llvm/lib/Target/X86/X86InstrInfo.td

751 lines
39 KiB
TableGen
Raw Normal View History

//===- X86InstrInfo.td - Describe the X86 Instruction Set -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file describes the X86 instruction set, defining the instructions, and
// properties of the instructions which are needed for code generation, machine
// code emission, and analysis.
//
//===----------------------------------------------------------------------===//
// Format specifies the encoding used by the instruction. This is part of the
// ad-hoc solution used to emit machine instruction encodings by our machine
// code emitter.
class Format<bits<5> val> {
bits<5> Value = val;
}
def Pseudo : Format<0>; def RawFrm : Format<1>;
def AddRegFrm : Format<2>; def MRMDestReg : Format<3>;
def MRMDestMem : Format<4>; def MRMSrcReg : Format<5>;
def MRMSrcMem : Format<6>;
def MRM0r : Format<16>; def MRM1r : Format<17>; def MRM2r : Format<18>;
def MRM3r : Format<19>; def MRM4r : Format<20>; def MRM5r : Format<21>;
def MRM6r : Format<22>; def MRM7r : Format<23>;
def MRM0m : Format<24>; def MRM1m : Format<25>; def MRM2m : Format<26>;
def MRM3m : Format<27>; def MRM4m : Format<28>; def MRM5m : Format<29>;
def MRM6m : Format<30>; def MRM7m : Format<31>;
// ImmType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class ImmType<bits<2> val> {
bits<2> Value = val;
}
def NoImm : ImmType<0>;
def Imm8 : ImmType<1>;
def Imm16 : ImmType<2>;
def Imm32 : ImmType<3>;
// MemType - This specifies the immediate type used by an instruction. This is
// part of the ad-hoc solution used to emit machine instruction encodings by our
// machine code emitter.
class MemType<bits<3> val> {
bits<3> Value = val;
}
def NoMem : MemType<0>;
def Mem8 : MemType<1>;
def Mem16 : MemType<2>;
def Mem32 : MemType<3>;
def Mem64 : MemType<4>;
def Mem80 : MemType<4>;
def Mem128 : MemType<6>;
// FPFormat - This specifies what form this FP instruction has. This is used by
// the Floating-Point stackifier pass.
class FPFormat<bits<3> val> {
bits<3> Value = val;
}
def NotFP : FPFormat<0>;
def ZeroArgFP : FPFormat<1>;
def OneArgFP : FPFormat<2>;
def OneArgFPRW : FPFormat<3>;
def TwoArgFP : FPFormat<4>;
def SpecialFP : FPFormat<5>;
class X86Inst<string nam, bits<8> opcod, Format f, MemType m, ImmType i> : Instruction {
let Namespace = "X86";
let Name = nam;
bits<8> Opcode = opcod;
Format Form = f;
bits<5> FormBits = Form.Value;
MemType MemT = m;
bits<3> MemTypeBits = MemT.Value;
ImmType ImmT = i;
bits<2> ImmTypeBits = ImmT.Value;
// Attributes specific to X86 instructions...
bit hasOpSizePrefix = 0; // Does this inst have a 0x66 prefix?
bit printImplicitUses = 0; // Should we print implicit uses of this inst?
bits<4> Prefix = 0; // Which prefix byte does this inst have?
FPFormat FPForm; // What flavor of FP instruction is this?
bits<3> FPFormBits = 0;
}
class Imp<list<Register> uses, list<Register> defs> {
list<Register> Uses = uses;
list<Register> Defs = defs;
}
class Pattern<dag P> {
dag Pattern = P;
}
// Prefix byte classes which are used to indicate to the ad-hoc machine code
// emitter that various prefix bytes are required.
class OpSize { bit hasOpSizePrefix = 1; }
class TB { bits<4> Prefix = 1; }
class REP { bits<4> Prefix = 2; }
class D8 { bits<4> Prefix = 3; }
class D9 { bits<4> Prefix = 4; }
class DA { bits<4> Prefix = 5; }
class DB { bits<4> Prefix = 6; }
class DC { bits<4> Prefix = 7; }
class DD { bits<4> Prefix = 8; }
class DE { bits<4> Prefix = 9; }
class DF { bits<4> Prefix = 10; }
//===----------------------------------------------------------------------===//
// Instruction templates...
class I<string n, bits<8> o, Format f> : X86Inst<n, o, f, NoMem, NoImm>;
class Im<string n, bits<8> o, Format f, MemType m> : X86Inst<n, o, f, m, NoImm>;
class Im8 <string n, bits<8> o, Format f> : Im<n, o, f, Mem8 >;
class Im16<string n, bits<8> o, Format f> : Im<n, o, f, Mem16>;
class Im32<string n, bits<8> o, Format f> : Im<n, o, f, Mem32>;
class Ii<string n, bits<8> o, Format f, ImmType i> : X86Inst<n, o, f, NoMem, i>;
class Ii8 <string n, bits<8> o, Format f> : Ii<n, o, f, Imm8 >;
class Ii16<string n, bits<8> o, Format f> : Ii<n, o, f, Imm16>;
class Ii32<string n, bits<8> o, Format f> : Ii<n, o, f, Imm32>;
class Im8i8 <string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem8 , Imm8 >;
class Im16i16<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm16>;
class Im32i32<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm32>;
class Im16i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem16, Imm8>;
class Im32i8<string n, bits<8> o, Format f> : X86Inst<n, o, f, Mem32, Imm8>;
// Helper for shift instructions
class UsesCL { list<Register> Uses = [CL]; bit printImplicitUses = 1; }
//===----------------------------------------------------------------------===//
// Instruction list...
//
def PHI : I<"PHI", 0, Pseudo>; // PHI node...
def NOOP : I<"nop", 0x90, RawFrm>; // nop
def ADJCALLSTACKDOWN : I<"ADJCALLSTACKDOWN", 0, Pseudo>;
def ADJCALLSTACKUP : I<"ADJCALLSTACKUP", 0, Pseudo>;
def IMPLICIT_USE : I<"IMPLICIT_USE", 0, Pseudo>;
def IMPLICIT_DEF : I<"IMPLICIT_DEF", 0, Pseudo>;
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<"FP_REG_KILL", 0, Pseudo>;
//===----------------------------------------------------------------------===//
// Control Flow Instructions...
