == doms.back())
Kill(*i);
doms.pop_back();
}
// dv is the DomainValue we are going to use for this instruction.
if (!dv)
dv = Pool.Alloc();
dv->Dist = Distance;
dv->Mask = collmask;
dv->Instrs.push_back(mi);
// Finally set all defs and non-collapsed uses to dv.
for (unsigned i = 0, e = mi->getDesc().getNumOperands(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
if (!LiveRegs || !LiveRegs[rx] || (mo.isDef() && LiveRegs[rx]!=dv)) {
Kill(rx);
SetLiveReg(rx, dv);
}
}
}
void SSEDomainFixPass::visitGenericInstr(MachineInstr *mi) {
// Process explicit defs, kill any XMM registers redefined.
for (unsigned i = 0, e = mi->getDesc().getNumDefs(); i != e; ++i) {
MachineOperand &mo = mi->getOperand(i);
if (!mo.isReg()) continue;
int rx = RegIndex(mo.getReg());
if (rx < 0) continue;
Kill(rx);
}
}
bool SSEDomainFixPass::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
TII = static_cast<const X86InstrInfo*>(MF->getTarget().getInstrInfo());
TRI = MF->getTarget().getRegisterInfo();
MBB = 0;
LiveRegs = 0;
Distance = 0;
assert(NumRegs == X86::VR128RegClass.getNumRegs() && "Bad regclass");
// If no XMM registers are used in the function, we can skip it completely.
bool anyregs = false;
for (TargetRegisterClass::const_iterator I = X86::VR128RegClass.begin(),
E = X86::VR128RegClass.end(); I != E; ++I)
if (MF->getRegInfo().isPhysRegUsed(*I)) {
anyregs = true;
break;
}
if (!anyregs) return false;
MachineBasicBlock *Entry = MF->begin();
SmallPtrSet<MachineBasicBlock*, 16> Visited;
for (df_ext_iterator<MachineBasicBlock*, SmallPtrSet<MachineBasicBlock*, 16> >
DFI = df_ext_begin(Entry, Visited), DFE = df_ext_end(Entry, Visited);
DFI != DFE; ++DFI) {
MBB = *DFI;
enterBasicBlock();
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
++I) {
MachineInstr *mi = I;
if (mi->isDebugValue()) continue;
++Distance;
std::pair<uint16_t, uint16_t> domp = TII->GetSSEDomain(mi);
if (domp.first)
if (domp.second)
visitSoftInstr(mi, domp.second);
else
visitHardInstr(mi, domp.first);
else if (LiveRegs)
visitGenericInstr(mi);
}
// Save live registers at end of MBB - used by enterBasicBlock().
if (LiveRegs)
LiveOuts.insert(std::make_pair(MBB, LiveRegs));
LiveRegs = 0;
}
// Clear the LiveOuts vectors. Should we also collapse any remaining
// DomainValues?
for (LiveOutMap::const_iterator i = LiveOuts.begin(), e = LiveOuts.end();
i != e; ++i)
free(i->second);
LiveOuts.clear();
Pool.Clear();
return false;
}
FunctionPass *llvm::createSSEDomainFixPass() {
return new SSEDomainFixPass();
}