llvm/lib/Analysis/AliasAnalysis.cpp

156 lines
5.8 KiB
C++
Raw Normal View History

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/BasicBlock.h"
#include "llvm/Support/InstVisitor.h"
#include "llvm/iMemory.h"
#include "llvm/Constants.h"
#include "llvm/GlobalValue.h"
#include "llvm/Pass.h"
// Register the AliasAnalysis interface, providing a nice name to refer to.
static RegisterAnalysisGroup<AliasAnalysis> X("Alias Analysis");
// CanModify - Define a little visitor class that is used to check to see if
// arbitrary chunks of code can modify a specified pointer.
//
namespace {
struct CanModify : public InstVisitor<CanModify, bool> {
const AliasAnalysis &AA;
const Value *Ptr;
CanModify(const AliasAnalysis *aa, const Value *ptr)
: AA(*aa), Ptr(ptr) {}
bool visitInvokeInst(InvokeInst &II) {
return AA.canInvokeModify(II, Ptr);
}
bool visitCallInst(CallInst &CI) {
return AA.canCallModify(CI, Ptr);
}
bool visitStoreInst(StoreInst &SI) {
assert(!SI.hasIndices() && "Only support stores without indexing!");
return AA.alias(Ptr, SI.getOperand(1));
}
// Other instructions do not alias anything.
bool visitInstruction(Instruction &I) { return false; }
};
}
// AliasAnalysis destructor: DO NOT move this to the header file for
// AliasAnalysis or else clients of the AliasAnalysis class may not depend on
// the AliasAnalysis.o file in the current .a file, causing alias analysis
// support to not be included in the tool correctly!
//
AliasAnalysis::~AliasAnalysis() {}
// canBasicBlockModify - Return true if it is possible for execution of the
// specified basic block to modify the value pointed to by Ptr.
//
bool AliasAnalysis::canBasicBlockModify(const BasicBlock &bb,
const Value *Ptr) const {
CanModify CM(this, Ptr);
BasicBlock &BB = const_cast<BasicBlock&>(bb);
for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
if (CM.visit(I)) // Check every instruction in the basic block...
return true;
return false;
}
// canInstructionRangeModify - Return true if it is possible for the execution
// of the specified instructions to modify the value pointed to by Ptr. The
// instructions to consider are all of the instructions in the range of [I1,I2]
// INCLUSIVE. I1 and I2 must be in the same basic block.
//
bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1,
const Instruction &I2,
const Value *Ptr) const {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
CanModify CM(this, Ptr);
BasicBlock::iterator I = const_cast<Instruction*>(&I1);
BasicBlock::iterator E = const_cast<Instruction*>(&I2);
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I)
if (CM.visit(I)) // Check every instruction in the basic block...
return true;
return false;
}
//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass Implementation
//===----------------------------------------------------------------------===//
//
// Because of the way .a files work, the implementation of the
// BasicAliasAnalysis class MUST be in the AliasAnalysis file itself, or else we
// run the risk of AliasAnalysis being used, but the default implementation not
// being linked into the tool that uses it. As such, we register and implement
// the class here.
//
namespace {
// Register this pass...
RegisterOpt<BasicAliasAnalysis>
X("basicaa", "Basic Alias Analysis (default AA impl)");
// Declare that we implement the AliasAnalysis interface
RegisterAnalysisGroup<AliasAnalysis, BasicAliasAnalysis, true> Y;
} // End of anonymous namespace
// hasUniqueAddress - Return true if the
static inline bool hasUniqueAddress(const Value *V) {
return isa<GlobalValue>(V) || isa<MallocInst>(V) || isa<AllocaInst>(V);
}
AliasAnalysis::Result BasicAliasAnalysis::alias(const Value *V1,
const Value *V2) const {
// Strip off constant pointer refs if they exist
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V1))
V1 = CPR->getValue();
if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(V2))
V2 = CPR->getValue();
// Are we checking for alias of the same value?
if (V1 == V2) return MustAlias;
if (!isa<PointerType>(V1->getType()) || !isa<PointerType>(V2->getType()))
return NoAlias; // Scalars cannot alias each other
bool V1Unique = hasUniqueAddress(V1);
bool V2Unique = hasUniqueAddress(V2);
if (V1Unique && V2Unique)
return NoAlias; // Can't alias if they are different unique values
if ((V1Unique && isa<ConstantPointerNull>(V2)) ||
(V2Unique && isa<ConstantPointerNull>(V1)))
return NoAlias; // Unique values don't alias null
// TODO: Handle getelementptr with nonzero offset
return MayAlias;
}