llvm/utils/TableGen/DAGISelEmitter.cpp

2155 lines
86 KiB
C++
Raw Normal View History

//===- DAGISelEmitter.cpp - Generate an instruction selector --------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend emits a DAG instruction selector.
//
//===----------------------------------------------------------------------===//
#include "DAGISelEmitter.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Streams.h"
#include <algorithm>
using namespace llvm;
//===----------------------------------------------------------------------===//
// DAGISelEmitter Helper methods
//
/// NodeIsComplexPattern - return true if N is a leaf node and a subclass of
/// ComplexPattern.
static bool NodeIsComplexPattern(TreePatternNode *N) {
return (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern"));
}
/// NodeGetComplexPattern - return the pointer to the ComplexPattern if N
/// is a leaf node and a subclass of ComplexPattern, else it returns NULL.
static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N,
CodeGenDAGPatterns &CGP) {
if (N->isLeaf() &&
dynamic_cast<DefInit*>(N->getLeafValue()) &&
static_cast<DefInit*>(N->getLeafValue())->getDef()->
isSubClassOf("ComplexPattern")) {
return &CGP.getComplexPattern(static_cast<DefInit*>(N->getLeafValue())
->getDef());
}
return NULL;
}
/// getPatternSize - Return the 'size' of this pattern. We want to match large
/// patterns before small ones. This is used to determine the size of a
/// pattern.
static unsigned getPatternSize(TreePatternNode *P, CodeGenDAGPatterns &CGP) {
assert((MVT::isExtIntegerInVTs(P->getExtTypes()) ||
MVT::isExtFloatingPointInVTs(P->getExtTypes()) ||
P->getExtTypeNum(0) == MVT::isVoid ||
P->getExtTypeNum(0) == MVT::Flag ||
P->getExtTypeNum(0) == MVT::iPTR) &&
"Not a valid pattern node to size!");
unsigned Size = 3; // The node itself.
// If the root node is a ConstantSDNode, increases its size.
// e.g. (set R32:$dst, 0).
if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue()))
Size += 2;
// FIXME: This is a hack to statically increase the priority of patterns
// which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
// Later we can allow complexity / cost for each pattern to be (optionally)
// specified. To get best possible pattern match we'll need to dynamically
// calculate the complexity of all patterns a dag can potentially map to.
const ComplexPattern *AM = NodeGetComplexPattern(P, CGP);
if (AM)
Size += AM->getNumOperands() * 3;
// If this node has some predicate function that must match, it adds to the
// complexity of this node.
if (!P->getPredicateFn().empty())
++Size;
// Count children in the count if they are also nodes.
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = P->getChild(i);
if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other)
Size += getPatternSize(Child, CGP);
else if (Child->isLeaf()) {
if (dynamic_cast<IntInit*>(Child->getLeafValue()))
Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
else if (NodeIsComplexPattern(Child))
Size += getPatternSize(Child, CGP);
else if (!Child->getPredicateFn().empty())
++Size;
}
}
return Size;
}
/// getResultPatternCost - Compute the number of instructions for this pattern.
/// This is a temporary hack. We should really include the instruction
/// latencies in this calculation.
static unsigned getResultPatternCost(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost++;
CodeGenInstruction &II = CGP.getTargetInfo().getInstruction(Op->getName());
if (II.usesCustomDAGSchedInserter)
Cost += 10;
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternCost(P->getChild(i), CGP);
return Cost;
}
/// getResultPatternCodeSize - Compute the code size of instructions for this
/// pattern.
static unsigned getResultPatternSize(TreePatternNode *P,
CodeGenDAGPatterns &CGP) {
if (P->isLeaf()) return 0;
unsigned Cost = 0;
Record *Op = P->getOperator();
if (Op->isSubClassOf("Instruction")) {
Cost += Op->getValueAsInt("CodeSize");
}
for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
Cost += getResultPatternSize(P->getChild(i), CGP);
return Cost;
}
// PatternSortingPredicate - return true if we prefer to match LHS before RHS.
// In particular, we want to match maximal patterns first and lowest cost within
// a particular complexity first.
struct PatternSortingPredicate {
PatternSortingPredicate(CodeGenDAGPatterns &cgp) : CGP(cgp) {}
CodeGenDAGPatterns &CGP;
bool operator()(const PatternToMatch *LHS,
const PatternToMatch *RHS) {
unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), CGP);
unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), CGP);
LHSSize += LHS->getAddedComplexity();
RHSSize += RHS->getAddedComplexity();
if (LHSSize > RHSSize) return true; // LHS -> bigger -> less cost
if (LHSSize < RHSSize) return false;
// If the patterns have equal complexity, compare generated instruction cost
unsigned LHSCost = getResultPatternCost(LHS->getDstPattern(), CGP);
unsigned RHSCost = getResultPatternCost(RHS->getDstPattern(), CGP);
if (LHSCost < RHSCost) return true;
if (LHSCost > RHSCost) return false;
return getResultPatternSize(LHS->getDstPattern(), CGP) <
getResultPatternSize(RHS->getDstPattern(), CGP);
}
};
/// getRegisterValueType - Look up and return the first ValueType of specified
/// RegisterClass record
static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) {
if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R))
return RC->getValueTypeNum(0);
return MVT::Other;
}
/// RemoveAllTypes - A quick recursive walk over a pattern which removes all
/// type information from it.
static void RemoveAllTypes(TreePatternNode *N) {
N->removeTypes();
if (!N->isLeaf())
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
RemoveAllTypes(N->getChild(i));
}
/// NodeHasProperty - return true if TreePatternNode has the specified
/// property.
static bool NodeHasProperty(TreePatternNode *N, SDNP Property,
CodeGenDAGPatterns &CGP) {
if (N->isLeaf()) {
const ComplexPattern *CP = NodeGetComplexPattern(N, CGP);
if (CP)
return CP->hasProperty(Property);
return false;
}
Record *Operator = N->getOperator();
if (!Operator->isSubClassOf("SDNode")) return false;
return CGP.getSDNodeInfo(Operator).hasProperty(Property);
}
static bool PatternHasProperty(TreePatternNode *N, SDNP Property,
CodeGenDAGPatterns &CGP) {
if (NodeHasProperty(N, Property, CGP))
return true;
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
TreePatternNode *Child = N->getChild(i);
if (PatternHasProperty(Child, Property, CGP))
return true;
}
return false;
}
//===----------------------------------------------------------------------===//
// Node Transformation emitter implementation.
//
void DAGISelEmitter::EmitNodeTransforms(std::ostream &OS) {
// Walk the pattern fragments, adding them to a map, which sorts them by
// name.
typedef std::map<std::string, CodeGenDAGPatterns::NodeXForm> NXsByNameTy;
NXsByNameTy NXsByName;
for (CodeGenDAGPatterns::nx_iterator I = CGP.nx_begin(), E = CGP.nx_end();
I != E; ++I)
NXsByName.insert(std::make_pair(I->first->getName(), I->second));
OS << "\n// Node transformations.\n";
for (NXsByNameTy::iterator I = NXsByName.begin(), E = NXsByName.end();
I != E; ++I) {
Record *SDNode = I->second.first;
std::string Code = I->second.second;
if (Code.empty()) continue; // Empty code? Skip it.
std::string ClassName = CGP.getSDNodeInfo(SDNode).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline SDOperand Transform_" << I->first << "(SDNode *" << C2
<< ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
OS << Code << "\n}\n";
}
}
//===----------------------------------------------------------------------===//
// Predicate emitter implementation.
//
void DAGISelEmitter::EmitPredicateFunctions(std::ostream &OS) {
OS << "\n// Predicate functions.\n";
// Walk the pattern fragments, adding them to a map, which sorts them by
// name.
typedef std::map<std::string, std::pair<Record*, TreePattern*> > PFsByNameTy;
PFsByNameTy PFsByName;
for (CodeGenDAGPatterns::pf_iterator I = CGP.pf_begin(), E = CGP.pf_end();
I != E; ++I)
PFsByName.insert(std::make_pair(I->first->getName(), *I));
for (PFsByNameTy::iterator I = PFsByName.begin(), E = PFsByName.end();
I != E; ++I) {
Record *PatFragRecord = I->second.first;// Record that derives from PatFrag.
