llvm/lib/Transforms/Scalar/LoopIndexSplit.cpp

873 lines
28 KiB
C++
Raw Normal View History

//===- LoopIndexSplit.cpp - Loop Index Splitting Pass ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Devang Patel and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Loop Index Splitting Pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "loop-index-split"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Support/Compiler.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
STATISTIC(NumIndexSplit, "Number of loops index split");
namespace {
class VISIBILITY_HIDDEN LoopIndexSplit : public LoopPass {
public:
static char ID; // Pass ID, replacement for typeid
LoopIndexSplit() : LoopPass((intptr_t)&ID) {}
// Index split Loop L. Return true if loop is split.
bool runOnLoop(Loop *L, LPPassManager &LPM);
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<ScalarEvolution>();
AU.addPreserved<ScalarEvolution>();
AU.addRequiredID(LCSSAID);
AU.addPreservedID(LCSSAID);
AU.addRequired<LoopInfo>();
AU.addPreserved<LoopInfo>();
AU.addRequiredID(LoopSimplifyID);
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<DominatorTree>();
AU.addRequired<DominanceFrontier>();
AU.addPreserved<DominatorTree>();
AU.addPreserved<DominanceFrontier>();
}
private:
class SplitInfo {
public:
SplitInfo() : SplitValue(NULL), SplitCondition(NULL) {}
// Induction variable's range is split at this value.
Value *SplitValue;
// This compare instruction compares IndVar against SplitValue.
ICmpInst *SplitCondition;
// Clear split info.
void clear() {
SplitValue = NULL;
SplitCondition = NULL;
}
};
private:
/// Find condition inside a loop that is suitable candidate for index split.
void findSplitCondition();
/// Find loop's exit condition.
void findLoopConditionals();
/// Return induction variable associated with value V.
void findIndVar(Value *V, Loop *L);
/// processOneIterationLoop - Current loop L contains compare instruction
/// that compares induction variable, IndVar, agains loop invariant. If
/// entire (i.e. meaningful) loop body is dominated by this compare
/// instruction then loop body is executed only for one iteration. In
/// such case eliminate loop structure surrounding this loop body. For
bool processOneIterationLoop(SplitInfo &SD);
/// If loop header includes loop variant instruction operands then
/// this loop may not be eliminated.
bool safeHeader(SplitInfo &SD, BasicBlock *BB);
/// If Exiting block includes loop variant instructions then this
/// loop may not be eliminated.
bool safeExitingBlock(SplitInfo &SD, BasicBlock *BB);
/// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
/// This routine is used to remove split condition's dead branch, dominated by
/// DeadBB. LiveBB dominates split conidition's other branch.
void removeBlocks(BasicBlock *DeadBB, Loop *LP, BasicBlock *LiveBB);
/// Find cost of spliting loop L.
unsigned findSplitCost(Loop *L, SplitInfo &SD);
bool splitLoop(SplitInfo &SD);
void initialize() {
IndVar = NULL;
IndVarIncrement = NULL;
ExitCondition = NULL;
StartValue = NULL;
ExitValueNum = 0;
SplitData.clear();
}
private:
// Current Loop.
Loop *L;
LPPassManager *LPM;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
DominanceFrontier *DF;
SmallVector<SplitInfo, 4> SplitData;
// Induction variable whose range is being split by this transformation.
PHINode *IndVar;
Instruction *IndVarIncrement;
// Loop exit condition.
ICmpInst *ExitCondition;
// Induction variable's initial value.
