llvm/lib/VMCore/PassManagerT.h

911 lines
31 KiB
C
Raw Normal View History

//===- PassManagerT.h - Container for Passes --------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the PassManagerT class. This class is used to hold,
// maintain, and optimize execution of Pass's. The PassManager class ensures
// that analysis results are available before a pass runs, and that Pass's are
// destroyed when the PassManager is destroyed.
//
// The PassManagerT template is instantiated three times to do its job. The
// public PassManager class is a Pimpl around the PassManagerT<Module> interface
// to avoid having all of the PassManager clients being exposed to the
// implementation details herein.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_PASSMANAGER_T_H
#define LLVM_PASSMANAGER_T_H
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/LeakDetector.h"
#include "llvm/Support/Timer.h"
#include <algorithm>
#include <iostream>
namespace llvm {
//===----------------------------------------------------------------------===//
// Pass debugging information. Often it is useful to find out what pass is
// running when a crash occurs in a utility. When this library is compiled with
// debugging on, a command line option (--debug-pass) is enabled that causes the
// pass name to be printed before it executes.
//
// Different debug levels that can be enabled...
enum PassDebugLevel {
None, Arguments, Structure, Executions, Details
};
static cl::opt<enum PassDebugLevel>
PassDebugging("debug-pass", cl::Hidden,
cl::desc("Print PassManager debugging information"),
cl::values(
clEnumVal(None , "disable debug output"),
clEnumVal(Arguments , "print pass arguments to pass to 'opt'"),
clEnumVal(Structure , "print pass structure before run()"),
clEnumVal(Executions, "print pass name before it is executed"),
clEnumVal(Details , "print pass details when it is executed"),
clEnumValEnd));
//===----------------------------------------------------------------------===//
// PMDebug class - a set of debugging functions, that are not to be
// instantiated by the template.
//
struct PMDebug {
static void PerformPassStartupStuff(Pass *P) {
// If debugging is enabled, print out argument information...
if (PassDebugging >= Arguments) {
std::cerr << "Pass Arguments: ";
PrintArgumentInformation(P);
std::cerr << "\n";
// Print the pass execution structure
if (PassDebugging >= Structure)
P->dumpPassStructure();
}
}
static void PrintArgumentInformation(const Pass *P);
static void PrintPassInformation(unsigned,const char*,Pass *, Module *);
static void PrintPassInformation(unsigned,const char*,Pass *, Function *);
static void PrintPassInformation(unsigned,const char*,Pass *, BasicBlock *);
static void PrintAnalysisSetInfo(unsigned,const char*,Pass *P,
const std::vector<AnalysisID> &);
};
//===----------------------------------------------------------------------===//
// TimingInfo Class - This class is used to calculate information about the
// amount of time each pass takes to execute. This only happens when
// -time-passes is enabled on the command line.
//
class TimingInfo {
std::map<Pass*, Timer> TimingData;
TimerGroup TG;
// Private ctor, must use 'create' member
TimingInfo() : TG("... Pass execution timing report ...") {}
public:
// TimingDtor - Print out information about timing information
~TimingInfo() {
// Delete all of the timers...
TimingData.clear();
// TimerGroup is deleted next, printing the report.
}
// createTheTimeInfo - This method either initializes the TheTimeInfo pointer
// to a non null value (if the -time-passes option is enabled) or it leaves it
// null. It may be called multiple times.
static void createTheTimeInfo();
void passStarted(Pass *P) {
if (dynamic_cast<AnalysisResolver*>(P)) return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
if (I == TimingData.end())
I=TimingData.insert(std::make_pair(P, Timer(P->getPassName(), TG))).first;
I->second.startTimer();
}
void passEnded(Pass *P) {
if (dynamic_cast<AnalysisResolver*>(P)) return;
std::map<Pass*, Timer>::iterator I = TimingData.find(P);
assert (I != TimingData.end() && "passStarted/passEnded not nested right!");
I->second.stopTimer();
}
};
static TimingInfo *TheTimeInfo;
struct BBTraits {
typedef BasicBlock UnitType;
// PassClass - The type of passes tracked by this PassManager
typedef BasicBlockPass PassClass;
// SubPassClass - The types of classes that should be collated together
// This is impossible to match, so BasicBlock instantiations of PassManagerT
// do not collate.