//
// Return instruction...
let isTerminator = 1, isReturn = 1 in
def RET : I<"ret", 0xC3, RawFrm>, Pattern<(retvoid)>;
// All branches are RawFrm, Void, Branch, and Terminators
let isBranch = 1, isTerminator = 1 in
class IBr<string name, bits<8> opcode> : I<name, opcode, RawFrm>;
def JMP : IBr<"jmp", 0xE9>, Pattern<(br basicblock)>;
def JB : IBr<"jb" , 0x82>, TB;
def JAE : IBr<"jae", 0x83>, TB;
def JE : IBr<"je" , 0x84>, TB, Pattern<(isVoid (unspec1 basicblock))>;
def JNE : IBr<"jne", 0x85>, TB;
def JBE : IBr<"jbe", 0x86>, TB;
def JA : IBr<"ja" , 0x87>, TB;
def JS : IBr<"js" , 0x88>, TB;
def JNS : IBr<"jns", 0x89>, TB;
def JL : IBr<"jl" , 0x8C>, TB;
def JGE : IBr<"jge", 0x8D>, TB;
def JLE : IBr<"jle", 0x8E>, TB;
def JG : IBr<"jg" , 0x8F>, TB;
//===----------------------------------------------------------------------===//
// Call Instructions...
//
let isCall = 1 in
// All calls clobber the non-callee saved registers...
let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6] in {
def CALLpcrel32 : I <"call", 0xE8, RawFrm>;
def CALLr32 : I <"call", 0xFF, MRM2r>;
def CALLm32 : Im32<"call", 0xFF, MRM2m>;
}
//===----------------------------------------------------------------------===//
// Miscellaneous Instructions...
//
def LEAVE : I<"leave", 0xC9, RawFrm>, Imp<[EBP,ESP],[EBP,ESP]>;
def POPr32 : I<"pop", 0x58, AddRegFrm>, Imp<[ESP],[ESP]>;
let isTwoAddress = 1 in // R32 = bswap R32
def BSWAPr32 : I<"bswap", 0xC8, AddRegFrm>, TB;
def XCHGrr8 : I <"xchg", 0x86, MRMDestReg>; // xchg R8, R8
def XCHGrr16 : I <"xchg", 0x87, MRMDestReg>, OpSize; // xchg R16, R16
def XCHGrr32 : I <"xchg", 0x87, MRMDestReg>; // xchg R32, R32
def XCHGmr8 : Im8 <"xchg", 0x86, MRMDestMem>; // xchg [mem8], R8
def XCHGmr16 : Im16<"xchg", 0x87, MRMDestMem>, OpSize; // xchg [mem16], R16
def XCHGmr32 : Im32<"xchg", 0x87, MRMDestMem>; // xchg [mem32], R32
def XCHGrm8 : Im8 <"xchg", 0x86, MRMSrcMem >; // xchg R8, [mem8]
def XCHGrm16 : Im16<"xchg", 0x87, MRMSrcMem >, OpSize; // xchg R16, [mem16]
def XCHGrm32 : Im32<"xchg", 0x87, MRMSrcMem >; // xchg R32, [mem32]
def LEAr16 : Im32<"lea", 0x8D, MRMSrcMem>, OpSize; // R16 = lea [mem]
def LEAr32 : Im32<"lea", 0x8D, MRMSrcMem>; // R32 = lea [mem]
def REP_MOVSB : I<"rep movsb", 0xA4, RawFrm>, REP,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_MOVSW : I<"rep movsw", 0xA5, RawFrm>, REP, OpSize,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_MOVSD : I<"rep movsd", 0xA5, RawFrm>, REP,
Imp<[ECX,EDI,ESI], [ECX,EDI,ESI]>;
def REP_STOSB : I<"rep stosb", 0xAA, RawFrm>, REP,
Imp<[AL,ECX,EDI], [ECX,EDI]>;
def REP_STOSW : I<"rep stosw", 0xAB, RawFrm>, REP, OpSize,
Imp<[AX,ECX,EDI], [ECX,EDI]>;
def REP_STOSD : I<"rep stosd", 0xAB, RawFrm>, REP,
Imp<[EAX,ECX,EDI], [ECX,EDI]>;
//===----------------------------------------------------------------------===//
// Move Instructions...
//
def MOVrr8 : I <"mov", 0x88, MRMDestReg>, Pattern<(set R8 , R8 )>;
def MOVrr16 : I <"mov", 0x89, MRMDestReg>, OpSize, Pattern<(set R16, R16)>;
def MOVrr32 : I <"mov", 0x89, MRMDestReg>, Pattern<(set R32, R32)>;
def MOVri8 : Ii8 <"mov", 0xB0, AddRegFrm >, Pattern<(set R8 , imm )>;
def MOVri16 : Ii16 <"mov", 0xB8, AddRegFrm >, OpSize, Pattern<(set R16, imm)>;
def MOVri32 : Ii32 <"mov", 0xB8, AddRegFrm >, Pattern<(set R32, imm)>;
def MOVmi8 : Im8i8 <"mov", 0xC6, MRM0m >; // [mem8] = imm8
def MOVmi16 : Im16i16<"mov", 0xC7, MRM0m >, OpSize; // [mem16] = imm16
def MOVmi32 : Im32i32<"mov", 0xC7, MRM0m >; // [mem32] = imm32
def MOVrm8 : Im8 <"mov", 0x8A, MRMSrcMem>; // R8 = [mem8]
def MOVrm16 : Im16 <"mov", 0x8B, MRMSrcMem>, OpSize, // R16 = [mem16]
Pattern<(set R16, (load (plus R32, (plus (times imm, R32), imm))))>;
def MOVrm32 : Im32 <"mov", 0x8B, MRMSrcMem>, // R32 = [mem32]
Pattern<(set R32, (load (plus R32, (plus (times imm, R32), imm))))>;
def MOVmr8 : Im8 <"mov", 0x88, MRMDestMem>; // [mem8] = R8
def MOVmr16 : Im16 <"mov", 0x89, MRMDestMem>, OpSize; // [mem16] = R16
def MOVmr32 : Im32 <"mov", 0x89, MRMDestMem>; // [mem32] = R32
//===----------------------------------------------------------------------===//
// Fixed-Register Multiplication and Division Instructions...