Value *StartValue;
// Induction variable's final loop exit value operand number in exit condition..
unsigned ExitValueNum;
};
char LoopIndexSplit::ID = 0;
RegisterPass<LoopIndexSplit> X ("loop-index-split", "Index Split Loops");
}
LoopPass *llvm::createLoopIndexSplitPass() {
return new LoopIndexSplit();
}
// Index split Loop L. Return true if loop is split.
bool LoopIndexSplit::runOnLoop(Loop *IncomingLoop, LPPassManager &LPM_Ref) {
bool Changed = false;
L = IncomingLoop;
LPM = &LPM_Ref;
// FIXME - Nested loops make dominator info updates tricky.
if (!L->getSubLoops().empty())
return false;
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>();
LI = &getAnalysis<LoopInfo>();
DF = &getAnalysis<DominanceFrontier>();
initialize();
findLoopConditionals();
if (!ExitCondition)
return false;
findSplitCondition();
if (SplitData.empty())
return false;
// First see if it is possible to eliminate loop itself or not.
for (SmallVector<SplitInfo, 4>::iterator SI = SplitData.begin(),
E = SplitData.end(); SI != E;) {
SplitInfo &SD = *SI;
if (SD.SplitCondition->getPredicate() == ICmpInst::ICMP_EQ) {
Changed = processOneIterationLoop(SD);
if (Changed) {
++NumIndexSplit;
// If is loop is eliminated then nothing else to do here.
return Changed;
} else {
SmallVector<SplitInfo, 4>::iterator Delete_SI = SI;
++SI;
SplitData.erase(Delete_SI);
}
} else
++SI;
}
unsigned MaxCost = 99;
unsigned Index = 0;
unsigned MostProfitableSDIndex = 0;
for (SmallVector<SplitInfo, 4>::iterator SI = SplitData.begin(),
E = SplitData.end(); SI != E; ++SI, ++Index) {
SplitInfo SD = *SI;
// ICM_EQs are already handled above.
assert (SD.SplitCondition->getPredicate() != ICmpInst::ICMP_EQ &&
"Unexpected split condition predicate");
unsigned Cost = findSplitCost(L, SD);
if (Cost < MaxCost)
MostProfitableSDIndex = Index;
}
// Split most profitiable condition.
if (!SplitData.empty())
Changed = splitLoop(SplitData[MostProfitableSDIndex]);
if (Changed)
++NumIndexSplit;
return Changed;
}
/// Return true if V is a induction variable or induction variable's
/// increment for loop L.
void LoopIndexSplit::findIndVar(Value *V, Loop *L) {
Instruction *I = dyn_cast<Instruction>(V);
if (!I)
return;
// Check if I is a phi node from loop header or not.
if (PHINode *PN = dyn_cast<PHINode>(V)) {
if (PN->getParent() == L->getHeader()) {
IndVar = PN;
return;
}
}
// Check if I is a add instruction whose one operand is
// phi node from loop header and second operand is constant.
if (I->getOpcode() != Instruction::Add)
return;
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
if (PHINode *PN = dyn_cast<PHINode>(Op0)) {
if (PN->getParent() == L->getHeader()
&& isa<ConstantInt>(Op1)) {
IndVar = PN;
IndVarIncrement = I;
return;
}
}
if (PHINode *PN = dyn_cast<PHINode>(Op1)) {
if (PN->getParent() == L->getHeader()
&& isa<ConstantInt>(Op0)) {
IndVar = PN;
IndVarIncrement = I;
return;
}
}
return;
}
// Find loop's exit condition and associated induction variable.
void LoopIndexSplit::findLoopConditionals() {
BasicBlock *ExitingBlock = NULL;
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
if (!L->isLoopExit(BB))
continue;
if (ExitingBlock)
return;
ExitingBlock = BB;
}
if (!ExitingBlock)
return;
// If exit block's terminator is conditional branch inst then we have found
// exit condition.
BranchInst *BR = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
if (!BR || BR->isUnconditional())
return;
ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
if (!CI)
return;
ExitCondition = CI;
// Exit condition's one operand is loop invariant exit value and second
// operand is SCEVAddRecExpr based on induction variable.