//
typedef BasicBlockPassManager SubPassClass;
// BatcherClass - The type to use for collation of subtypes... This class is
// never instantiated for the BasicBlockPassManager, but it must be an
// instance of PassClass to typecheck.
//
typedef PassClass BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef FunctionPassManagerT ParentClass;
// PMType - The type of this passmanager
typedef BasicBlockPassManager PMType;
};
struct FTraits {
typedef Function UnitType;
// PassClass - The type of passes tracked by this PassManager
typedef FunctionPass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef BasicBlockPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef BasicBlockPassManager BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef ModulePassManager ParentClass;
// PMType - The type of this passmanager
typedef FunctionPassManagerT PMType;
};
struct MTraits {
typedef Module UnitType;
// PassClass - The type of passes tracked by this PassManager
typedef ModulePass PassClass;
// SubPassClass - The types of classes that should be collated together
typedef FunctionPass SubPassClass;
// BatcherClass - The type to use for collation of subtypes...
typedef FunctionPassManagerT BatcherClass;
// ParentClass - The type of the parent PassManager...
typedef AnalysisResolver ParentClass;
// PMType - The type of this passmanager
typedef ModulePassManager PMType;
};
//===----------------------------------------------------------------------===//
// PassManagerT - Container object for passes. The PassManagerT destructor
// deletes all passes contained inside of the PassManagerT, so you shouldn't
// delete passes manually, and all passes should be dynamically allocated.
//
template<typename Trait> class PassManagerT : public AnalysisResolver {
typedef typename Trait::PassClass PassClass;
typedef typename Trait::UnitType UnitType;
typedef typename Trait::ParentClass ParentClass;
typedef typename Trait::SubPassClass SubPassClass;
typedef typename Trait::BatcherClass BatcherClass;
typedef typename Trait::PMType PMType;
friend class ModulePass;
friend class FunctionPass;
friend class BasicBlockPass;
friend class ImmutablePass;
friend class BasicBlockPassManager;
friend class FunctionPassManagerT;
friend class ModulePassManager;
std::vector<PassClass*> Passes; // List of passes to run
std::vector<ImmutablePass*> ImmutablePasses; // List of immutable passes
// The parent of this pass manager...
ParentClass * const Parent;
// The current batcher if one is in use, or null
BatcherClass *Batcher;
// CurrentAnalyses - As the passes are being run, this map contains the
// analyses that are available to the current pass for use. This is accessed
// through the getAnalysis() function in this class and in Pass.
//
std::map<AnalysisID, Pass*> CurrentAnalyses;
// LastUseOf - This map keeps track of the last usage in our pipeline of a
// particular pass. When executing passes, the memory for .first is free'd
// after .second is run.
//
std::map<Pass*, Pass*> LastUseOf;
public:
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
virtual const char *getPMName() const =0;
virtual const char *getPassName() const =0;
virtual bool runPass(PassClass *P, UnitType *M) =0;
// TODO:Figure out what pure virtuals remain.
PassManagerT(ParentClass *Par = 0) : Parent(Par), Batcher(0) {}
virtual ~PassManagerT() {
// Delete all of the contained passes...
for (typename std::vector<PassClass*>::iterator
I = Passes.begin(), E = Passes.end(); I != E; ++I)
delete *I;
for (std::vector<ImmutablePass*>::iterator
I = ImmutablePasses.begin(), E = ImmutablePasses.end(); I != E; ++I)
delete *I;
}
// run - Run all of the queued passes on the specified module in an optimal
// way.
virtual bool runOnUnit(UnitType *M) {
closeBatcher();
CurrentAnalyses.clear();
TimingInfo::createTheTimeInfo();
addImmutablePasses();
// LastUserOf - This contains the inverted LastUseOfMap...
std::map<Pass *, std::vector<Pass*> > LastUserOf;
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I)
LastUserOf[I->second].push_back(I->first);
// Output debug information...
assert(dynamic_cast<PassClass*>(this) &&
"It wasn't the PassClass I thought it was");
if (Parent == 0)
PMDebug::PerformPassStartupStuff((dynamic_cast<PMType*>(this)));
return runPasses(M, LastUserOf);
}
// dumpPassStructure - Implement the -debug-passes=PassStructure option
inline void dumpPassStructure(unsigned Offset = 0) {
// Print out the immutable passes...