TreePattern *P = I->second.second;
// If there is a code init for this fragment, emit the predicate code.
std::string Code = PatFragRecord->getValueAsCode("Predicate");
if (Code.empty()) continue;
if (P->getOnlyTree()->isLeaf())
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *N) {\n";
else {
std::string ClassName =
CGP.getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName();
const char *C2 = ClassName == "SDNode" ? "N" : "inN";
OS << "inline bool Predicate_" << PatFragRecord->getName()
<< "(SDNode *" << C2 << ") {\n";
if (ClassName != "SDNode")
OS << " " << ClassName << " *N = cast<" << ClassName << ">(inN);\n";
}
OS << Code << "\n}\n";
}
OS << "\n\n";
}
//===----------------------------------------------------------------------===//
// PatternCodeEmitter implementation.
//
class PatternCodeEmitter {
private:
CodeGenDAGPatterns &CGP;
// Predicates.
ListInit *Predicates;
// Pattern cost.
unsigned Cost;
// Instruction selector pattern.
TreePatternNode *Pattern;
// Matched instruction.
TreePatternNode *Instruction;
// Node to name mapping
std::map<std::string, std::string> VariableMap;
// Node to operator mapping
std::map<std::string, Record*> OperatorMap;
// Name of the folded node which produces a flag.
std::pair<std::string, unsigned> FoldedFlag;
// Names of all the folded nodes which produce chains.
std::vector<std::pair<std::string, unsigned> > FoldedChains;
// Original input chain(s).
std::vector<std::pair<std::string, std::string> > OrigChains;
std::set<std::string> Duplicates;
/// LSI - Load/Store information.
/// Save loads/stores matched by a pattern, and generate a MemOperandSDNode
/// for each memory access. This facilitates the use of AliasAnalysis in
/// the backend.
std::vector<std::string> LSI;
/// GeneratedCode - This is the buffer that we emit code to. The first int
/// indicates whether this is an exit predicate (something that should be
/// tested, and if true, the match fails) [when 1], or normal code to emit
/// [when 0], or initialization code to emit [when 2].
std::vector<std::pair<unsigned, std::string> > &GeneratedCode;
/// GeneratedDecl - This is the set of all SDOperand declarations needed for
/// the set of patterns for each top-level opcode.
std::set<std::string> &GeneratedDecl;
/// TargetOpcodes - The target specific opcodes used by the resulting
/// instructions.
std::vector<std::string> &TargetOpcodes;
std::vector<std::string> &TargetVTs;
std::string ChainName;
unsigned TmpNo;
unsigned OpcNo;
unsigned VTNo;
void emitCheck(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(1, S));
}
void emitCode(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(0, S));
}
void emitInit(const std::string &S) {
if (!S.empty())
GeneratedCode.push_back(std::make_pair(2, S));
}
void emitDecl(const std::string &S) {
assert(!S.empty() && "Invalid declaration");
GeneratedDecl.insert(S);
}
void emitOpcode(const std::string &Opc) {
TargetOpcodes.push_back(Opc);
OpcNo++;
}
void emitVT(const std::string &VT) {
TargetVTs.push_back(VT);
VTNo++;
}
public:
PatternCodeEmitter(CodeGenDAGPatterns &cgp, ListInit *preds,
TreePatternNode *pattern, TreePatternNode *instr,
std::vector<std::pair<unsigned, std::string> > &gc,
std::set<std::string> &gd,
std::vector<std::string> &to,
std::vector<std::string> &tv)
: CGP(cgp), Predicates(preds), Pattern(pattern), Instruction(instr),
GeneratedCode(gc), GeneratedDecl(gd),
TargetOpcodes(to), TargetVTs(tv),
TmpNo(0), OpcNo(0), VTNo(0) {}
/// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo
/// if the match fails. At this point, we already know that the opcode for N
/// matches, and the SDNode for the result has the RootName specified name.
void EmitMatchCode(TreePatternNode *N, TreePatternNode *P,
const std::string &RootName, const std::string &ChainSuffix,
bool &FoundChain) {
// Save loads/stores matched by a pattern.
if (!N->isLeaf() && N->getName().empty()) {
std::string EnumName = N->getOperator()->getValueAsString("Opcode");
if (EnumName == "ISD::LOAD" ||
EnumName == "ISD::STORE") {
LSI.push_back(RootName);
}
}
bool isRoot = (P == NULL);
// Emit instruction predicates. Each predicate is just a string for now.
if (isRoot) {
std::string PredicateCheck;
for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) {
if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) {
Record *Def = Pred->getDef();
if (!Def->isSubClassOf("Predicate")) {
#ifndef NDEBUG
Def->dump();
#endif
assert(0 && "Unknown predicate type!");
}
if (!PredicateCheck.empty())
PredicateCheck += " && ";
PredicateCheck += "(" + Def->getValueAsString("CondString") + ")";
}
}
emitCheck(PredicateCheck);
}
if (N->isLeaf()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
emitCheck("cast<ConstantSDNode>(" + RootName +
")->getSignExtended() == " + itostr(II->getValue()));
return;
} else if (!NodeIsComplexPattern(N)) {
assert(0 && "Cannot match this as a leaf value!");
abort();
}
}
// If this node has a name associated with it, capture it in VariableMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!N->getName().empty()) {
std::string &VarMapEntry = VariableMap[N->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name. Since
// we already have checked that the first reference is valid, we don't
// have to recursively match it, just check that it's the same as the
// previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
return;
}
if (!N->isLeaf())
OperatorMap[N->getName()] = N->getOperator();
}
// Emit code to load the child nodes and match their contents recursively.
unsigned OpNo = 0;
bool NodeHasChain = NodeHasProperty (N, SDNPHasChain, CGP);
bool HasChain = PatternHasProperty(N, SDNPHasChain, CGP);
bool EmittedUseCheck = false;
if (HasChain) {
if (NodeHasChain)
OpNo = 1;
if (!isRoot) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
EmittedUseCheck = true;
if (NodeHasChain) {
// If the immediate use can somehow reach this node through another
// path, then can't fold it either or it will create a cycle.
// e.g. In the following diagram, XX can reach ld through YY. If
// ld is folded into XX, then YY is both a predecessor and a successor
// of XX.
//
// [ld]
// ^ ^
// | |
// / \---
// / [YY]
// | ^
// [XX]-------|
bool NeedCheck = false;
if (P != Pattern)
NeedCheck = true;
else {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(P->getOperator());
NeedCheck =
P->getOperator() == CGP.get_intrinsic_void_sdnode() ||
P->getOperator() == CGP.get_intrinsic_w_chain_sdnode() ||
P->getOperator() == CGP.get_intrinsic_wo_chain_sdnode() ||
PInfo.getNumOperands() > 1 ||
PInfo.hasProperty(SDNPHasChain) ||
PInfo.hasProperty(SDNPInFlag) ||
PInfo.hasProperty(SDNPOptInFlag);
}
if (NeedCheck) {
std::string ParentName(RootName.begin(), RootName.end()-1);
emitCheck("CanBeFoldedBy(" + RootName + ".Val, " + ParentName +
".Val, N.Val)");
}
}
}
if (NodeHasChain) {
if (FoundChain) {
emitCheck("(" + ChainName + ".Val == " + RootName + ".Val || "
"IsChainCompatible(" + ChainName + ".Val, " +
RootName + ".Val))");
OrigChains.push_back(std::make_pair(ChainName, RootName));
} else
FoundChain = true;
ChainName = "Chain" + ChainSuffix;
emitInit("SDOperand " + ChainName + " = " + RootName +
".getOperand(0);");
}
}
// Don't fold any node which reads or writes a flag and has multiple uses.
// FIXME: We really need to separate the concepts of flag and "glue". Those
// real flag results, e.g. X86CMP output, can have multiple uses.