Value *V0 = CI->getOperand(0);
Value *V1 = CI->getOperand(1);
SCEVHandle SH0 = SE->getSCEV(V0);
SCEVHandle SH1 = SE->getSCEV(V1);
if (SH0->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH1)) {
ExitValueNum = 0;
findIndVar(V1, L);
}
else if (SH1->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH0)) {
ExitValueNum = 1;
findIndVar(V0, L);
}
if (!IndVar)
ExitCondition = NULL;
else if (IndVar) {
BasicBlock *Preheader = L->getLoopPreheader();
StartValue = IndVar->getIncomingValueForBlock(Preheader);
}
}
/// Find condition inside a loop that is suitable candidate for index split.
void LoopIndexSplit::findSplitCondition() {
SplitInfo SD;
// Check all basic block's terminators.
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
// If this basic block does not terminate in a conditional branch
// then terminator is not a suitable split condition.
BranchInst *BR = dyn_cast<BranchInst>(BB->getTerminator());
if (!BR)
continue;
if (BR->isUnconditional())
continue;
ICmpInst *CI = dyn_cast<ICmpInst>(BR->getCondition());
if (!CI || CI == ExitCondition)
return;
// If one operand is loop invariant and second operand is SCEVAddRecExpr
// based on induction variable then CI is a candidate split condition.
Value *V0 = CI->getOperand(0);
Value *V1 = CI->getOperand(1);
SCEVHandle SH0 = SE->getSCEV(V0);
SCEVHandle SH1 = SE->getSCEV(V1);
if (SH0->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH1)) {
SD.SplitValue = V0;
SD.SplitCondition = CI;
if (PHINode *PN = dyn_cast<PHINode>(V1)) {
if (PN == IndVar)
SplitData.push_back(SD);
}
else if (Instruction *Insn = dyn_cast<Instruction>(V1)) {
if (IndVarIncrement && IndVarIncrement == Insn)
SplitData.push_back(SD);
}
}
else if (SH1->isLoopInvariant(L) && isa<SCEVAddRecExpr>(SH0)) {
SD.SplitValue = V1;
SD.SplitCondition = CI;
if (PHINode *PN = dyn_cast<PHINode>(V0)) {
if (PN == IndVar)
SplitData.push_back(SD);
}
else if (Instruction *Insn = dyn_cast<Instruction>(V0)) {
if (IndVarIncrement && IndVarIncrement == Insn)
SplitData.push_back(SD);
}
}
}
}
/// processOneIterationLoop - Current loop L contains compare instruction
/// that compares induction variable, IndVar, against loop invariant. If
/// entire (i.e. meaningful) loop body is dominated by this compare
/// instruction then loop body is executed only once. In such case eliminate
/// loop structure surrounding this loop body. For example,
/// for (int i = start; i < end; ++i) {
/// if ( i == somevalue) {
/// loop_body
/// }
/// }
/// can be transformed into
/// if (somevalue >= start && somevalue < end) {
/// i = somevalue;
/// loop_body
/// }
bool LoopIndexSplit::processOneIterationLoop(SplitInfo &SD) {
BasicBlock *Header = L->getHeader();
// First of all, check if SplitCondition dominates entire loop body
// or not.
// If SplitCondition is not in loop header then this loop is not suitable
// for this transformation.
if (SD.SplitCondition->getParent() != Header)
return false;
// If loop header includes loop variant instruction operands then
// this loop may not be eliminated.
if (!safeHeader(SD, Header))
return false;
// If Exiting block includes loop variant instructions then this
// loop may not be eliminated.
if (!safeExitingBlock(SD, ExitCondition->getParent()))
return false;
// Update CFG.
// Replace index variable with split value in loop body. Loop body is executed
// only when index variable is equal to split value.
IndVar->replaceAllUsesWith(SD.SplitValue);
// Remove Latch to Header edge.
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *LatchSucc = NULL;
BranchInst *BR = dyn_cast<BranchInst>(Latch->getTerminator());
if (!BR)
return false;
Header->removePredecessor(Latch);
for (succ_iterator SI = succ_begin(Latch), E = succ_end(Latch);
SI != E; ++SI) {
if (Header != *SI)
LatchSucc = *SI;
}
BR->setUnconditionalDest(LatchSucc);
Instruction *Terminator = Header->getTerminator();
Value *ExitValue = ExitCondition->getOperand(ExitValueNum);
// Replace split condition in header.