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i)
ImmutablePasses[i]->dumpPassStructure(0);
std::cerr << std::string(Offset*2, ' ') << this->getPMName()
<< " Pass Manager\n";
for (typename std::vector<PassClass*>::iterator
I = Passes.begin(), E = Passes.end(); I != E; ++I) {
PassClass *P = *I;
P->dumpPassStructure(Offset+1);
// Loop through and see which classes are destroyed after this one...
for (std::map<Pass*, Pass*>::iterator I = LastUseOf.begin(),
E = LastUseOf.end(); I != E; ++I) {
if (P == I->second) {
std::cerr << "--" << std::string(Offset*2, ' ');
I->first->dumpPassStructure(0);
}
}
}
}
Pass *getImmutablePassOrNull(const PassInfo *ID) const {
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
const PassInfo *IPID = ImmutablePasses[i]->getPassInfo();
if (IPID == ID)
return ImmutablePasses[i];
// This pass is the current implementation of all of the interfaces it
// implements as well.
//
const std::vector<const PassInfo*> &II =
IPID->getInterfacesImplemented();
for (unsigned j = 0, e = II.size(); j != e; ++j)
if (II[j] == ID) return ImmutablePasses[i];
}
return 0;
}
Pass *getAnalysisOrNullDown(const PassInfo *ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I != CurrentAnalyses.end())
return I->second; // Found it.
if (Pass *P = getImmutablePassOrNull(ID))
return P;
if (Batcher)
return ((AnalysisResolver*)Batcher)->getAnalysisOrNullDown(ID);
return 0;
}
Pass *getAnalysisOrNullUp(const PassInfo *ID) const {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(ID);
if (I != CurrentAnalyses.end())
return I->second; // Found it.
if (Parent) // Try scanning...
return Parent->getAnalysisOrNullUp(ID);
else if (!ImmutablePasses.empty())
return getImmutablePassOrNull(ID);
return 0;
}
// markPassUsed - Inform higher level pass managers (and ourselves)
// that these analyses are being used by this pass. This is used to
// make sure that analyses are not free'd before we have to use
// them...
//
void markPassUsed(const PassInfo *P, Pass *User) {
std::map<AnalysisID, Pass*>::const_iterator I = CurrentAnalyses.find(P);
if (I != CurrentAnalyses.end()) {
LastUseOf[I->second] = User; // Local pass, extend the lifetime
// Prolong live range of analyses that are needed after an analysis pass
// is destroyed, for querying by subsequent passes
AnalysisUsage AnUsage;
I->second->getAnalysisUsage(AnUsage);
const std::vector<AnalysisID> &IDs = AnUsage.getRequiredTransitiveSet();
for (std::vector<AnalysisID>::const_iterator i = IDs.begin(),
e = IDs.end(); i != e; ++i)
markPassUsed(*i, User);
} else {
// Pass not in current available set, must be a higher level pass
// available to us, propagate to parent pass manager... We tell the
// parent that we (the passmanager) are using the analysis so that it
// frees the analysis AFTER this pass manager runs.
//
if (Parent) {
assert(dynamic_cast<Pass*>(this) &&
"It wasn't the Pass type I thought it was.");
Parent->markPassUsed(P, dynamic_cast<Pass*>(this));
} else {
assert(getAnalysisOrNullUp(P) &&
dynamic_cast<ImmutablePass*>(getAnalysisOrNullUp(P)) &&
"Pass available but not found! "
"Perhaps this is a module pass requiring a function pass?");
}
}
}
// Return the number of parent PassManagers that exist
virtual unsigned getDepth() const {
if (Parent == 0) return 0;
return 1 + Parent->getDepth();
}
virtual unsigned getNumContainedPasses() const { return Passes.size(); }
virtual const Pass *getContainedPass(unsigned N) const {
assert(N < Passes.size() && "Pass number out of range!");
return Passes[N];
}
// add - Add a pass to the queue of passes to run. This gives ownership of
// the Pass to the PassManager. When the PassManager is destroyed, the pass
// will be destroyed as well, so there is no need to delete the pass. This
// implies that all passes MUST be new'd.