//
// Extra precision multiplication
def MULr8 : I <"mul", 0xF6, MRM4r>, Imp<[AL],[AX]>; // AL,AH = AL*R8
def MULr16 : I <"mul", 0xF7, MRM4r>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*R16
def MULr32 : I <"mul", 0xF7, MRM4r>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*R32
def MULm8 : Im8 <"mul", 0xF6, MRM4m>, Imp<[AL],[AX]>; // AL,AH = AL*[mem8]
def MULm16 : Im16<"mul", 0xF7, MRM4m>, Imp<[AX],[AX,DX]>, OpSize; // AX,DX = AX*[mem16]
def MULm32 : Im32<"mul", 0xF7, MRM4m>, Imp<[EAX],[EAX,EDX]>; // EAX,EDX = EAX*[mem32]
// unsigned division/remainder
def DIVr8 : I <"div", 0xF6, MRM6r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH
def DIVr16 : I <"div", 0xF7, MRM6r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def DIVr32 : I <"div", 0xF7, MRM6r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def DIVm8 : Im8 <"div", 0xF6, MRM6m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def DIVm16 : Im16<"div", 0xF7, MRM6m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def DIVm32 : Im32<"div", 0xF7, MRM6m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// signed division/remainder
def IDIVr8 : I <"idiv",0xF6, MRM7r>, Imp<[AX],[AX]>; // AX/r8 = AL,AH
def IDIVr16: I <"idiv",0xF7, MRM7r>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/r16 = AX,DX
def IDIVr32: I <"idiv",0xF7, MRM7r>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/r32 = EAX,EDX
def IDIVm8 : Im8 <"idiv",0xF6, MRM7m>, Imp<[AX],[AX]>; // AX/[mem8] = AL,AH
def IDIVm16: Im16<"idiv",0xF7, MRM7m>, Imp<[AX,DX],[AX,DX]>, OpSize; // DX:AX/[mem16] = AX,DX
def IDIVm32: Im32<"idiv",0xF7, MRM7m>, Imp<[EAX,EDX],[EAX,EDX]>; // EDX:EAX/[mem32] = EAX,EDX
// Sign-extenders for division
def CBW : I<"cbw", 0x98, RawFrm >, Imp<[AL],[AH]>; // AX = signext(AL)
def CWD : I<"cwd", 0x99, RawFrm >, Imp<[AX],[DX]>; // DX:AX = signext(AX)
def CDQ : I<"cdq", 0x99, RawFrm >, Imp<[EAX],[EDX]>; // EDX:EAX = signext(EAX)
//===----------------------------------------------------------------------===//
// Two address Instructions...
//
let isTwoAddress = 1 in {
// Conditional moves. These are modelled as X = cmovXX Y, Z. Eventually
// register allocated to cmovXX XY, Z
def CMOVErr16 : I<"cmove", 0x44, MRMSrcReg>, TB, OpSize; // if ==, R16 = R16
def CMOVNErr32: I<"cmovne",0x45, MRMSrcReg>, TB; // if !=, R32 = R32
def CMOVSrr32 : I<"cmovs", 0x48, MRMSrcReg>, TB; // if signed, R32 = R32
// unary instructions
def NEGr8 : I <"neg", 0xF6, MRM3r>; // R8 = -R8 = 0-R8
def NEGr16 : I <"neg", 0xF7, MRM3r>, OpSize; // R16 = -R16 = 0-R16
def NEGr32 : I <"neg", 0xF7, MRM3r>; // R32 = -R32 = 0-R32
def NEGm8 : Im8 <"neg", 0xF6, MRM3m>; // [mem8] = -[mem8] = 0-[mem8]
def NEGm16 : Im16<"neg", 0xF7, MRM3m>, OpSize; // [mem16] = -[mem16] = 0-[mem16]
def NEGm32 : Im32<"neg", 0xF7, MRM3m>; // [mem32] = -[mem32] = 0-[mem32]
def NOTr8 : I <"not", 0xF6, MRM2r>; // R8 = ~R8 = R8^-1
def NOTr16 : I <"not", 0xF7, MRM2r>, OpSize; // R16 = ~R16 = R16^-1
def NOTr32 : I <"not", 0xF7, MRM2r>; // R32 = ~R32 = R32^-1
def NOTm8 : Im8 <"not", 0xF6, MRM2m>; // [mem8] = ~[mem8] = [mem8^-1]
def NOTm16 : Im16<"not", 0xF7, MRM2m>, OpSize; // [mem16] = ~[mem16] = [mem16^-1]
def NOTm32 : Im32<"not", 0xF7, MRM2m>; // [mem32] = ~[mem32] = [mem32^-1]
def INCr8 : I <"inc", 0xFE, MRM0r>; // ++R8
def INCr16 : I <"inc", 0xFF, MRM0r>, OpSize; // ++R16
def INCr32 : I <"inc", 0xFF, MRM0r>; // ++R32
def INCm8 : Im8 <"inc", 0xFE, MRM0m>; // ++R8
def INCm16 : Im16<"inc", 0xFF, MRM0m>, OpSize; // ++R16
def INCm32 : Im32<"inc", 0xFF, MRM0m>; // ++R32
def DECr8 : I <"dec", 0xFE, MRM1r>; // --R8
def DECr16 : I <"dec", 0xFF, MRM1r>, OpSize; // --R16
def DECr32 : I <"dec", 0xFF, MRM1r>; // --R32
def DECm8 : Im8 <"dec", 0xFE, MRM1m>; // --[mem8]
def DECm16 : Im16<"dec", 0xFF, MRM1m>, OpSize; // --[mem16]
def DECm32 : Im32<"dec", 0xFF, MRM1m>; // --[mem32]
// Logical operators...