// FIXME: If the optional incoming flag does not exist. Then it is ok to
// fold it.
if (!isRoot &&
(PatternHasProperty(N, SDNPInFlag, CGP) ||
PatternHasProperty(N, SDNPOptInFlag, CGP) ||
PatternHasProperty(N, SDNPOutFlag, CGP))) {
if (!EmittedUseCheck) {
// Multiple uses of actual result?
emitCheck(RootName + ".hasOneUse()");
}
}
// If there is a node predicate for this, emit the call.
if (!N->getPredicateFn().empty())
emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)");
// If this is an 'and R, 1234' where the operation is AND/OR and the RHS is
// a constant without a predicate fn that has more that one bit set, handle
// this as a special case. This is usually for targets that have special
// handling of certain large constants (e.g. alpha with it's 8/16/32-bit
// handling stuff). Using these instructions is often far more efficient
// than materializing the constant. Unfortunately, both the instcombiner
// and the dag combiner can often infer that bits are dead, and thus drop
// them from the mask in the dag. For example, it might turn 'AND X, 255'
// into 'AND X, 254' if it knows the low bit is set. Emit code that checks
// to handle this.
if (!N->isLeaf() &&
(N->getOperator()->getName() == "and" ||
N->getOperator()->getName() == "or") &&
N->getChild(1)->isLeaf() &&
N->getChild(1)->getPredicateFn().empty()) {
if (IntInit *II = dynamic_cast<IntInit*>(N->getChild(1)->getLeafValue())) {
if (!isPowerOf2_32(II->getValue())) { // Don't bother with single bits.
emitInit("SDOperand " + RootName + "0" + " = " +
RootName + ".getOperand(" + utostr(0) + ");");
emitInit("SDOperand " + RootName + "1" + " = " +
RootName + ".getOperand(" + utostr(1) + ");");
emitCheck("isa<ConstantSDNode>(" + RootName + "1)");
const char *MaskPredicate = N->getOperator()->getName() == "or"
? "CheckOrMask(" : "CheckAndMask(";
emitCheck(MaskPredicate + RootName + "0, cast<ConstantSDNode>(" +
RootName + "1), " + itostr(II->getValue()) + ")");
EmitChildMatchCode(N->getChild(0), N, RootName + utostr(0), RootName,
ChainSuffix + utostr(0), FoundChain);
return;
}
}
}
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
emitInit("SDOperand " + RootName + utostr(OpNo) + " = " +
RootName + ".getOperand(" +utostr(OpNo) + ");");
EmitChildMatchCode(N->getChild(i), N, RootName + utostr(OpNo), RootName,
ChainSuffix + utostr(OpNo), FoundChain);
}
// Handle cases when root is a complex pattern.
const ComplexPattern *CP;
if (isRoot && N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDOperand CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
emitDecl("CPInChain");
emitDecl("Chain" + ChainSuffix);
emitCode("SDOperand CPInChain;");
emitCode("SDOperand Chain" + ChainSuffix + ";");
}
std::string Code = Fn + "(" + RootName + ", " + RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain)) {
ChainName = "Chain" + ChainSuffix;
Code += ", CPInChain, Chain" + ChainSuffix;
}
emitCheck(Code + ")");
}
}
void EmitChildMatchCode(TreePatternNode *Child, TreePatternNode *Parent,
const std::string &RootName,
const std::string &ParentRootName,
const std::string &ChainSuffix, bool &FoundChain) {
if (!Child->isLeaf()) {
// If it's not a leaf, recursively match.
const SDNodeInfo &CInfo = CGP.getSDNodeInfo(Child->getOperator());
emitCheck(RootName + ".getOpcode() == " +
CInfo.getEnumName());
EmitMatchCode(Child, Parent, RootName, ChainSuffix, FoundChain);
bool HasChain = false;
if (NodeHasProperty(Child, SDNPHasChain, CGP)) {
HasChain = true;
FoldedChains.push_back(std::make_pair(RootName, CInfo.getNumResults()));
}
if (NodeHasProperty(Child, SDNPOutFlag, CGP)) {
assert(FoldedFlag.first == "" && FoldedFlag.second == 0 &&
"Pattern folded multiple nodes which produce flags?");
FoldedFlag = std::make_pair(RootName,
CInfo.getNumResults() + (unsigned)HasChain);
}
} else {
// If this child has a name associated with it, capture it in VarMap. If
// we already saw this in the pattern, emit code to verify dagness.
if (!Child->getName().empty()) {
std::string &VarMapEntry = VariableMap[Child->getName()];
if (VarMapEntry.empty()) {
VarMapEntry = RootName;
} else {
// If we get here, this is a second reference to a specific name.
// Since we already have checked that the first reference is valid,
// we don't have to recursively match it, just check that it's the
// same as the previously named thing.
emitCheck(VarMapEntry + " == " + RootName);
Duplicates.insert(RootName);
return;
}
}
// Handle leaves of various types.
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
Record *LeafRec = DI->getDef();
if (LeafRec->isSubClassOf("RegisterClass") ||
LeafRec->getName() == "ptr_rc") {
// Handle register references. Nothing to do here.
} else if (LeafRec->isSubClassOf("Register")) {
// Handle register references.
} else if (LeafRec->isSubClassOf("ComplexPattern")) {
// Handle complex pattern.
const ComplexPattern *CP = NodeGetComplexPattern(Child, CGP);
std::string Fn = CP->getSelectFunc();
unsigned NumOps = CP->getNumOperands();
for (unsigned i = 0; i < NumOps; ++i) {
emitDecl("CPTmp" + utostr(i));
emitCode("SDOperand CPTmp" + utostr(i) + ";");
}
if (CP->hasProperty(SDNPHasChain)) {
const SDNodeInfo &PInfo = CGP.getSDNodeInfo(Parent->getOperator());
FoldedChains.push_back(std::make_pair("CPInChain",
PInfo.getNumResults()));
ChainName = "Chain" + ChainSuffix;
emitDecl("CPInChain");
emitDecl(ChainName);
emitCode("SDOperand CPInChain;");
emitCode("SDOperand " + ChainName + ";");
}
std::string Code = Fn + "(";
if (CP->hasAttribute(CPAttrParentAsRoot)) {
Code += ParentRootName + ", ";
} else {
Code += "N, ";
}
if (CP->hasProperty(SDNPHasChain)) {
std::string ParentName(RootName.begin(), RootName.end()-1);
Code += ParentName + ", ";
}
Code += RootName;
for (unsigned i = 0; i < NumOps; i++)
Code += ", CPTmp" + utostr(i);
if (CP->hasProperty(SDNPHasChain))
Code += ", CPInChain, Chain" + ChainSuffix;
emitCheck(Code + ")");
} else if (LeafRec->getName() == "srcvalue") {
// Place holder for SRCVALUE nodes. Nothing to do here.
} else if (LeafRec->isSubClassOf("ValueType")) {
// Make sure this is the specified value type.
emitCheck("cast<VTSDNode>(" + RootName +
")->getVT() == MVT::" + LeafRec->getName());
} else if (LeafRec->isSubClassOf("CondCode")) {
// Make sure this is the specified cond code.
emitCheck("cast<CondCodeSDNode>(" + RootName +
")->get() == ISD::" + LeafRec->getName());
} else {
#ifndef NDEBUG
Child->dump();
cerr << " ";
#endif
assert(0 && "Unknown leaf type!");
}
// If there is a node predicate for this, emit the call.
if (!Child->getPredicateFn().empty())
emitCheck(Child->getPredicateFn() + "(" + RootName +
".Val)");
} else if (IntInit *II =
dynamic_cast<IntInit*>(Child->getLeafValue())) {
emitCheck("isa<ConstantSDNode>(" + RootName + ")");
unsigned CTmp = TmpNo++;
emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+
RootName + ")->getSignExtended();");
emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue()));
} else {
#ifndef NDEBUG
Child->dump();
#endif
assert(0 && "Unknown leaf type!");
}
}
}
/// EmitResultCode - Emit the action for a pattern. Now that it has matched
/// we actually have to build a DAG!
std::vector<std::string>
EmitResultCode(TreePatternNode *N, std::vector<Record*> DstRegs,
bool InFlagDecled, bool ResNodeDecled,
bool LikeLeaf = false, bool isRoot = false) {
// List of arguments of getTargetNode() or SelectNodeTo().
std::vector<std::string> NodeOps;
// This is something selected from the pattern we matched.
if (!N->getName().empty()) {
const std::string &VarName = N->getName();
std::string Val = VariableMap[VarName];
bool ModifiedVal = false;
assert(!Val.empty() &&
"Variable referenced but not defined and not caught earlier!");
if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') {
// Already selected this operand, just return the tmpval.