//
void add(PassClass *P) {
// Get information about what analyses the pass uses...
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
addRequiredPasses(AnUsage.getRequiredSet());
// Tell the pass to add itself to this PassManager... the way it does so
// depends on the class of the pass, and is critical to laying out passes in
// an optimal order..
//
assert(dynamic_cast<PMType*>(this) &&
"It wasn't the right passmanager type.");
P->addToPassManager(static_cast<PMType*>(this), AnUsage);
}
// add - H4x0r an ImmutablePass into a PassManager that might not be
// expecting one.
//
void add(ImmutablePass *P) {
// Get information about what analyses the pass uses...
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
addRequiredPasses(AnUsage.getRequiredSet());
// Add the ImmutablePass to this PassManager.
addPass(P, AnUsage);
}
private:
// addPass - These functions are used to implement the subclass specific
// behaviors present in PassManager. Basically the add(Pass*) method ends up
// reflecting its behavior into a Pass::addToPassManager call. Subclasses of
// Pass override it specifically so that they can reflect the type
// information inherent in "this" back to the PassManager.
//
// For generic Pass subclasses (which are interprocedural passes), we simply
// add the pass to the end of the pass list and terminate any accumulation of
// FunctionPass's that are present.
//
void addPass(PassClass *P, AnalysisUsage &AnUsage) {
const std::vector<AnalysisID> &RequiredSet = AnUsage.getRequiredSet();
// FIXME: If this pass being added isn't killed by any of the passes in the
// batcher class then we can reorder the pass to execute before the batcher
// does, which will potentially allow us to batch more passes!
//
if (Batcher)
closeBatcher(); // This pass cannot be batched!
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(P, this);
Passes.push_back(P);
// Inform higher level pass managers (and ourselves) that these analyses are
// being used by this pass. This is used to make sure that analyses are not
// free'd before we have to use them...
//
for (std::vector<AnalysisID>::const_iterator I = RequiredSet.begin(),
E = RequiredSet.end(); I != E; ++I)
markPassUsed(*I, P); // Mark *I as used by P
removeNonPreservedAnalyses(AnUsage);
makeCurrentlyAvailable(P);
// For now assume that our results are never used...
LastUseOf[P] = P;
}
// For FunctionPass subclasses, we must be sure to batch the FunctionPass's
// together in a BatcherClass object so that all of the analyses are run
// together a function at a time.
//
void addPass(SubPassClass *MP, AnalysisUsage &AnUsage) {
if (Batcher == 0) { // If we don't have a batcher yet, make one now.
assert(dynamic_cast<PMType*>(this) &&
"It wasn't the PassManager type I thought it was");
Batcher = new BatcherClass((static_cast<PMType*>(this)));
}
// The Batcher will queue the passes up
MP->addToPassManager(Batcher, AnUsage);
}
// closeBatcher - Terminate the batcher that is being worked on.
void closeBatcher() {
if (Batcher) {
Passes.push_back(Batcher);
Batcher = 0;
}
}
void addRequiredPasses(const std::vector<AnalysisID> &Required) {
for (std::vector<AnalysisID>::const_iterator I = Required.begin(),
E = Required.end(); I != E; ++I) {
if (getAnalysisOrNullDown(*I) == 0) {
Pass *AP = (*I)->createPass();
if (ImmutablePass *IP = dynamic_cast<ImmutablePass *> (AP)) add(IP);
else if (PassClass *RP = dynamic_cast<PassClass *> (AP)) add(RP);
else assert (0 && "Wrong kind of pass for this PassManager");
}
}
}
public:
// When an ImmutablePass is added, it gets added to the top level pass
// manager.
void addPass(ImmutablePass *IP, AnalysisUsage &AU) {
if (Parent) { // Make sure this request goes to the top level passmanager...