def ANDrr8 : I <"and", 0x20, MRMDestReg>, Pattern<(set R8 , (and R8 , R8 ))>;
def ANDrr16 : I <"and", 0x21, MRMDestReg>, OpSize, Pattern<(set R16, (and R16, R16))>;
def ANDrr32 : I <"and", 0x21, MRMDestReg>, Pattern<(set R32, (and R32, R32))>;
def ANDmr8 : Im8 <"and", 0x20, MRMDestMem>; // [mem8] &= R8
def ANDmr16 : Im16 <"and", 0x21, MRMDestMem>, OpSize; // [mem16] &= R16
def ANDmr32 : Im32 <"and", 0x21, MRMDestMem>; // [mem32] &= R32
def ANDrm8 : Im8 <"and", 0x22, MRMSrcMem >; // R8 &= [mem8]
def ANDrm16 : Im16 <"and", 0x23, MRMSrcMem >, OpSize; // R16 &= [mem16]
def ANDrm32 : Im32 <"and", 0x23, MRMSrcMem >; // R32 &= [mem32]
def ANDri8 : Ii8 <"and", 0x80, MRM4r >, Pattern<(set R8 , (and R8 , imm))>;
def ANDri16 : Ii16 <"and", 0x81, MRM4r >, OpSize, Pattern<(set R16, (and R16, imm))>;
def ANDri32 : Ii32 <"and", 0x81, MRM4r >, Pattern<(set R32, (and R32, imm))>;
def ANDmi8 : Im8i8 <"and", 0x80, MRM4m >; // [mem8] &= imm8
def ANDmi16 : Im16i16 <"and", 0x81, MRM4m >, OpSize; // [mem16] &= imm16
def ANDmi32 : Im32i32 <"and", 0x81, MRM4m >; // [mem32] &= imm32
def ANDri16b : Ii8 <"and", 0x83, MRM4r >, OpSize; // R16 &= imm8
def ANDri32b : Ii8 <"and", 0x83, MRM4r >; // R32 &= imm8
def ANDmi16b : Im16i8<"and", 0x83, MRM4m >, OpSize; // [mem16] &= imm8
def ANDmi32b : Im32i8<"and", 0x83, MRM4m >; // [mem32] &= imm8
def ORrr8 : I <"or" , 0x08, MRMDestReg>, Pattern<(set R8 , (or R8 , R8 ))>;
def ORrr16 : I <"or" , 0x09, MRMDestReg>, OpSize, Pattern<(set R16, (or R16, R16))>;
def ORrr32 : I <"or" , 0x09, MRMDestReg>, Pattern<(set R32, (or R32, R32))>;
def ORmr8 : Im8 <"or" , 0x08, MRMDestMem>; // [mem8] |= R8
def ORmr16 : Im16 <"or" , 0x09, MRMDestMem>, OpSize; // [mem16] |= R16
def ORmr32 : Im32 <"or" , 0x09, MRMDestMem>; // [mem32] |= R32
def ORrm8 : Im8 <"or" , 0x0A, MRMSrcMem >; // R8 |= [mem8]
def ORrm16 : Im16 <"or" , 0x0B, MRMSrcMem >, OpSize; // R16 |= [mem16]
def ORrm32 : Im32 <"or" , 0x0B, MRMSrcMem >; // R32 |= [mem32]
def ORri8 : Ii8 <"or" , 0x80, MRM1r >, Pattern<(set R8 , (or R8 , imm))>;
def ORri16 : Ii16 <"or" , 0x81, MRM1r >, OpSize, Pattern<(set R16, (or R16, imm))>;
def ORri32 : Ii32 <"or" , 0x81, MRM1r >, Pattern<(set R32, (or R32, imm))>;
def ORmi8 : Im8i8 <"or" , 0x80, MRM1m >; // [mem8] |= imm8
def ORmi16 : Im16i16 <"or" , 0x81, MRM1m >, OpSize; // [mem16] |= imm16
def ORmi32 : Im32i32 <"or" , 0x81, MRM1m >; // [mem32] |= imm32
def ORri16b : Ii8 <"or" , 0x83, MRM1r >, OpSize; // R16 |= imm8
def ORri32b : Ii8 <"or" , 0x83, MRM1r >; // R32 |= imm8
def ORmi16b : Im16i8<"or" , 0x83, MRM1m >, OpSize; // [mem16] |= imm8
def ORmi32b : Im32i8<"or" , 0x83, MRM1m >; // [mem32] |= imm8
def XORrr8 : I <"xor", 0x30, MRMDestReg>, Pattern<(set R8 , (xor R8 , R8 ))>;
def XORrr16 : I <"xor", 0x31, MRMDestReg>, OpSize, Pattern<(set R16, (xor R16, R16))>;
def XORrr32 : I <"xor", 0x31, MRMDestReg>, Pattern<(set R32, (xor R32, R32))>;
def XORmr8 : Im8 <"xor", 0x30, MRMDestMem>; // [mem8] ^= R8
def XORmr16 : Im16 <"xor", 0x31, MRMDestMem>, OpSize; // [mem16] ^= R16
def XORmr32 : Im32 <"xor", 0x31, MRMDestMem>; // [mem32] ^= R32
def XORrm8 : Im8 <"xor", 0x32, MRMSrcMem >; // R8 ^= [mem8]
def XORrm16 : Im16 <"xor", 0x33, MRMSrcMem >, OpSize; // R16 ^= [mem16]
def XORrm32 : Im32 <"xor", 0x33, MRMSrcMem >; // R32 ^= [mem32]
def XORri8 : Ii8 <"xor", 0x80, MRM6r >, Pattern<(set R8 , (xor R8 , imm))>;
def XORri16 : Ii16 <"xor", 0x81, MRM6r >, OpSize, Pattern<(set R16, (xor R16, imm))>;
def XORri32 : Ii32 <"xor", 0x81, MRM6r >, Pattern<(set R32, (xor R32, imm))>;
def XORmi8 : Im8i8 <"xor", 0x80, MRM6m >; // [mem8] ^= R8
def XORmi16 : Im16i16 <"xor", 0x81, MRM6m >, OpSize; // [mem16] ^= R16
def XORmi32 : Im32i32 <"xor", 0x81, MRM6m >; // [mem32] ^= R32
def XORri16b : Ii8 <"xor", 0x83, MRM6r >, OpSize; // R16 ^= imm8
def XORri32b : Ii8 <"xor", 0x83, MRM6r >; // R32 ^= imm8
def XORmi16b : Im16i8<"xor", 0x83, MRM6m >, OpSize; // [mem16] ^= imm8
def XORmi32b : Im32i8<"xor", 0x83, MRM6m >; // [mem32] ^= imm8
// Shift instructions
def SHLrCL8 : I <"shl", 0xD2, MRM4r > , UsesCL; // R8 <<= cl
def SHLrCL16 : I <"shl", 0xD3, MRM4r >, OpSize, UsesCL; // R16 <<= cl