NodeOps.push_back(Val);
return NodeOps;
}
const ComplexPattern *CP;
unsigned ResNo = TmpNo++;
if (!N->isLeaf() && N->getOperator()->getName() == "imm") {
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
std::string CastType;
std::string TmpVar = "Tmp" + utostr(ResNo);
switch (N->getTypeNum(0)) {
default:
cerr << "Cannot handle " << getEnumName(N->getTypeNum(0))
<< " type as an immediate constant. Aborting\n";
abort();
case MVT::i1: CastType = "bool"; break;
case MVT::i8: CastType = "unsigned char"; break;
case MVT::i16: CastType = "unsigned short"; break;
case MVT::i32: CastType = "unsigned"; break;
case MVT::i64: CastType = "uint64_t"; break;
}
emitCode("SDOperand " + TmpVar +
" = CurDAG->getTargetConstant(((" + CastType +
") cast<ConstantSDNode>(" + Val + ")->getValue()), " +
getEnumName(N->getTypeNum(0)) + ");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select this
// value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
NodeOps.push_back(Val);
} else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){
Record *Op = OperatorMap[N->getName()];
// Transform ExternalSymbol to TargetExternalSymbol
if (Op && Op->getName() == "externalsym") {
std::string TmpVar = "Tmp"+utostr(ResNo);
emitCode("SDOperand " + TmpVar + " = CurDAG->getTarget"
"ExternalSymbol(cast<ExternalSymbolSDNode>(" +
Val + ")->getSymbol(), " +
getEnumName(N->getTypeNum(0)) + ");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
}
NodeOps.push_back(Val);
} else if (!N->isLeaf() && (N->getOperator()->getName() == "tglobaladdr"
|| N->getOperator()->getName() == "tglobaltlsaddr")) {
Record *Op = OperatorMap[N->getName()];
// Transform GlobalAddress to TargetGlobalAddress
if (Op && (Op->getName() == "globaladdr" ||
Op->getName() == "globaltlsaddr")) {
std::string TmpVar = "Tmp" + utostr(ResNo);
emitCode("SDOperand " + TmpVar + " = CurDAG->getTarget"
"GlobalAddress(cast<GlobalAddressSDNode>(" + Val +
")->getGlobal(), " + getEnumName(N->getTypeNum(0)) +
");");
// Add Tmp<ResNo> to VariableMap, so that we don't multiply select
// this value if used multiple times by this pattern result.
Val = TmpVar;
ModifiedVal = true;
}
NodeOps.push_back(Val);
} else if (!N->isLeaf()
&& (N->getOperator()->getName() == "texternalsym"
|| N->getOperator()->getName() == "tconstpool")) {
// Do not rewrite the variable name, since we don't generate a new
// temporary.
NodeOps.push_back(Val);
} else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, CGP))) {
for (unsigned i = 0; i < CP->getNumOperands(); ++i) {
emitCode("AddToISelQueue(CPTmp" + utostr(i) + ");");
NodeOps.push_back("CPTmp" + utostr(i));
}
} else {
// This node, probably wrapped in a SDNodeXForm, behaves like a leaf
// node even if it isn't one. Don't select it.
if (!LikeLeaf) {
emitCode("AddToISelQueue(" + Val + ");");
if (isRoot && N->isLeaf()) {
emitCode("ReplaceUses(N, " + Val + ");");
emitCode("return NULL;");
}
}
NodeOps.push_back(Val);
}
if (ModifiedVal) {
VariableMap[VarName] = Val;
}
return NodeOps;
}
if (N->isLeaf()) {
// If this is an explicit register reference, handle it.
if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
if (DI->getDef()->isSubClassOf("Register")) {
emitCode("SDOperand Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" +
getQualifiedName(DI->getDef()) + ", " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
} else if (DI->getDef()->getName() == "zero_reg") {
emitCode("SDOperand Tmp" + utostr(ResNo) +
" = CurDAG->getRegister(0, " +
getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
} else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) {
unsigned ResNo = TmpNo++;
assert(N->getExtTypes().size() == 1 && "Multiple types not handled!");
emitCode("SDOperand Tmp" + utostr(ResNo) +
" = CurDAG->getTargetConstant(" + itostr(II->getValue()) +
", " + getEnumName(N->getTypeNum(0)) + ");");
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
#ifndef NDEBUG
N->dump();
#endif
assert(0 && "Unknown leaf type!");
return NodeOps;
}
Record *Op = N->getOperator();
if (Op->isSubClassOf("Instruction")) {
const CodeGenTarget &CGT = CGP.getTargetInfo();
CodeGenInstruction &II = CGT.getInstruction(Op->getName());
const DAGInstruction &Inst = CGP.getInstruction(Op);
const TreePattern *InstPat = Inst.getPattern();
// FIXME: Assume actual pattern comes before "implicit".
TreePatternNode *InstPatNode =
isRoot ? (InstPat ? InstPat->getTree(0) : Pattern)
: (InstPat ? InstPat->getTree(0) : NULL);
if (InstPatNode && InstPatNode->getOperator()->getName() == "set") {
InstPatNode = InstPatNode->getChild(InstPatNode->getNumChildren()-1);
}
bool HasVarOps = isRoot && II.isVariadic;
// FIXME: fix how we deal with physical register operands.
bool HasImpInputs = isRoot && Inst.getNumImpOperands() > 0;
bool HasImpResults = isRoot && DstRegs.size() > 0;
bool NodeHasOptInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPOptInFlag, CGP);
bool NodeHasInFlag = isRoot &&
PatternHasProperty(Pattern, SDNPInFlag, CGP);
bool NodeHasOutFlag = isRoot &&
PatternHasProperty(Pattern, SDNPOutFlag, CGP);
bool NodeHasChain = InstPatNode &&
PatternHasProperty(InstPatNode, SDNPHasChain, CGP);
bool InputHasChain = isRoot &&
NodeHasProperty(Pattern, SDNPHasChain, CGP);
unsigned NumResults = Inst.getNumResults();
unsigned NumDstRegs = HasImpResults ? DstRegs.size() : 0;
if (NodeHasOptInFlag) {
emitCode("bool HasInFlag = "
"(N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag);");
}
if (HasVarOps)
emitCode("SmallVector<SDOperand, 8> Ops" + utostr(OpcNo) + ";");
// How many results is this pattern expected to produce?
unsigned NumPatResults = 0;
for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) {
MVT::ValueType VT = Pattern->getTypeNum(i);
if (VT != MVT::isVoid && VT != MVT::Flag)
NumPatResults++;
}
if (OrigChains.size() > 0) {
// The original input chain is being ignored. If it is not just
// pointing to the op that's being folded, we should create a
// TokenFactor with it and the chain of the folded op as the new chain.
// We could potentially be doing multiple levels of folding, in that
// case, the TokenFactor can have more operands.
emitCode("SmallVector<SDOperand, 8> InChains;");
for (unsigned i = 0, e = OrigChains.size(); i < e; ++i) {
emitCode("if (" + OrigChains[i].first + ".Val != " +
OrigChains[i].second + ".Val) {");
emitCode(" AddToISelQueue(" + OrigChains[i].first + ");");
emitCode(" InChains.push_back(" + OrigChains[i].first + ");");
emitCode("}");
}
emitCode("AddToISelQueue(" + ChainName + ");");
emitCode("InChains.push_back(" + ChainName + ");");
emitCode(ChainName + " = CurDAG->getNode(ISD::TokenFactor, MVT::Other, "
"&InChains[0], InChains.size());");
}
// Loop over all of the operands of the instruction pattern, emitting code
// to fill them all in. The node 'N' usually has number children equal to
// the number of input operands of the instruction. However, in cases
// where there are predicate operands for an instruction, we need to fill
// in the 'execute always' values. Match up the node operands to the
// instruction operands to do this.
std::vector<std::string> AllOps;
unsigned NumEAInputs = 0; // # of synthesized 'execute always' inputs.
for (unsigned ChildNo = 0, InstOpNo = NumResults;
InstOpNo != II.OperandList.size(); ++InstOpNo) {
std::vector<std::string> Ops;
// If this is a normal operand or a predicate operand without
// 'execute always', emit it.