Parent->addPass(IP, AU);
return;
}
// Set the Resolver instance variable in the Pass so that it knows where to
// find this object...
//
setAnalysisResolver(IP, this);
ImmutablePasses.push_back(IP);
// All Required analyses should be available to the pass as it initializes!
// Here we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the implementations
// it needs.
//
IP->AnalysisImpls.clear();
IP->AnalysisImpls.reserve(AU.getRequiredSet().size());
for (std::vector<const PassInfo *>::const_iterator
I = AU.getRequiredSet().begin(),
E = AU.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = getAnalysisOrNullUp(*I);
if (Impl == 0) {
std::cerr << "Analysis '" << (*I)->getPassName()
<< "' used but not available!";
assert(0 && "Analysis used but not available!");
} else if (PassDebugging == Details) {
if ((*I)->getPassName() != std::string(Impl->getPassName()))
std::cerr << " Interface '" << (*I)->getPassName()
<< "' implemented by '" << Impl->getPassName() << "'\n";
}
IP->AnalysisImpls.push_back(std::make_pair(*I, Impl));
}
// Initialize the immutable pass...
IP->initializePass();
}
private:
// Add any immutable passes to the CurrentAnalyses set...
inline void addImmutablePasses() {
for (unsigned i = 0, e = ImmutablePasses.size(); i != e; ++i) {
ImmutablePass *IPass = ImmutablePasses[i];
if (const PassInfo *PI = IPass->getPassInfo()) {
CurrentAnalyses[PI] = IPass;
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = IPass;
}
}
}
// Run all of the passes
inline bool runPasses(UnitType *M,
std::map<Pass *, std::vector<Pass*> > &LastUserOf) {
bool MadeChanges = false;
for (unsigned i = 0, e = Passes.size(); i < e; ++i) {
PassClass *P = Passes[i];
PMDebug::PrintPassInformation(getDepth(), "Executing Pass", P, M);
// Get information about what analyses the pass uses...
AnalysisUsage AnUsage;
P->getAnalysisUsage(AnUsage);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Required", P,
AnUsage.getRequiredSet());
initialiseAnalysisImpl(P, AnUsage);
// Run the sub pass!
if (TheTimeInfo) TheTimeInfo->passStarted(P);
bool Changed = runPass(P, M);
if (TheTimeInfo) TheTimeInfo->passEnded(P);
MadeChanges |= Changed;
// Check for memory leaks by the pass...
LeakDetector::checkForGarbage(std::string("after running pass '") +
P->getPassName() + "'");
if (Changed)
PMDebug::PrintPassInformation(getDepth()+1, "Made Modification", P, M);
PMDebug::PrintAnalysisSetInfo(getDepth(), "Preserved", P,
AnUsage.getPreservedSet());
// Erase all analyses not in the preserved set
removeNonPreservedAnalyses(AnUsage);
makeCurrentlyAvailable(P);
// free memory and remove dead passes from the CurrentAnalyses list...
removeDeadPasses(P, M, LastUserOf);
}
return MadeChanges;
}
// All Required analyses should be available to the pass as it runs! Here
// we fill in the AnalysisImpls member of the pass so that it can
// successfully use the getAnalysis() method to retrieve the
// implementations it needs.
//
inline void initialiseAnalysisImpl(PassClass *P, AnalysisUsage &AnUsage) {
P->AnalysisImpls.clear();
P->AnalysisImpls.reserve(AnUsage.getRequiredSet().size());
for (std::vector<const PassInfo *>::const_iterator
I = AnUsage.getRequiredSet().begin(),
E = AnUsage.getRequiredSet().end(); I != E; ++I) {
Pass *Impl = getAnalysisOrNullUp(*I);
if (Impl == 0) {
std::cerr << "Analysis '" << (*I)->getPassName()
<< "' used but not available!";
assert(0 && "Analysis used but not available!");
} else if (PassDebugging == Details) {
if ((*I)->getPassName() != std::string(Impl->getPassName()))
std::cerr << " Interface '" << (*I)->getPassName()
<< "' implemented by '" << Impl->getPassName() << "'\n";
}
P->AnalysisImpls.push_back(std::make_pair(*I, Impl));
}
}
inline void removeNonPreservedAnalyses(AnalysisUsage &AnUsage) {
if (!AnUsage.getPreservesAll()) {
const std::vector<AnalysisID> &PreservedSet = AnUsage.getPreservedSet();
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin(),
E = CurrentAnalyses.end(); I != E; )
if (std::find(PreservedSet.begin(), PreservedSet.end(), I->first) !=
PreservedSet.end())
++I; // This analysis is preserved, leave it in the available set...