def SHLrCL32 : I <"shl", 0xD3, MRM4r > , UsesCL; // R32 <<= cl
def SHLmCL8 : Im8 <"shl", 0xD2, MRM4m > , UsesCL; // [mem8] <<= cl
def SHLmCL16 : Im16 <"shl", 0xD3, MRM4m >, OpSize, UsesCL; // [mem16] <<= cl
def SHLmCL32 : Im32 <"shl", 0xD3, MRM4m > , UsesCL; // [mem32] <<= cl
def SHLri8 : Ii8 <"shl", 0xC0, MRM4r >; // R8 <<= imm8
def SHLri16 : Ii8 <"shl", 0xC1, MRM4r >, OpSize; // R16 <<= imm8
def SHLri32 : Ii8 <"shl", 0xC1, MRM4r >; // R32 <<= imm8
def SHLmi8 : Im8i8 <"shl", 0xC0, MRM4m >; // [mem8] <<= imm8
def SHLmi16 : Im16i8<"shl", 0xC1, MRM4m >, OpSize; // [mem16] <<= imm8
def SHLmi32 : Im32i8<"shl", 0xC1, MRM4m >; // [mem32] <<= imm8
def SHRrCL8 : I <"shr", 0xD2, MRM5r > , UsesCL; // R8 >>= cl
def SHRrCL16 : I <"shr", 0xD3, MRM5r >, OpSize, UsesCL; // R16 >>= cl
def SHRrCL32 : I <"shr", 0xD3, MRM5r > , UsesCL; // R32 >>= cl
def SHRmCL8 : Im8 <"shr", 0xD2, MRM5m > , UsesCL; // [mem8] >>= cl
def SHRmCL16 : Im16 <"shr", 0xD3, MRM5m >, OpSize, UsesCL; // [mem16] >>= cl
def SHRmCL32 : Im32 <"shr", 0xD3, MRM5m > , UsesCL; // [mem32] >>= cl
def SHRri8 : Ii8 <"shr", 0xC0, MRM5r >; // R8 >>= imm8
def SHRri16 : Ii8 <"shr", 0xC1, MRM5r >, OpSize; // R16 >>= imm8
def SHRri32 : Ii8 <"shr", 0xC1, MRM5r >; // R32 >>= imm8
def SHRmi8 : Im8i8 <"shr", 0xC0, MRM5m >; // [mem8] >>= imm8
def SHRmi16 : Im16i8<"shr", 0xC1, MRM5m >, OpSize; // [mem16] >>= imm8
def SHRmi32 : Im32i8<"shr", 0xC1, MRM5m >; // [mem32] >>= imm8
def SARrCL8 : I <"sar", 0xD2, MRM7r > , UsesCL; // R8 >>>= cl
def SARrCL16 : I <"sar", 0xD3, MRM7r >, OpSize, UsesCL; // R16 >>>= cl
def SARrCL32 : I <"sar", 0xD3, MRM7r > , UsesCL; // R32 >>>= cl
def SARmCL8 : Im8 <"sar", 0xD2, MRM7m > , UsesCL; // [mem8] >>>= cl
def SARmCL16 : Im16 <"sar", 0xD3, MRM7m >, OpSize, UsesCL; // [mem16] >>>= cl
def SARmCL32 : Im32 <"sar", 0xD3, MRM7m > , UsesCL; // [mem32] >>>= cl
def SARri8 : Ii8 <"sar", 0xC0, MRM7r >; // R8 >>>= imm8
def SARri16 : Ii8 <"sar", 0xC1, MRM7r >, OpSize; // R16 >>>= imm8
def SARri32 : Ii8 <"sar", 0xC1, MRM7r >; // R32 >>>= imm8
def SARmi8 : Im8i8 <"sar", 0xC0, MRM7m >; // [mem8] >>>= imm8
def SARmi16 : Im16i8<"sar", 0xC1, MRM7m >, OpSize; // [mem16] >>>= imm8
def SARmi32 : Im32i8<"sar", 0xC1, MRM7m >; // [mem32] >>>= imm8
def SHLDrrCL32 : I <"shld", 0xA5, MRMDestReg>, TB, UsesCL; // R32 <<= R32,R32 cl
def SHLDmrCL32 : I <"shld", 0xA5, MRMDestMem>, TB, UsesCL; // [mem32] <<= [mem32],R32 cl
def SHLDrr32i8 : Ii8 <"shld", 0xA4, MRMDestReg>, TB; // R32 <<= R32,R32 imm8
def SHLDmr32i8 : Ii8 <"shld", 0xA4, MRMDestMem>, TB; // [mem32] <<= [mem32],R32 imm8
def SHRDrrCL32 : I <"shrd", 0xAD, MRMDestReg>, TB, UsesCL; // R32 >>= R32,R32 cl
def SHRDmrCL32 : I <"shrd", 0xAD, MRMDestMem>, TB, UsesCL; // [mem32] >>= [mem32],R32 cl
def SHRDrr32i8 : Ii8 <"shrd", 0xAC, MRMDestReg>, TB; // R32 >>= R32,R32 imm8
def SHRDmr32i8 : Ii8 <"shrd", 0xAC, MRMDestMem>, TB; // [mem32] >>= [mem32],R32 imm8
// Arithmetic...
def ADDrr8 : I <"add", 0x00, MRMDestReg>, Pattern<(set R8 , (plus R8 , R8 ))>;
def ADDrr16 : I <"add", 0x01, MRMDestReg>, OpSize, Pattern<(set R16, (plus R16, R16))>;
def ADDrr32 : I <"add", 0x01, MRMDestReg>, Pattern<(set R32, (plus R32, R32))>;
def ADDmr8 : Im8 <"add", 0x00, MRMDestMem>; // [mem8] += R8
def ADDmr16 : Im16 <"add", 0x01, MRMDestMem>, OpSize; // [mem16] += R16
def ADDmr32 : Im32 <"add", 0x01, MRMDestMem>; // [mem32] += R32
def ADDrm8 : Im8 <"add", 0x02, MRMSrcMem >; // R8 += [mem8]
def ADDrm16 : Im16 <"add", 0x03, MRMSrcMem >, OpSize; // R16 += [mem16]
def ADDrm32 : Im32 <"add", 0x03, MRMSrcMem >; // R32 += [mem32]
def ADDri8 : Ii8 <"add", 0x80, MRM0r >, Pattern<(set R8 , (plus R8 , imm))>;
def ADDri16 : Ii16 <"add", 0x81, MRM0r >, OpSize, Pattern<(set R16, (plus R16, imm))>;
def ADDri32 : Ii32 <"add", 0x81, MRM0r >, Pattern<(set R32, (plus R32, imm))>;
def ADDmi8 : Im8i8 <"add", 0x80, MRM0m >; // [mem8] += I8
def ADDmi16 : Im16i16 <"add", 0x81, MRM0m >, OpSize; // [mem16] += I16
def ADDmi32 : Im32i32 <"add", 0x81, MRM0m >; // [mem32] += I32
def ADDri16b : Ii8 <"add", 0x83, MRM0r >, OpSize; // ADDri with sign extended 8 bit imm
def ADDri32b : Ii8 <"add", 0x83, MRM0r >;