Record *OperandNode = II.OperandList[InstOpNo].Rec;
if ((!OperandNode->isSubClassOf("PredicateOperand") &&
!OperandNode->isSubClassOf("OptionalDefOperand")) ||
CGP.getDefaultOperand(OperandNode).DefaultOps.empty()) {
Ops = EmitResultCode(N->getChild(ChildNo), DstRegs,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
++ChildNo;
} else {
// Otherwise, this is a predicate or optional def operand, emit the
// 'default ops' operands.
const DAGDefaultOperand &DefaultOp =
CGP.getDefaultOperand(II.OperandList[InstOpNo].Rec);
for (unsigned i = 0, e = DefaultOp.DefaultOps.size(); i != e; ++i) {
Ops = EmitResultCode(DefaultOp.DefaultOps[i], DstRegs,
InFlagDecled, ResNodeDecled);
AllOps.insert(AllOps.end(), Ops.begin(), Ops.end());
NumEAInputs += Ops.size();
}
}
}
// Generate MemOperandSDNodes nodes for each memory accesses covered by this
// pattern.
if (isRoot) {
std::vector<std::string>::const_iterator mi, mie;
for (mi = LSI.begin(), mie = LSI.end(); mi != mie; ++mi) {
emitCode("SDOperand LSI_" + *mi + " = "
"CurDAG->getMemOperand(cast<LSBaseSDNode>(" +
*mi + ")->getMemOperand());");
AllOps.push_back("LSI_" + *mi);
}
}
// Emit all the chain and CopyToReg stuff.
bool ChainEmitted = NodeHasChain;
if (NodeHasChain)
emitCode("AddToISelQueue(" + ChainName + ");");
if (NodeHasInFlag || HasImpInputs)
EmitInFlagSelectCode(Pattern, "N", ChainEmitted,
InFlagDecled, ResNodeDecled, true);
if (NodeHasOptInFlag || NodeHasInFlag || HasImpInputs) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag(0, 0);");
InFlagDecled = true;
}
if (NodeHasOptInFlag) {
emitCode("if (HasInFlag) {");
emitCode(" InFlag = N.getOperand(N.getNumOperands()-1);");
emitCode(" AddToISelQueue(InFlag);");
emitCode("}");
}
}
unsigned ResNo = TmpNo++;
if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag ||
NodeHasOptInFlag || HasImpResults) {
std::string Code;
std::string Code2;
std::string NodeName;
if (!isRoot) {
NodeName = "Tmp" + utostr(ResNo);
Code2 = "SDOperand " + NodeName + "(";
} else {
NodeName = "ResNode";
if (!ResNodeDecled) {
Code2 = "SDNode *" + NodeName + " = ";
ResNodeDecled = true;
} else
Code2 = NodeName + " = ";
}
Code += "CurDAG->getTargetNode(Opc" + utostr(OpcNo);
unsigned OpsNo = OpcNo;
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
// Output order: results, chain, flags
// Result types.
if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) {
Code += ", VT" + utostr(VTNo);
emitVT(getEnumName(N->getTypeNum(0)));
}
// Add types for implicit results in physical registers, scheduler will
// care of adding copyfromreg nodes.
for (unsigned i = 0; i < NumDstRegs; i++) {
Record *RR = DstRegs[i];
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, CGT);
Code += ", " + getEnumName(RVT);
}
}
if (NodeHasChain)
Code += ", MVT::Other";
if (NodeHasOutFlag)
Code += ", MVT::Flag";
// Figure out how many fixed inputs the node has. This is important to
// know which inputs are the variable ones if present.
unsigned NumInputs = AllOps.size();
NumInputs += NodeHasChain;
// Inputs.
if (HasVarOps) {
for (unsigned i = 0, e = AllOps.size(); i != e; ++i)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + AllOps[i] + ");");
AllOps.clear();
}
if (HasVarOps) {
// Figure out whether any operands at the end of the op list are not
// part of the variable section.
std::string EndAdjust;
if (NodeHasInFlag || HasImpInputs)
EndAdjust = "-1"; // Always has one flag.
else if (NodeHasOptInFlag)
EndAdjust = "-(HasInFlag?1:0)"; // May have a flag.
emitCode("for (unsigned i = " + utostr(NumInputs - NumEAInputs) +
", e = N.getNumOperands()" + EndAdjust + "; i != e; ++i) {");
emitCode(" AddToISelQueue(N.getOperand(i));");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(N.getOperand(i));");
emitCode("}");
}
if (NodeHasChain) {
if (HasVarOps)
emitCode("Ops" + utostr(OpsNo) + ".push_back(" + ChainName + ");");
else
AllOps.push_back(ChainName);
}
if (HasVarOps) {
if (NodeHasInFlag || HasImpInputs)
emitCode("Ops" + utostr(OpsNo) + ".push_back(InFlag);");
else if (NodeHasOptInFlag) {
emitCode("if (HasInFlag)");
emitCode(" Ops" + utostr(OpsNo) + ".push_back(InFlag);");
}
Code += ", &Ops" + utostr(OpsNo) + "[0], Ops" + utostr(OpsNo) +
".size()";
} else if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
AllOps.push_back("InFlag");
unsigned NumOps = AllOps.size();
if (NumOps) {
if (!NodeHasOptInFlag && NumOps < 4) {
for (unsigned i = 0; i != NumOps; ++i)
Code += ", " + AllOps[i];
} else {
std::string OpsCode = "SDOperand Ops" + utostr(OpsNo) + "[] = { ";
for (unsigned i = 0; i != NumOps; ++i) {
OpsCode += AllOps[i];
if (i != NumOps-1)
OpsCode += ", ";
}
emitCode(OpsCode + " };");
Code += ", Ops" + utostr(OpsNo) + ", ";
if (NodeHasOptInFlag) {
Code += "HasInFlag ? ";
Code += utostr(NumOps) + " : " + utostr(NumOps-1);
} else
Code += utostr(NumOps);
}
}
if (!isRoot)
Code += "), 0";
emitCode(Code2 + Code + ");");
if (NodeHasChain)
// Remember which op produces the chain.
if (!isRoot)
emitCode(ChainName + " = SDOperand(" + NodeName +
".Val, " + utostr(NumResults+NumDstRegs) + ");");
else
emitCode(ChainName + " = SDOperand(" + NodeName +
", " + utostr(NumResults+NumDstRegs) + ");");
if (!isRoot) {
NodeOps.push_back("Tmp" + utostr(ResNo));
return NodeOps;
}
bool NeedReplace = false;
if (NodeHasOutFlag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag(ResNode, " +
utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");");
InFlagDecled = true;
} else
emitCode("InFlag = SDOperand(ResNode, " +
utostr(NumResults+NumDstRegs+(unsigned)NodeHasChain) + ");");
}
if (FoldedChains.size() > 0) {
std::string Code;
for (unsigned j = 0, e = FoldedChains.size(); j < e; j++)
emitCode("ReplaceUses(SDOperand(" +
FoldedChains[j].first + ".Val, " +
utostr(FoldedChains[j].second) + "), SDOperand(ResNode, " +
utostr(NumResults+NumDstRegs) + "));");
NeedReplace = true;
}
if (NodeHasOutFlag) {
if (FoldedFlag.first != "") {
emitCode("ReplaceUses(SDOperand(" + FoldedFlag.first + ".Val, " +
utostr(FoldedFlag.second) + "), InFlag);");
} else {
assert(NodeHasProperty(Pattern, SDNPOutFlag, CGP));
emitCode("ReplaceUses(SDOperand(N.Val, " +
utostr(NumPatResults + (unsigned)InputHasChain)
+"), InFlag);");
}
NeedReplace = true;
}
if (NeedReplace && InputHasChain)
emitCode("ReplaceUses(SDOperand(N.Val, " +
utostr(NumPatResults) + "), SDOperand(" + ChainName
+ ".Val, " + ChainName + ".ResNo" + "));");
// User does not expect the instruction would produce a chain!
if ((!InputHasChain && NodeHasChain) && NodeHasOutFlag) {
;
} else if (InputHasChain && !NodeHasChain) {
// One of the inner node produces a chain.