else {
if (!dynamic_cast<ImmutablePass*>(I->second)) {
std::map<AnalysisID, Pass*>::iterator J = I++;
CurrentAnalyses.erase(J); // Analysis not preserved!
} else {
++I;
}
}
}
}
inline void removeDeadPasses(Pass* P, UnitType *M,
std::map<Pass *, std::vector<Pass*> > &LastUserOf) {
std::vector<Pass*> &DeadPass = LastUserOf[P];
for (std::vector<Pass*>::iterator I = DeadPass.begin(),E = DeadPass.end();
I != E; ++I) {
PMDebug::PrintPassInformation(getDepth()+1, "Freeing Pass", *I, M);
(*I)->releaseMemory();
}
for (std::map<AnalysisID, Pass*>::iterator I = CurrentAnalyses.begin();
I != CurrentAnalyses.end(); ) {
std::vector<Pass*>::iterator DPI = std::find(DeadPass.begin(),
DeadPass.end(), I->second);
if (DPI != DeadPass.end()) { // This pass is dead now... remove it
std::map<AnalysisID, Pass*>::iterator IDead = I++;
CurrentAnalyses.erase(IDead);
} else {
++I; // Move on to the next element...
}
}
}
inline void makeCurrentlyAvailable(Pass* P) {
if (const PassInfo *PI = P->getPassInfo()) {
CurrentAnalyses[PI] = P;
// This pass is the current implementation of all of the interfaces it
// implements as well.
//
const std::vector<const PassInfo*> &II = PI->getInterfacesImplemented();
for (unsigned i = 0, e = II.size(); i != e; ++i)
CurrentAnalyses[II[i]] = P;
}
}
};
//===----------------------------------------------------------------------===//
// BasicBlockPassManager
//
// This pass manager is used to group together all of the BasicBlockPass's
// into a single unit.
//
class BasicBlockPassManager : public BasicBlockPass,
public BBTraits,
public PassManagerT<BBTraits> {
public:
BasicBlockPassManager(BBTraits::ParentClass* PC) :
PassManagerT<BBTraits>(PC) {
}
BasicBlockPassManager(BasicBlockPassManager* BBPM) :
PassManagerT<BBTraits>(BBPM->Parent) {
}
// runPass - Specify how the pass should be run on the UnitType
virtual bool runPass(BBTraits::PassClass *P, BasicBlock *M) {
// TODO: init and finalize
return P->runOnBasicBlock(*M);
}
virtual ~BasicBlockPassManager() {}
virtual void dumpPassStructure(unsigned Offset = 0) {
PassManagerT<BBTraits>::dumpPassStructure(Offset);
}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
virtual const char *getPMName() const { return "BasicBlock"; }
virtual const char *getPassName() const { return "BasicBlock Pass Manager"; }
virtual bool doInitialization(Module &M);
virtual bool doInitialization(Function &F);
virtual bool runOnBasicBlock(BasicBlock &BB);
virtual bool doFinalization(Function &F);
virtual bool doFinalization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
};
//===----------------------------------------------------------------------===//
// FunctionPassManager
//
// This pass manager is used to group together all of the FunctionPass's
// into a single unit.