def ADDmi16b : Im16i8<"add", 0x83, MRM0m >, OpSize; // [mem16] += I8
def ADDmi32b : Im32i8<"add", 0x83, MRM0m >; // [mem32] += I8
def ADCrr32 : I <"adc", 0x11, MRMDestReg>; // R32 += R32+Carry
def ADCrm32 : Im32 <"adc", 0x11, MRMSrcMem >; // R32 += [mem32]+Carry
def ADCmr32 : Im32 <"adc", 0x13, MRMDestMem>; // [mem32] += R32+Carry
def SUBrr8 : I <"sub", 0x28, MRMDestReg>, Pattern<(set R8 , (minus R8 , R8 ))>;
def SUBrr16 : I <"sub", 0x29, MRMDestReg>, OpSize, Pattern<(set R16, (minus R16, R16))>;
def SUBrr32 : I <"sub", 0x29, MRMDestReg>, Pattern<(set R32, (minus R32, R32))>;
def SUBmr8 : Im8 <"sub", 0x28, MRMDestMem>; // [mem8] -= R8
def SUBmr16 : Im16 <"sub", 0x29, MRMDestMem>, OpSize; // [mem16] -= R16
def SUBmr32 : Im32 <"sub", 0x29, MRMDestMem>; // [mem32] -= R32
def SUBrm8 : Im8 <"sub", 0x2A, MRMSrcMem >; // R8 -= [mem8]
def SUBrm16 : Im16 <"sub", 0x2B, MRMSrcMem >, OpSize; // R16 -= [mem16]
def SUBrm32 : Im32 <"sub", 0x2B, MRMSrcMem >; // R32 -= [mem32]
def SUBri8 : Ii8 <"sub", 0x80, MRM5r >, Pattern<(set R8 , (minus R8 , imm))>;
def SUBri16 : Ii16 <"sub", 0x81, MRM5r >, OpSize, Pattern<(set R16, (minus R16, imm))>;
def SUBri32 : Ii32 <"sub", 0x81, MRM5r >, Pattern<(set R32, (minus R32, imm))>;
def SUBmi8 : Im8i8 <"sub", 0x80, MRM5m >; // [mem8] -= I8
def SUBmi16 : Im16i16 <"sub", 0x81, MRM5m >, OpSize; // [mem16] -= I16
def SUBmi32 : Im32i32 <"sub", 0x81, MRM5m >; // [mem32] -= I32
def SUBri16b : Ii8 <"sub", 0x83, MRM5r >, OpSize;
def SUBri32b : Ii8 <"sub", 0x83, MRM5r >;
def SUBmi16b : Im16i8<"sub", 0x83, MRM5m >, OpSize; // [mem16] -= I8
def SUBmi32b : Im32i8<"sub", 0x83, MRM5m >; // [mem32] -= I8
def SBBrr32 : I <"sbb", 0x19, MRMDestReg>; // R32 -= R32+Borrow
def SBBrm32 : Im32 <"sbb", 0x19, MRMSrcMem >; // R32 -= [mem32]+Borrow
def SBBmr32 : Im32 <"sbb", 0x1B, MRMDestMem>; // [mem32] -= R32+Borrow
def IMULrr16 : I <"imul", 0xAF, MRMSrcReg>, TB, OpSize, Pattern<(set R16, (times R16, R16))>;
def IMULrr32 : I <"imul", 0xAF, MRMSrcReg>, TB , Pattern<(set R32, (times R32, R32))>;
def IMULrm16 : Im16 <"imul", 0xAF, MRMSrcMem>, TB, OpSize;
def IMULrm32 : Im32 <"imul", 0xAF, MRMSrcMem>, TB ;
} // end Two Address instructions
// These are suprisingly enough not two address instructions!
def IMULrri16 : Ii16 <"imul", 0x69, MRMSrcReg>, OpSize; // R16 = R16*I16
def IMULrri32 : Ii32 <"imul", 0x69, MRMSrcReg>; // R32 = R32*I32
def IMULrri16b : Ii8 <"imul", 0x6B, MRMSrcReg>, OpSize; // R16 = R16*I8
def IMULrri32b : Ii8 <"imul", 0x6B, MRMSrcReg>; // R32 = R32*I8
def IMULrmi16 : Im16i16 <"imul", 0x69, MRMSrcMem>, OpSize; // R16 = [mem16]*I16
def IMULrmi32 : Im32i32 <"imul", 0x69, MRMSrcMem>; // R32 = [mem32]*I32
def IMULrmi16b : Im16i8<"imul", 0x6B, MRMSrcMem>, OpSize; // R16 = [mem16]*I8
def IMULrmi32b : Im32i8<"imul", 0x6B, MRMSrcMem>; // R32 = [mem32]*I8
//===----------------------------------------------------------------------===//
// Test instructions are just like AND, except they don't generate a result.
def TESTrr8 : I <"test", 0x84, MRMDestReg>; // flags = R8 & R8
def TESTrr16 : I <"test", 0x85, MRMDestReg>, OpSize; // flags = R16 & R16
def TESTrr32 : I <"test", 0x85, MRMDestReg>; // flags = R32 & R32
def TESTmr8 : Im8 <"test", 0x84, MRMDestMem>; // flags = [mem8] & R8
def TESTmr16 : Im16 <"test", 0x85, MRMDestMem>, OpSize; // flags = [mem16] & R16
def TESTmr32 : Im32 <"test", 0x85, MRMDestMem>; // flags = [mem32] & R32
def TESTrm8 : Im8 <"test", 0x84, MRMSrcMem >; // flags = R8 & [mem8]
def TESTrm16 : Im16 <"test", 0x85, MRMSrcMem >, OpSize; // flags = R16 & [mem16]
def TESTrm32 : Im32 <"test", 0x85, MRMSrcMem >; // flags = R32 & [mem32]
def TESTri8 : Ii8 <"test", 0xF6, MRM0r >; // flags = R8 & imm8
def TESTri16 : Ii16 <"test", 0xF7, MRM0r >, OpSize; // flags = R16 & imm16
def TESTri32 : Ii32 <"test", 0xF7, MRM0r >; // flags = R32 & imm32
def TESTmi8 : Im8i8 <"test", 0xF6, MRM0m >; // flags = [mem8] & imm8
def TESTmi16 : Im16i16<"test", 0xF7, MRM0m >, OpSize; // flags = [mem16] & imm16
def TESTmi32 : Im32i32<"test", 0xF7, MRM0m >; // flags = [mem32] & imm32
// Condition code ops, incl. set if equal/not equal/...