if (NodeHasOutFlag)
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(NumPatResults+1) +
"), SDOperand(ResNode, N.ResNo-1));");
emitCode("ReplaceUses(SDOperand(N.Val, " + utostr(NumPatResults) +
"), " + ChainName + ");");
}
emitCode("return ResNode;");
} else {
std::string Code = "return CurDAG->SelectNodeTo(N.Val, Opc" +
utostr(OpcNo);
if (N->getTypeNum(0) != MVT::isVoid)
Code += ", VT" + utostr(VTNo);
if (NodeHasOutFlag)
Code += ", MVT::Flag";
if (NodeHasInFlag || NodeHasOptInFlag || HasImpInputs)
AllOps.push_back("InFlag");
unsigned NumOps = AllOps.size();
if (NumOps) {
if (!NodeHasOptInFlag && NumOps < 4) {
for (unsigned i = 0; i != NumOps; ++i)
Code += ", " + AllOps[i];
} else {
std::string OpsCode = "SDOperand Ops" + utostr(OpcNo) + "[] = { ";
for (unsigned i = 0; i != NumOps; ++i) {
OpsCode += AllOps[i];
if (i != NumOps-1)
OpsCode += ", ";
}
emitCode(OpsCode + " };");
Code += ", Ops" + utostr(OpcNo) + ", ";
Code += utostr(NumOps);
}
}
emitCode(Code + ");");
emitOpcode(II.Namespace + "::" + II.TheDef->getName());
if (N->getTypeNum(0) != MVT::isVoid)
emitVT(getEnumName(N->getTypeNum(0)));
}
return NodeOps;
} else if (Op->isSubClassOf("SDNodeXForm")) {
assert(N->getNumChildren() == 1 && "node xform should have one child!");
// PatLeaf node - the operand may or may not be a leaf node. But it should
// behave like one.
std::vector<std::string> Ops =
EmitResultCode(N->getChild(0), DstRegs, InFlagDecled,
ResNodeDecled, true);
unsigned ResNo = TmpNo++;
emitCode("SDOperand Tmp" + utostr(ResNo) + " = Transform_" + Op->getName()
+ "(" + Ops.back() + ".Val);");
NodeOps.push_back("Tmp" + utostr(ResNo));
if (isRoot)
emitCode("return Tmp" + utostr(ResNo) + ".Val;");
return NodeOps;
} else {
N->dump();
cerr << "\n";
throw std::string("Unknown node in result pattern!");
}
}
/// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat'
/// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that
/// 'Pat' may be missing types. If we find an unresolved type to add a check
/// for, this returns true otherwise false if Pat has all types.
bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other,
const std::string &Prefix, bool isRoot = false) {
// Did we find one?
if (Pat->getExtTypes() != Other->getExtTypes()) {
// Move a type over from 'other' to 'pat'.
Pat->setTypes(Other->getExtTypes());
// The top level node type is checked outside of the select function.
if (!isRoot)
emitCheck(Prefix + ".Val->getValueType(0) == " +
getName(Pat->getTypeNum(0)));
return true;
}
unsigned OpNo =
(unsigned) NodeHasProperty(Pat, SDNPHasChain, CGP);
for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo)
if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i),
Prefix + utostr(OpNo)))
return true;
return false;
}
private:
/// EmitInFlagSelectCode - Emit the flag operands for the DAG that is
/// being built.
void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName,
bool &ChainEmitted, bool &InFlagDecled,
bool &ResNodeDecled, bool isRoot = false) {
const CodeGenTarget &T = CGP.getTargetInfo();
unsigned OpNo =
(unsigned) NodeHasProperty(N, SDNPHasChain, CGP);
bool HasInFlag = NodeHasProperty(N, SDNPInFlag, CGP);
for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) {
TreePatternNode *Child = N->getChild(i);
if (!Child->isLeaf()) {
EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted,
InFlagDecled, ResNodeDecled);
} else {
if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) {
if (!Child->getName().empty()) {
std::string Name = RootName + utostr(OpNo);
if (Duplicates.find(Name) != Duplicates.end())
// A duplicate! Do not emit a copy for this node.
continue;
}
Record *RR = DI->getDef();
if (RR->isSubClassOf("Register")) {
MVT::ValueType RVT = getRegisterValueType(RR, T);
if (RVT == MVT::Flag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag = " + RootName + utostr(OpNo) + ";");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName + utostr(OpNo) + ";");
emitCode("AddToISelQueue(InFlag);");
} else {
if (!ChainEmitted) {
emitCode("SDOperand Chain = CurDAG->getEntryNode();");
ChainName = "Chain";
ChainEmitted = true;
}
emitCode("AddToISelQueue(" + RootName + utostr(OpNo) + ");");
if (!InFlagDecled) {
emitCode("SDOperand InFlag(0, 0);");
InFlagDecled = true;
}
std::string Decl = (!ResNodeDecled) ? "SDNode *" : "";
emitCode(Decl + "ResNode = CurDAG->getCopyToReg(" + ChainName +
", " + getQualifiedName(RR) +
", " + RootName + utostr(OpNo) + ", InFlag).Val;");
ResNodeDecled = true;
emitCode(ChainName + " = SDOperand(ResNode, 0);");
emitCode("InFlag = SDOperand(ResNode, 1);");
}
}
}
}
}
if (HasInFlag) {
if (!InFlagDecled) {
emitCode("SDOperand InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
InFlagDecled = true;
} else
emitCode("InFlag = " + RootName +
".getOperand(" + utostr(OpNo) + ");");
emitCode("AddToISelQueue(InFlag);");
}
}
};
/// EmitCodeForPattern - Given a pattern to match, emit code to the specified
/// stream to match the pattern, and generate the code for the match if it
/// succeeds. Returns true if the pattern is not guaranteed to match.
void DAGISelEmitter::GenerateCodeForPattern(const PatternToMatch &Pattern,
std::vector<std::pair<unsigned, std::string> > &GeneratedCode,
std::set<std::string> &GeneratedDecl,
std::vector<std::string> &TargetOpcodes,
std::vector<std::string> &TargetVTs) {
PatternCodeEmitter Emitter(CGP, Pattern.getPredicates(),
Pattern.getSrcPattern(), Pattern.getDstPattern(),
GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs);
// Emit the matcher, capturing named arguments in VariableMap.
bool FoundChain = false;
Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", FoundChain);
// TP - Get *SOME* tree pattern, we don't care which.
TreePattern &TP = *CGP.pf_begin()->second;
// At this point, we know that we structurally match the pattern, but the
// types of the nodes may not match. Figure out the fewest number of type
// comparisons we need to emit. For example, if there is only one integer
// type supported by a target, there should be no type comparisons at all for
// integer patterns!
//
// To figure out the fewest number of type checks needed, clone the pattern,
// remove the types, then perform type inference on the pattern as a whole.
// If there are unresolved types, emit an explicit check for those types,
// apply the type to the tree, then rerun type inference. Iterate until all
// types are resolved.
//
TreePatternNode *Pat = Pattern.getSrcPattern()->clone();
RemoveAllTypes(Pat);
do {
// Resolve/propagate as many types as possible.
try {
bool MadeChange = true;
while (MadeChange)
MadeChange = Pat->ApplyTypeConstraints(TP,
true/*Ignore reg constraints*/);
} catch (...) {
assert(0 && "Error: could not find consistent types for something we"
" already decided was ok!");
abort();
}
// Insert a check for an unresolved type and add it to the tree. If we find
// an unresolved type to add a check for, this returns true and we iterate,
// otherwise we are done.