//
class FunctionPassManagerT : public FunctionPass,
public FTraits,
public PassManagerT<FTraits> {
public:
FunctionPassManagerT() : PassManagerT<FTraits>(0) {}
// Parent constructor
FunctionPassManagerT(FTraits::ParentClass* PC) : PassManagerT<FTraits>(PC) {}
FunctionPassManagerT(FunctionPassManagerT* FPM) :
PassManagerT<FTraits>(FPM->Parent) {
}
virtual ~FunctionPassManagerT() {}
virtual void dumpPassStructure(unsigned Offset = 0) {
PassManagerT<FTraits>::dumpPassStructure(Offset);
}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
virtual const char *getPMName() const { return "Function"; }
virtual const char *getPassName() const { return "Function Pass Manager"; }
virtual bool runOnFunction(Function &F);
virtual bool doInitialization(Module &M);
virtual bool doFinalization(Module &M);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
// runPass - Specify how the pass should be run on the UnitType
virtual bool runPass(FTraits::PassClass *P, Function *F) {
return P->runOnFunction(*F);
}
};
//===----------------------------------------------------------------------===//
// ModulePassManager
//
// This is the top level PassManager implementation that holds generic passes.
//
class ModulePassManager : public ModulePass,
public MTraits,
public PassManagerT<MTraits> {
public:
ModulePassManager() : PassManagerT<MTraits>(0) {}
// Batcher Constructor
ModulePassManager(MTraits::ParentClass* PC) : PassManagerT<MTraits>(PC) {}
ModulePassManager(ModulePassManager* MPM) :
PassManagerT<MTraits>((MPM->Parent)) {
}
virtual ~ModulePassManager() {}
virtual void dumpPassStructure(unsigned Offset = 0) {
PassManagerT<MTraits>::dumpPassStructure(Offset);
}
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
virtual const char *getPassName() const { return "Module Pass Manager"; }
// getPMName() - Return the name of the unit the PassManager operates on for
// debugging.
virtual const char *getPMName() const { return "Module"; }
// runOnModule - Implement the PassManager interface.
virtual bool runOnModule(Module &M);
// runPass - Specify how the pass should be run on the UnitType
virtual bool runPass(MTraits::PassClass *P, Module *M) {
return P->runOnModule(*M);
}
};
//===----------------------------------------------------------------------===//
// PassManager Method Implementations
//
// BasicBlockPassManager Implementations
//
inline bool BasicBlockPassManager::runOnBasicBlock(BasicBlock &BB) {
return ((BBTraits::PMType*)this)->runOnUnit(&BB);
}
inline bool BasicBlockPassManager::doInitialization(Module &M) {
bool Changed = false;
for (unsigned i = 0, e =((BBTraits::PMType*)this)->Passes.size(); i != e; ++i)
((BBTraits::PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool BasicBlockPassManager::doInitialization(Function &F) {
bool Changed = false;
for (unsigned i = 0, e =((BBTraits::PMType*)this)->Passes.size(); i != e; ++i)
((BBTraits::PMType*)this)->Passes[i]->doInitialization(F);
return Changed;
}
inline bool BasicBlockPassManager::doFinalization(Function &F) {
bool Changed = false;
for (unsigned i = 0, e =((BBTraits::PMType*)this)->Passes.size(); i != e; ++i)
((BBTraits::PMType*)this)->Passes[i]->doFinalization(F);
return Changed;
}
inline bool BasicBlockPassManager::doFinalization(Module &M) {
bool Changed = false;
for (unsigned i=0, e = ((BBTraits::PMType*)this)->Passes.size(); i != e; ++i)
((BBTraits::PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
// FunctionPassManagerT Implementations
//
inline bool FunctionPassManagerT::runOnFunction(Function &F) {
return ((FTraits::PMType*)this)->runOnUnit(&F);
}
inline bool FunctionPassManagerT::doInitialization(Module &M) {
bool Changed = false;
for (unsigned i=0, e = ((FTraits::PMType*)this)->Passes.size(); i != e; ++i)
((FTraits::PMType*)this)->Passes[i]->doInitialization(M);
return Changed;
}
inline bool FunctionPassManagerT::doFinalization(Module &M) {
bool Changed = false;
for (unsigned i=0, e = ((FTraits::PMType*)this)->Passes.size(); i != e; ++i)
((FTraits::PMType*)this)->Passes[i]->doFinalization(M);
return Changed;
}
// ModulePassManager Implementations
//
bool ModulePassManager::runOnModule(Module &M) {
return ((PassManagerT<MTraits>*)this)->runOnUnit(&M);
}
} // End llvm namespace
#endif