def SAHF : I <"sahf" , 0x9E, RawFrm>, Imp<[AH],[]>; // flags = AH
def SETBr : I <"setb" , 0x92, MRM0r>, TB; // R8 = < unsign
def SETBm : Im8<"setb" , 0x92, MRM0m>, TB; // [mem8] = < unsign
def SETAEr : I <"setae", 0x93, MRM0r>, TB; // R8 = >= unsign
def SETAEm : Im8<"setae", 0x93, MRM0m>, TB; // [mem8] = >= unsign
def SETEr : I <"sete" , 0x94, MRM0r>, TB; // R8 = ==
def SETEm : Im8<"sete" , 0x94, MRM0m>, TB; // [mem8] = ==
def SETNEr : I <"setne", 0x95, MRM0r>, TB; // R8 = !=
def SETNEm : Im8<"setne", 0x95, MRM0m>, TB; // [mem8] = !=
def SETBEr : I <"setbe", 0x96, MRM0r>, TB; // R8 = <= unsign
def SETBEm : Im8<"setbe", 0x96, MRM0m>, TB; // [mem8] = <= unsign
def SETAr : I <"seta" , 0x97, MRM0r>, TB; // R8 = > signed
def SETAm : Im8<"seta" , 0x97, MRM0m>, TB; // [mem8] = > signed
def SETSr : I <"sets" , 0x98, MRM0r>, TB; // R8 = <sign bit>
def SETSm : Im8<"sets" , 0x98, MRM0m>, TB; // [mem8] = <sign bit>
def SETNSr : I <"setns", 0x99, MRM0r>, TB; // R8 = !<sign bit>
def SETNSm : Im8<"setns", 0x99, MRM0m>, TB; // [mem8] = !<sign bit>
def SETLr : I <"setl" , 0x9C, MRM0r>, TB; // R8 = < signed
def SETLm : Im8<"setl" , 0x9C, MRM0m>, TB; // [mem8] = < signed
def SETGEr : I <"setge", 0x9D, MRM0r>, TB; // R8 = >= signed
def SETGEm : Im8<"setge", 0x9D, MRM0m>, TB; // [mem8] = >= signed
def SETLEr : I <"setle", 0x9E, MRM0r>, TB; // R8 = <= signed
def SETLEm : Im8<"setle", 0x9E, MRM0m>, TB; // [mem8] = <= signed
def SETGr : I <"setg" , 0x9F, MRM0r>, TB; // R8 = < signed
def SETGm : Im8<"setg" , 0x9F, MRM0m>, TB; // [mem8] = < signed
// Integer comparisons
def CMPrr8 : I <"cmp", 0x38, MRMDestReg>; // compare R8, R8
def CMPrr16 : I <"cmp", 0x39, MRMDestReg>, OpSize; // compare R16, R16
def CMPrr32 : I <"cmp", 0x39, MRMDestReg>, // compare R32, R32
Pattern<(isVoid (unspec2 R32, R32))>;
def CMPmr8 : Im8 <"cmp", 0x38, MRMDestMem>; // compare [mem8], R8
def CMPmr16 : Im16 <"cmp", 0x39, MRMDestMem>, OpSize; // compare [mem16], R16
def CMPmr32 : Im32 <"cmp", 0x39, MRMDestMem>; // compare [mem32], R32
def CMPrm8 : Im8 <"cmp", 0x3A, MRMSrcMem >; // compare R8, [mem8]
def CMPrm16 : Im16 <"cmp", 0x3B, MRMSrcMem >, OpSize; // compare R16, [mem16]
def CMPrm32 : Im32 <"cmp", 0x3B, MRMSrcMem >; // compare R32, [mem32]
def CMPri8 : Ii8 <"cmp", 0x80, MRM7r >; // compare R8, imm8
def CMPri16 : Ii16 <"cmp", 0x81, MRM7r >, OpSize; // compare R16, imm16
def CMPri32 : Ii32 <"cmp", 0x81, MRM7r >; // compare R32, imm32
def CMPmi8 : Im8i8 <"cmp", 0x80, MRM7m >; // compare [mem8], imm8
def CMPmi16 : Im16i16<"cmp", 0x81, MRM7m >, OpSize; // compare [mem16], imm16
def CMPmi32 : Im32i32<"cmp", 0x81, MRM7m >; // compare [mem32], imm32
// Sign/Zero extenders
def MOVSXr16r8 : I <"movsx", 0xBE, MRMSrcReg>, TB, OpSize; // R16 = signext(R8)
def MOVSXr32r8 : I <"movsx", 0xBE, MRMSrcReg>, TB; // R32 = signext(R8)
def MOVSXr32r16: I <"movsx", 0xBF, MRMSrcReg>, TB; // R32 = signext(R16)
def MOVSXr16m8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB, OpSize; // R16 = signext([mem8])
def MOVSXr32m8 : Im8 <"movsx", 0xBE, MRMSrcMem>, TB; // R32 = signext([mem8])
def MOVSXr32m16: Im16<"movsx", 0xBF, MRMSrcMem>, TB; // R32 = signext([mem16])
def MOVZXr16r8 : I <"movzx", 0xB6, MRMSrcReg>, TB, OpSize; // R16 = zeroext(R8)
def MOVZXr32r8 : I <"movzx", 0xB6, MRMSrcReg>, TB; // R32 = zeroext(R8)
def MOVZXr32r16: I <"movzx", 0xB7, MRMSrcReg>, TB; // R32 = zeroext(R16)
def MOVZXr16m8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB, OpSize; // R16 = zeroext([mem8])
def MOVZXr32m8 : Im8 <"movzx", 0xB6, MRMSrcMem>, TB; // R32 = zeroext([mem8])
def MOVZXr32m16: Im16<"movzx", 0xB7, MRMSrcMem>, TB; // R32 = zeroext([mem16])
//===----------------------------------------------------------------------===//
// Floating point support
//===----------------------------------------------------------------------===//
// FIXME: These need to indicate mod/ref sets for FP regs... & FP 'TOP'
// Floating point instruction templates
class FPInst<string n, bits<8> o, Format F, FPFormat fp, MemType m, ImmType i>
: X86Inst<n, o, F, m, i> { let FPForm = fp; let FPFormBits = FPForm.Value; }
class FPI<string n, bits<8> o, Format F, FPFormat fp> : FPInst<n, o, F, fp, NoMem, NoImm>;
class FPIM<string n, bits<8> o, Format F, FPFormat fp, MemType m> : FPInst<n, o, F, fp, m, NoImm>;
class FPIm16<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem16>;
class FPIm32<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem32>;
class FPIm64<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem64>;
class FPIm80<string n, bits<8> o, Format F, FPFormat fp> : FPIM<n, o, F, fp, Mem80>;
// Pseudo instructions for floating point. We use these pseudo instructions
// because they can be expanded by the fp spackifier into one of many different
// forms of instructions for doing these operations. Until the stackifier runs,
// we prefer to be abstract.
def FpMOV : FPI<"FMOV", 0, Pseudo, SpecialFP>; // f1 = fmov f2
def FpADD : FPI<"FADD", 0, Pseudo, TwoArgFP>; // f1 = fadd f2, f3
def FpSUB : FPI<"FSUB", 0, Pseudo, TwoArgFP>; // f1 = fsub f2, f3
def FpMUL : FPI<"FMUL", 0, Pseudo, TwoArgFP>; // f1 = fmul f2, f3
def FpDIV : FPI<"FDIV", 0, Pseudo, TwoArgFP>; // f1 = fdiv f2, f3
def FpUCOM : FPI<"FUCOM", 0, Pseudo, TwoArgFP>; // FPSW = fucom f1, f2
def FpGETRESULT : FPI<"FGETRESULT",0, Pseudo, SpecialFP>; // FPR = ST(0)
def FpSETRESULT : FPI<"FSETRESULT",0, Pseudo, SpecialFP>; // ST(0) = FPR
// Floating point loads & stores...