} while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N", true));
Emitter.EmitResultCode(Pattern.getDstPattern(), Pattern.getDstRegs(),
false, false, false, true);
delete Pat;
}
/// EraseCodeLine - Erase one code line from all of the patterns. If removing
/// a line causes any of them to be empty, remove them and return true when
/// done.
static bool EraseCodeLine(std::vector<std::pair<const PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns) {
bool ErasedPatterns = false;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
Patterns[i].second.pop_back();
if (Patterns[i].second.empty()) {
Patterns.erase(Patterns.begin()+i);
--i; --e;
ErasedPatterns = true;
}
}
return ErasedPatterns;
}
/// EmitPatterns - Emit code for at least one pattern, but try to group common
/// code together between the patterns.
void DAGISelEmitter::EmitPatterns(std::vector<std::pair<const PatternToMatch*,
std::vector<std::pair<unsigned, std::string> > > >
&Patterns, unsigned Indent,
std::ostream &OS) {
typedef std::pair<unsigned, std::string> CodeLine;
typedef std::vector<CodeLine> CodeList;
typedef std::vector<std::pair<const PatternToMatch*, CodeList> > PatternList;
if (Patterns.empty()) return;
// Figure out how many patterns share the next code line. Explicitly copy
// FirstCodeLine so that we don't invalidate a reference when changing
// Patterns.
const CodeLine FirstCodeLine = Patterns.back().second.back();
unsigned LastMatch = Patterns.size()-1;
while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine)
--LastMatch;
// If not all patterns share this line, split the list into two pieces. The
// first chunk will use this line, the second chunk won't.
if (LastMatch != 0) {
PatternList Shared(Patterns.begin()+LastMatch, Patterns.end());
PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch);
// FIXME: Emit braces?
if (Shared.size() == 1) {
const PatternToMatch &Pattern = *Shared.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), CGP)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
}
if (FirstCodeLine.first != 1) {
OS << std::string(Indent, ' ') << "{\n";
Indent += 2;
}
EmitPatterns(Shared, Indent, OS);
if (FirstCodeLine.first != 1) {
Indent -= 2;
OS << std::string(Indent, ' ') << "}\n";
}
if (Other.size() == 1) {
const PatternToMatch &Pattern = *Other.back().first;
OS << "\n" << std::string(Indent, ' ') << "// Pattern: ";
Pattern.getSrcPattern()->print(OS);
OS << "\n" << std::string(Indent, ' ') << "// Emits: ";
Pattern.getDstPattern()->print(OS);
OS << "\n";
unsigned AddedComplexity = Pattern.getAddedComplexity();
OS << std::string(Indent, ' ') << "// Pattern complexity = "
<< getPatternSize(Pattern.getSrcPattern(), CGP) + AddedComplexity
<< " cost = "
<< getResultPatternCost(Pattern.getDstPattern(), CGP)
<< " size = "
<< getResultPatternSize(Pattern.getDstPattern(), CGP) << "\n";
}
EmitPatterns(Other, Indent, OS);
return;
}
// Remove this code from all of the patterns that share it.
bool ErasedPatterns = EraseCodeLine(Patterns);
bool isPredicate = FirstCodeLine.first == 1;
// Otherwise, every pattern in the list has this line. Emit it.
if (!isPredicate) {
// Normal code.
OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n";
} else {
OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second;
// If the next code line is another predicate, and if all of the pattern
// in this group share the same next line, emit it inline now. Do this
// until we run out of common predicates.
while (!ErasedPatterns && Patterns.back().second.back().first == 1) {
// Check that all of fhe patterns in Patterns end with the same predicate.
bool AllEndWithSamePredicate = true;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i)
if (Patterns[i].second.back() != Patterns.back().second.back()) {
AllEndWithSamePredicate = false;
break;
}
// If all of the predicates aren't the same, we can't share them.
if (!AllEndWithSamePredicate) break;
// Otherwise we can. Emit it shared now.
OS << " &&\n" << std::string(Indent+4, ' ')
<< Patterns.back().second.back().second;
ErasedPatterns = EraseCodeLine(Patterns);
}
OS << ") {\n";
Indent += 2;
}
EmitPatterns(Patterns, Indent, OS);
if (isPredicate)
OS << std::string(Indent-2, ' ') << "}\n";
}
static std::string getOpcodeName(Record *Op, CodeGenDAGPatterns &CGP) {
return CGP.getSDNodeInfo(Op).getEnumName();
}
static std::string getLegalCName(std::string OpName) {
std::string::size_type pos = OpName.find("::");
if (pos != std::string::npos)
OpName.replace(pos, 2, "_");
return OpName;
}
void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) {
const CodeGenTarget &Target = CGP.getTargetInfo();
// Get the namespace to insert instructions into. Make sure not to pick up
// "TargetInstrInfo" by accidentally getting the namespace off the PHI
// instruction or something.
std::string InstNS;
for (CodeGenTarget::inst_iterator i = Target.inst_begin(),
e = Target.inst_end(); i != e; ++i) {
InstNS = i->second.Namespace;
if (InstNS != "TargetInstrInfo")
break;
}
if (!InstNS.empty()) InstNS += "::";
// Group the patterns by their top-level opcodes.
std::map<std::string, std::vector<const PatternToMatch*> > PatternsByOpcode;
// All unique target node emission functions.
std::map<std::string, unsigned> EmitFunctions;
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(),
E = CGP.ptm_end(); I != E; ++I) {
const PatternToMatch &Pattern = *I;
TreePatternNode *Node = Pattern.getSrcPattern();
if (!Node->isLeaf()) {
PatternsByOpcode[getOpcodeName(Node->getOperator(), CGP)].
push_back(&Pattern);
} else {
const ComplexPattern *CP;
if (dynamic_cast<IntInit*>(Node->getLeafValue())) {
PatternsByOpcode[getOpcodeName(CGP.getSDNodeNamed("imm"), CGP)].
push_back(&Pattern);
} else if ((CP = NodeGetComplexPattern(Node, CGP))) {
std::vector<Record*> OpNodes = CP->getRootNodes();
for (unsigned j = 0, e = OpNodes.size(); j != e; j++) {
PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)]
.insert(PatternsByOpcode[getOpcodeName(OpNodes[j], CGP)].begin(),
&Pattern);
}
} else {
cerr << "Unrecognized opcode '";
Node->dump();
cerr << "' on tree pattern '";
cerr << Pattern.getDstPattern()->getOperator()->getName() << "'!\n";
exit(1);
}
}
}
// For each opcode, there might be multiple select functions, one per
// ValueType of the node (or its first operand if it doesn't produce a
// non-chain result.
std::map<std::string, std::vector<std::string> > OpcodeVTMap;
// Emit one Select_* method for each top-level opcode. We do this instead of
// emitting one giant switch statement to support compilers where this will
// result in the recursive functions taking less stack space.
for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
std::vector<const PatternToMatch*> &PatternsOfOp = PBOI->second;
assert(!PatternsOfOp.empty() && "No patterns but map has entry?");
// We want to emit all of the matching code now. However, we want to emit
// the matches in order of minimal cost. Sort the patterns so the least
// cost one is at the start.
std::stable_sort(PatternsOfOp.begin(), PatternsOfOp.end(),
PatternSortingPredicate(CGP));
// Split them into groups by type.
std::map<MVT::ValueType, std::vector<const PatternToMatch*> >PatternsByType;
for (unsigned i = 0, e = PatternsOfOp.size(); i != e; ++i) {
const PatternToMatch *Pat = PatternsOfOp[i];
TreePatternNode *SrcPat = Pat->getSrcPattern();
MVT::ValueType VT = SrcPat->getTypeNum(0);
std::map<MVT::ValueType,
std::vector<const PatternToMatch*> >::iterator TI =
PatternsByType.find(VT);
if (TI != PatternsByType.end())
TI->second.push_back(Pat);
else {
std::vector<const PatternToMatch*> PVec;
PVec.push_back(Pat);
PatternsByType.insert(std::make_pair(VT, PVec));
}
}
for (std::map<MVT::ValueType, std::vector<const PatternToMatch*> >::iterator
II = PatternsByType.begin(), EE = PatternsByType.end(); II != EE;
++II) {
MVT::ValueType OpVT = II->first;
std::vector<const PatternToMatch*> &Patterns = II->second;
typedef std::vector<std::pair<unsigned,std::string> > CodeList;
typedef std::vector<std::pair<unsigned,std::string> >::iterator CodeListI;
std::vector<std::pair<const PatternToMatch*, CodeList> > CodeForPatterns;
std::vector<std::vector<std::string> > PatternOpcodes;
std::vector<std::vector<std::string> > PatternVTs;
std::vector<std::set<std::string> > PatternDecls;
for (unsigned i = 0, e = Patterns.size(); i != e; ++i) {
CodeList GeneratedCode;
std::set<std::string> GeneratedDecl;
std::vector<std::string> TargetOpcodes;
std::vector<std::string> TargetVTs;
GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl,
TargetOpcodes, TargetVTs);
CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode));
PatternDecls.push_back(GeneratedDecl);
PatternOpcodes.push_back(TargetOpcodes);
PatternVTs.push_back(TargetVTs);
}
// Scan the code to see if all of the patterns are reachable and if it is
// possible that the last one might not match.