// Transform
// SplitCondition : icmp eq i32 IndVar, SplitValue
// into
// c1 = icmp uge i32 SplitValue, StartValue
// c2 = icmp ult i32 vSplitValue, ExitValue
// and i32 c1, c2
bool SignedPredicate = ExitCondition->isSignedPredicate();
Instruction *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE,
SD.SplitValue, StartValue, "lisplit",
Terminator);
Instruction *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, ExitValue, "lisplit",
Terminator);
Instruction *NSplitCond = BinaryOperator::createAnd(C1, C2, "lisplit",
Terminator);
SD.SplitCondition->replaceAllUsesWith(NSplitCond);
SD.SplitCondition->eraseFromParent();
// Now, clear latch block. Remove instructions that are responsible
// to increment induction variable.
Instruction *LTerminator = Latch->getTerminator();
for (BasicBlock::iterator LB = Latch->begin(), LE = Latch->end();
LB != LE; ) {
Instruction *I = LB;
++LB;
if (isa<PHINode>(I) || I == LTerminator)
continue;
if (I == IndVarIncrement)
I->replaceAllUsesWith(ExitValue);
else
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
LPM->deleteLoopFromQueue(L);
// Update Dominator Info.
// Only CFG change done is to remove Latch to Header edge. This
// does not change dominator tree because Latch did not dominate
// Header.
if (DF) {
DominanceFrontier::iterator HeaderDF = DF->find(Header);
if (HeaderDF != DF->end())
DF->removeFromFrontier(HeaderDF, Header);
DominanceFrontier::iterator LatchDF = DF->find(Latch);
if (LatchDF != DF->end())
DF->removeFromFrontier(LatchDF, Header);
}
return true;
}
// If loop header includes loop variant instruction operands then
// this loop can not be eliminated. This is used by processOneIterationLoop().
bool LoopIndexSplit::safeHeader(SplitInfo &SD, BasicBlock *Header) {
Instruction *Terminator = Header->getTerminator();
for(BasicBlock::iterator BI = Header->begin(), BE = Header->end();
BI != BE; ++BI) {
Instruction *I = BI;
// PHI Nodes are OK.
if (isa<PHINode>(I))
continue;
// SplitCondition itself is OK.
if (I == SD.SplitCondition)
continue;
// Induction variable is OK.
if (I == IndVar)
continue;
// Induction variable increment is OK.
if (I == IndVarIncrement)
continue;
// Terminator is also harmless.
if (I == Terminator)
continue;
// Otherwise we have a instruction that may not be safe.
return false;
}
return true;
}
// If Exiting block includes loop variant instructions then this
// loop may not be eliminated. This is used by processOneIterationLoop().
bool LoopIndexSplit::safeExitingBlock(SplitInfo &SD,
BasicBlock *ExitingBlock) {
for (BasicBlock::iterator BI = ExitingBlock->begin(),
BE = ExitingBlock->end(); BI != BE; ++BI) {
Instruction *I = BI;
// PHI Nodes are OK.
if (isa<PHINode>(I))
continue;
// Induction variable increment is OK.
if (IndVarIncrement && IndVarIncrement == I)
continue;
// Check if I is induction variable increment instruction.
if (!IndVarIncrement && I->getOpcode() == Instruction::Add) {
Value *Op0 = I->getOperand(0);
Value *Op1 = I->getOperand(1);
PHINode *PN = NULL;
ConstantInt *CI = NULL;
if ((PN = dyn_cast<PHINode>(Op0))) {
if ((CI = dyn_cast<ConstantInt>(Op1)))
IndVarIncrement = I;
} else
if ((PN = dyn_cast<PHINode>(Op1))) {
if ((CI = dyn_cast<ConstantInt>(Op0)))
IndVarIncrement = I;
}
if (IndVarIncrement && PN == IndVar && CI->isOne())
continue;
}
// I is an Exit condition if next instruction is block terminator.