def FLDrr : FPI <"fld" , 0xC0, AddRegFrm, NotFP>, D9; // push(ST(i))
def FLDm32 : FPIm32 <"fld" , 0xD9, MRM0m , ZeroArgFP>; // load float
def FLDm64 : FPIm64 <"fld" , 0xDD, MRM0m , ZeroArgFP>; // load double
def FLDm80 : FPIm80 <"fld" , 0xDB, MRM5m , ZeroArgFP>; // load extended
def FILDm16 : FPIm16 <"fild" , 0xDF, MRM0m , ZeroArgFP>; // load signed short
def FILDm32 : FPIm32 <"fild" , 0xDB, MRM0m , ZeroArgFP>; // load signed int
def FILDm64 : FPIm64 <"fild" , 0xDF, MRM5m , ZeroArgFP>; // load signed long
def FSTrr : FPI <"fst" , 0xD0, AddRegFrm, NotFP >, DD; // ST(i) = ST(0)
def FSTPrr : FPI <"fstp", 0xD8, AddRegFrm, NotFP >, DD; // ST(i) = ST(0), pop
def FSTm32 : FPIm32 <"fst" , 0xD9, MRM2m , OneArgFP>; // store float
def FSTm64 : FPIm64 <"fst" , 0xDD, MRM2m , OneArgFP>; // store double
def FSTPm32 : FPIm32 <"fstp", 0xD9, MRM3m , OneArgFP>; // store float, pop
def FSTPm64 : FPIm64 <"fstp", 0xDD, MRM3m , OneArgFP>; // store double, pop
def FSTPm80 : FPIm80 <"fstp", 0xDB, MRM7m , OneArgFP>; // store extended, pop
def FISTm16 : FPIm16 <"fist", 0xDF, MRM2m , OneArgFP>; // store signed short
def FISTm32 : FPIm32 <"fist", 0xDB, MRM2m , OneArgFP>; // store signed int
def FISTPm16 : FPIm16 <"fistp", 0xDF, MRM3m , NotFP >; // store signed short, pop
def FISTPm32 : FPIm32 <"fistp", 0xDB, MRM3m , NotFP >; // store signed int, pop
def FISTPm64 : FPIm64 <"fistpll", 0xDF, MRM7m , OneArgFP>; // store signed long, pop
def FXCH : FPI <"fxch", 0xC8, AddRegFrm, NotFP>, D9; // fxch ST(i), ST(0)
// Floating point constant loads...
def FLD0 : FPI<"fldz", 0xEE, RawFrm, ZeroArgFP>, D9;
def FLD1 : FPI<"fld1", 0xE8, RawFrm, ZeroArgFP>, D9;
// Unary operations...
def FCHS : FPI<"fchs", 0xE0, RawFrm, OneArgFPRW>, D9; // f1 = fchs f2
def FTST : FPI<"ftst", 0xE4, RawFrm, OneArgFP>, D9; // ftst ST(0)
// Binary arithmetic operations...
class FPST0rInst<string n, bits<8> o> : I<n, o, AddRegFrm>, D8 {
list<Register> Uses = [ST0];
list<Register> Defs = [ST0];
}
class FPrST0Inst<string n, bits<8> o> : I<n, o, AddRegFrm>, DC {
bit printImplicitUses = 1;
list<Register> Uses = [ST0];
}
class FPrST0PInst<string n, bits<8> o> : I<n, o, AddRegFrm>, DE {
list<Register> Uses = [ST0];
}
def FADDST0r : FPST0rInst <"fadd", 0xC0>;
def FADDrST0 : FPrST0Inst <"fadd", 0xC0>;
def FADDPrST0 : FPrST0PInst<"faddp", 0xC0>;
def FSUBRST0r : FPST0rInst <"fsubr", 0xE8>;
def FSUBrST0 : FPrST0Inst <"fsub", 0xE8>;
def FSUBPrST0 : FPrST0PInst<"fsubp", 0xE8>;
def FSUBST0r : FPST0rInst <"fsub", 0xE0>;
def FSUBRrST0 : FPrST0Inst <"fsubr", 0xE0>;
def FSUBRPrST0 : FPrST0PInst<"fsubrp", 0xE0>;
def FMULST0r : FPST0rInst <"fmul", 0xC8>;
def FMULrST0 : FPrST0Inst <"fmul", 0xC8>;
def FMULPrST0 : FPrST0PInst<"fmulp", 0xC8>;
def FDIVRST0r : FPST0rInst <"fdivr", 0xF8>;
def FDIVrST0 : FPrST0Inst <"fdiv", 0xF8>;
def FDIVPrST0 : FPrST0PInst<"fdivp", 0xF8>;
def FDIVST0r : FPST0rInst <"fdiv", 0xF0>; // ST(0) = ST(0) / ST(i)
def FDIVRrST0 : FPrST0Inst <"fdivr", 0xF0>; // ST(i) = ST(0) / ST(i)
def FDIVRPrST0 : FPrST0PInst<"fdivrp", 0xF0>; // ST(i) = ST(0) / ST(i), pop
// Floating point compares
def FUCOMr : I<"fucom" , 0xE0, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i)
def FUCOMPr : I<"fucomp" , 0xE8, AddRegFrm>, DD, Imp<[ST0],[]>; // FPSW = compare ST(0) with ST(i), pop
def FUCOMPPr : I<"fucompp", 0xE9, RawFrm >, DA, Imp<[ST0],[]>; // compare ST(0) with ST(1), pop, pop
// Floating point flag ops
def FNSTSWr8 : I <"fnstsw" , 0xE0, RawFrm>, DF, Imp<[],[AX]>; // AX = fp flags
def FNSTCWm16 : Im16<"fnstcw" , 0xD9, MRM7m >; // [mem16] = X87 control world
def FLDCWm16 : Im16<"fldcw" , 0xD9, MRM5m >; // X87 control world = [mem16]
//===----------------------------------------------------------------------===//
// Instruction Expanders
//
def RET_R32 : Expander<(ret R32:$reg),
[(MOVrr32 EAX, R32:$reg),
(RET)]>;
// FIXME: This should eventually just be implemented by defining a frameidx as a
// value address for a load.
def LOAD_FI16 : Expander<(set R16:$dest, (load frameidx:$fi)),
[(MOVrm16 R16:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;
def LOAD_FI32 : Expander<(set R32:$dest, (load frameidx:$fi)),
[(MOVrm32 R32:$dest, frameidx:$fi, 1, 0/*NoReg*/, 0)]>;
def LOAD_R16 : Expander<(set R16:$dest, (load R32:$src)),
[(MOVrm16 R16:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;
def LOAD_R32 : Expander<(set R32:$dest, (load R32:$src)),
[(MOVrm32 R32:$dest, R32:$src, 1, 0/*NoReg*/, 0)]>;
def BR_EQ : Expander<(brcond (seteq R32:$a1, R32:$a2),
basicblock:$d1, basicblock:$d2),
[(CMPrr32 R32:$a1, R32:$a2),
(JE basicblock:$d1),
(JMP basicblock:$d2)]>;