// Exit condition is OK if it compares loop invariant exit value,
// which is checked below.
else if (ICmpInst *EC = dyn_cast<ICmpInst>(I)) {
if (EC == ExitCondition)
continue;
}
if (I == ExitingBlock->getTerminator())
continue;
// Otherwise we have instruction that may not be safe.
return false;
}
// We could not find any reason to consider ExitingBlock unsafe.
return true;
}
/// Find cost of spliting loop L. Cost is measured in terms of size growth.
/// Size is growth is calculated based on amount of code duplicated in second
/// loop.
unsigned LoopIndexSplit::findSplitCost(Loop *L, SplitInfo &SD) {
unsigned Cost = 0;
BasicBlock *SDBlock = SD.SplitCondition->getParent();
for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
I != E; ++I) {
BasicBlock *BB = *I;
// If a block is not dominated by split condition block then
// it must be duplicated in both loops.
if (!DT->dominates(SDBlock, BB))
Cost += BB->size();
}
return Cost;
}
/// removeBlocks - Remove basic block DeadBB and all blocks dominated by DeadBB.
/// This routine is used to remove split condition's dead branch, dominated by
/// DeadBB. LiveBB dominates split conidition's other branch.
void LoopIndexSplit::removeBlocks(BasicBlock *DeadBB, Loop *LP,
BasicBlock *LiveBB) {
// First update DeadBB's dominance frontier.
SmallVector<BasicBlock *, 8> FrontierBBs;
DominanceFrontier::iterator DeadBBDF = DF->find(DeadBB);
if (DeadBBDF != DF->end()) {
SmallVector<BasicBlock *, 8> PredBlocks;
DominanceFrontier::DomSetType DeadBBSet = DeadBBDF->second;
for (DominanceFrontier::DomSetType::iterator DeadBBSetI = DeadBBSet.begin(),
DeadBBSetE = DeadBBSet.end(); DeadBBSetI != DeadBBSetE; ++DeadBBSetI) {
BasicBlock *FrontierBB = *DeadBBSetI;
FrontierBBs.push_back(FrontierBB);
// Rremove any PHI incoming edge from blocks dominated by DeadBB.
PredBlocks.clear();
for(pred_iterator PI = pred_begin(FrontierBB), PE = pred_end(FrontierBB);
PI != PE; ++PI) {
BasicBlock *P = *PI;
if (P == DeadBB || DT->dominates(DeadBB, P))
PredBlocks.push_back(P);
}
BasicBlock *NewDominator = NULL;
for(BasicBlock::iterator FBI = FrontierBB->begin(), FBE = FrontierBB->end();
FBI != FBE; ++FBI) {
if (PHINode *PN = dyn_cast<PHINode>(FBI)) {
for(SmallVector<BasicBlock *, 8>::iterator PI = PredBlocks.begin(),
PE = PredBlocks.end(); PI != PE; ++PI) {
BasicBlock *P = *PI;
PN->removeIncomingValue(P);
}
// If we have not identified new dominator then see if we can identify
// one based on remaining incoming PHINode values.
if (NewDominator == NULL && PN->getNumIncomingValues() == 1)
NewDominator = PN->getIncomingBlock(0);
}
else
break;
}
}
}
// Now remove DeadBB and all nodes dominated by DeadBB in df order.
SmallVector<BasicBlock *, 32> WorkList;
DomTreeNode *DN = DT->getNode(DeadBB);
for (df_iterator<DomTreeNode*> DI = df_begin(DN),
E = df_end(DN); DI != E; ++DI) {
BasicBlock *BB = DI->getBlock();
WorkList.push_back(BB);
BB->replaceAllUsesWith(UndefValue::get(Type::LabelTy));
}
while (!WorkList.empty()) {
BasicBlock *BB = WorkList.back(); WorkList.pop_back();
for(BasicBlock::iterator BBI = BB->begin(), BBE = BB->end();
BBI != BBE; ++BBI) {
Instruction *I = BBI;
I->replaceAllUsesWith(UndefValue::get(I->getType()));
I->eraseFromParent();
}
LPM->deleteSimpleAnalysisValue(BB, LP);
DT->eraseNode(BB);
DF->removeBlock(BB);
LI->removeBlock(BB);
BB->eraseFromParent();
}
// Update Frontier BBs' dominator info.
while (!FrontierBBs.empty()) {
BasicBlock *FBB = FrontierBBs.back(); FrontierBBs.pop_back();
BasicBlock *NewDominator = FBB->getSinglePredecessor();
if (!NewDominator) {
pred_iterator PI = pred_begin(FBB), PE = pred_end(FBB);
NewDominator = *PI;
++PI;
if (NewDominator != LiveBB) {
for(; PI != PE; ++PI) {
BasicBlock *P = *PI;
if (P == LiveBB) {
NewDominator = LiveBB;
break;
}
NewDominator = DT->findNearestCommonDominator(NewDominator, P);
}
}
}
assert (NewDominator && "Unable to fix dominator info.");
DT->changeImmediateDominator(FBB, NewDominator);
DF->changeImmediateDominator(FBB, NewDominator, DT);
}
}
bool LoopIndexSplit::splitLoop(SplitInfo &SD) {
BasicBlock *Preheader = L->getLoopPreheader();
BasicBlock *SplitBlock = SD.SplitCondition->getParent();
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *Header = L->getHeader();
BranchInst *SplitTerminator = cast<BranchInst>(SplitBlock->getTerminator());
// FIXME - Unable to handle triange loops at the moment.
// In triangle loop, split condition is in header and one of the
// the split destination is loop latch. If split condition is EQ
// then such loops are already handle in processOneIterationLoop().
if (Header == SplitBlock
&& (Latch == SplitTerminator->getSuccessor(0)
|| Latch == SplitTerminator->getSuccessor(1)))
return false;
// If one of the split condition branch is post dominating other then loop
// index split is not appropriate.
BasicBlock *Succ0 = SplitTerminator->getSuccessor(0);
BasicBlock *Succ1 = SplitTerminator->getSuccessor(1);
if (DT->dominates(Succ0, Latch) || DT->dominates(Succ1, Latch))
return false;
// If one of the split condition branch is a predecessor of the other
// split condition branch head then do not split loop on this condition.
for(pred_iterator PI = pred_begin(Succ0), PE = pred_end(Succ0); PI != PE; ++PI)
if (Succ1 == *PI)
return false;
for(pred_iterator PI = pred_begin(Succ1), PE = pred_end(Succ1); PI != PE; ++PI)
if (Succ0 == *PI)
return false;
// True loop is original loop. False loop is cloned loop.
bool SignedPredicate = ExitCondition->isSignedPredicate();
//[*] Calculate True loop's new Exit Value in loop preheader.
// TLExitValue = min(SplitValue, ExitValue)
//[*] Calculate False loop's new Start Value in loop preheader.
// FLStartValue = min(SplitValue, TrueLoop.StartValue)
Value *TLExitValue = NULL;
Value *FLStartValue = NULL;
if (isa<ConstantInt>(SD.SplitValue)) {
TLExitValue = SD.SplitValue;
FLStartValue = SD.SplitValue;
}
else {
Value *C1 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev",
Preheader->getTerminator());
TLExitValue = new SelectInst(C1, SD.SplitValue,
ExitCondition->getOperand(ExitValueNum),
"lsplit.ev", Preheader->getTerminator());
Value *C2 = new ICmpInst(SignedPredicate ?
ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
SD.SplitValue, StartValue, "lsplit.sv",
Preheader->getTerminator());
FLStartValue = new SelectInst(C2, SD.SplitValue, StartValue,
"lsplit.sv", Preheader->getTerminator());
}
//[*] Clone loop. Avoid true destination of split condition and
// the blocks dominated by true destination.
DenseMap<const Value *, Value *> ValueMap;
Loop *FalseLoop = CloneLoop(L, LPM, LI, ValueMap, this);
BasicBlock *FalseHeader = FalseLoop->getHeader();
//[*] True loop's exit edge enters False loop.
PHINode *IndVarClone = cast<PHINode>(ValueMap[IndVar]);
BasicBlock *ExitingBlock = ExitCondition->getParent();
BranchInst *ExitInsn = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
assert (ExitInsn && "Unable to find suitable loop exit branch");
BasicBlock *ExitDest = ExitInsn->getSuccessor(1);
if (L->contains(ExitDest)) {
ExitDest = ExitInsn->getSuccessor(0);
ExitInsn->setSuccessor(0, FalseHeader);
} else
ExitInsn->setSuccessor(1, FalseHeader);
// Collect inverse map of Header PHINodes.
DenseMap<Value *, Value *> InverseMap;
for (BasicBlock::iterator BI = L->getHeader()->begin(),
BE = L->getHeader()->end(); BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PHINode *PNClone = cast<PHINode>(ValueMap[PN]);
InverseMap[PNClone] = PN;
} else
break;
}
// Update False loop's header
for (BasicBlock::iterator BI = FalseHeader->begin(), BE = FalseHeader->end();
BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->removeIncomingValue(Preheader);
if (PN == IndVarClone)
PN->addIncoming(FLStartValue, ExitingBlock);
else {
PHINode *OrigPN = cast<PHINode>(InverseMap[PN]);
Value *V2 = OrigPN->getIncomingValueForBlock(ExitingBlock);
PN->addIncoming(V2, ExitingBlock);
}
} else
break;
}
// Update ExitDest. Now it's predecessor is False loop's exit block.
BasicBlock *ExitingBlockClone = cast<BasicBlock>(ValueMap[ExitingBlock]);
for (BasicBlock::iterator BI = ExitDest->begin(), BE = ExitDest->end();
BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
PN->addIncoming(ValueMap[PN->getIncomingValueForBlock(ExitingBlock)], ExitingBlockClone);
PN->removeIncomingValue(ExitingBlock);
} else
break;
}
if (DT) {
DT->changeImmediateDominator(FalseHeader, ExitingBlock);
DT->changeImmediateDominator(ExitDest, cast<BasicBlock>(ValueMap[ExitingBlock]));
}
assert (!L->contains(ExitDest) && " Unable to find exit edge destination");
//[*] Split Exit Edge.
BasicBlock *TL_ExitBlock = SplitEdge(ExitingBlock, FalseHeader, this);
//[*] Eliminate split condition's false branch from True loop.
BranchInst *BR = cast<BranchInst>(SplitBlock->getTerminator());
BasicBlock *FBB = BR->getSuccessor(1);
BR->setUnconditionalDest(BR->getSuccessor(0));
removeBlocks(FBB, L, BR->getSuccessor(0));
//[*] Update True loop's exit value using new exit value.
ExitCondition->setOperand(ExitValueNum, TLExitValue);
//[*] Eliminate split condition's true branch in False loop CFG.
BasicBlock *FSplitBlock = cast<BasicBlock>(ValueMap[SplitBlock]);
BranchInst *FBR = cast<BranchInst>(FSplitBlock->getTerminator());
BasicBlock *TBB = FBR->getSuccessor(0);
FBR->setUnconditionalDest(FBR->getSuccessor(1));
removeBlocks(TBB, FalseLoop, cast<BasicBlock>(FBR->getSuccessor(0)));
//[*] Preserve LCSSA
for(BasicBlock::iterator BI = FalseHeader->begin(), BE = FalseHeader->end();
BI != BE; ++BI) {
if (PHINode *PN = dyn_cast<PHINode>(BI)) {
Value *V1 = PN->getIncomingValueForBlock(TL_ExitBlock);
PHINode *newPHI = new PHINode(PN->getType(), PN->getName());
newPHI->addIncoming(V1, ExitingBlock);
TL_ExitBlock->getInstList().push_front(newPHI);
PN->removeIncomingValue(TL_ExitBlock);
PN->addIncoming(newPHI, TL_ExitBlock);
} else
break;
}
return true;
}