bool mightNotMatch = true;
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
mightNotMatch = false;
for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) {
if (GeneratedCode[j].first == 1) { // predicate.
mightNotMatch = true;
break;
}
}
// If this pattern definitely matches, and if it isn't the last one, the
// patterns after it CANNOT ever match. Error out.
if (mightNotMatch == false && i != CodeForPatterns.size()-1) {
cerr << "Pattern '";
CodeForPatterns[i].first->getSrcPattern()->print(*cerr.stream());
cerr << "' is impossible to select!\n";
exit(1);
}
}
// Factor target node emission code (emitted by EmitResultCode) into
// separate functions. Uniquing and share them among all instruction
// selection routines.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::vector<std::string> &TargetOpcodes = PatternOpcodes[i];
std::vector<std::string> &TargetVTs = PatternVTs[i];
std::set<std::string> Decls = PatternDecls[i];
std::vector<std::string> AddedInits;
int CodeSize = (int)GeneratedCode.size();
int LastPred = -1;
for (int j = CodeSize-1; j >= 0; --j) {
if (LastPred == -1 && GeneratedCode[j].first == 1)
LastPred = j;
else if (LastPred != -1 && GeneratedCode[j].first == 2)
AddedInits.push_back(GeneratedCode[j].second);
}
std::string CalleeCode = "(const SDOperand &N";
std::string CallerCode = "(N";
for (unsigned j = 0, e = TargetOpcodes.size(); j != e; ++j) {
CalleeCode += ", unsigned Opc" + utostr(j);
CallerCode += ", " + TargetOpcodes[j];
}
for (unsigned j = 0, e = TargetVTs.size(); j != e; ++j) {
CalleeCode += ", MVT::ValueType VT" + utostr(j);
CallerCode += ", " + TargetVTs[j];
}
for (std::set<std::string>::iterator
I = Decls.begin(), E = Decls.end(); I != E; ++I) {
std::string Name = *I;
CalleeCode += ", SDOperand &" + Name;
CallerCode += ", " + Name;
}
CallerCode += ");";
CalleeCode += ") ";
// Prevent emission routines from being inlined to reduce selection
// routines stack frame sizes.
CalleeCode += "DISABLE_INLINE ";
CalleeCode += "{\n";
for (std::vector<std::string>::const_reverse_iterator
I = AddedInits.rbegin(), E = AddedInits.rend(); I != E; ++I)
CalleeCode += " " + *I + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
CalleeCode += " " + GeneratedCode[j].second + "\n";
for (int j = LastPred+1; j < CodeSize; ++j)
GeneratedCode.pop_back();
CalleeCode += "}\n";
// Uniquing the emission routines.
unsigned EmitFuncNum;
std::map<std::string, unsigned>::iterator EFI =
EmitFunctions.find(CalleeCode);
if (EFI != EmitFunctions.end()) {
EmitFuncNum = EFI->second;
} else {
EmitFuncNum = EmitFunctions.size();
EmitFunctions.insert(std::make_pair(CalleeCode, EmitFuncNum));
OS << "SDNode *Emit_" << utostr(EmitFuncNum) << CalleeCode;
}
// Replace the emission code within selection routines with calls to the
// emission functions.
CallerCode = "return Emit_" + utostr(EmitFuncNum) + CallerCode;
GeneratedCode.push_back(std::make_pair(false, CallerCode));
}
// Print function.
std::string OpVTStr;
if (OpVT == MVT::iPTR) {
OpVTStr = "_iPTR";
} else if (OpVT == MVT::isVoid) {
// Nodes with a void result actually have a first result type of either
// Other (a chain) or Flag. Since there is no one-to-one mapping from
// void to this case, we handle it specially here.
} else {
OpVTStr = "_" + getEnumName(OpVT).substr(5); // Skip 'MVT::'
}
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
if (OpVTI == OpcodeVTMap.end()) {
std::vector<std::string> VTSet;
VTSet.push_back(OpVTStr);
OpcodeVTMap.insert(std::make_pair(OpName, VTSet));
} else
OpVTI->second.push_back(OpVTStr);
OS << "SDNode *Select_" << getLegalCName(OpName)
<< OpVTStr << "(const SDOperand &N) {\n";
// Loop through and reverse all of the CodeList vectors, as we will be
// accessing them from their logical front, but accessing the end of a
// vector is more efficient.
for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) {
CodeList &GeneratedCode = CodeForPatterns[i].second;
std::reverse(GeneratedCode.begin(), GeneratedCode.end());
}
// Next, reverse the list of patterns itself for the same reason.
std::reverse(CodeForPatterns.begin(), CodeForPatterns.end());
// Emit all of the patterns now, grouped together to share code.
EmitPatterns(CodeForPatterns, 2, OS);
// If the last pattern has predicates (which could fail) emit code to
// catch the case where nothing handles a pattern.
if (mightNotMatch) {
OS << " cerr << \"Cannot yet select: \";\n";
if (OpName != "ISD::INTRINSIC_W_CHAIN" &&
OpName != "ISD::INTRINSIC_WO_CHAIN" &&
OpName != "ISD::INTRINSIC_VOID") {
OS << " N.Val->dump(CurDAG);\n";
} else {
OS << " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n";
}
OS << " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n";
}
OS << "}\n\n";
}
}
// Emit boilerplate.
OS << "SDNode *Select_INLINEASM(SDOperand N) {\n"
<< " std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n"
<< " SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n\n"
<< " // Ensure that the asm operands are themselves selected.\n"
<< " for (unsigned j = 0, e = Ops.size(); j != e; ++j)\n"
<< " AddToISelQueue(Ops[j]);\n\n"
<< " std::vector<MVT::ValueType> VTs;\n"
<< " VTs.push_back(MVT::Other);\n"
<< " VTs.push_back(MVT::Flag);\n"
<< " SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, &Ops[0], "
"Ops.size());\n"
<< " return New.Val;\n"
<< "}\n\n";
OS << "SDNode *Select_LABEL(const SDOperand &N) {\n"
<< " SDOperand Chain = N.getOperand(0);\n"
<< " SDOperand N1 = N.getOperand(1);\n"
<< " SDOperand N2 = N.getOperand(2);\n"
<< " unsigned C1 = cast<ConstantSDNode>(N1)->getValue();\n"
<< " unsigned C2 = cast<ConstantSDNode>(N2)->getValue();\n"
<< " SDOperand Tmp1 = CurDAG->getTargetConstant(C1, MVT::i32);\n"
<< " SDOperand Tmp2 = CurDAG->getTargetConstant(C2, MVT::i32);\n"
<< " AddToISelQueue(Chain);\n"
<< " SDOperand Ops[] = { Tmp1, Tmp2, Chain };\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::LABEL,\n"
<< " MVT::Other, Ops, 3);\n"
<< "}\n\n";
OS << "SDNode *Select_DECLARE(const SDOperand &N) {\n"
<< " SDOperand Chain = N.getOperand(0);\n"
<< " SDOperand N1 = N.getOperand(1);\n"
<< " SDOperand N2 = N.getOperand(2);\n"
<< " if (!isa<FrameIndexSDNode>(N1) || !isa<GlobalAddressSDNode>(N2)) {\n"
<< " cerr << \"Cannot yet select llvm.dbg.declare: \";\n"
<< " N.Val->dump(CurDAG);\n"
<< " abort();\n"
<< " }\n"
<< " int FI = cast<FrameIndexSDNode>(N1)->getIndex();\n"
<< " GlobalValue *GV = cast<GlobalAddressSDNode>(N2)->getGlobal();\n"
<< " SDOperand Tmp1 = "
<< "CurDAG->getTargetFrameIndex(FI, TLI.getPointerTy());\n"
<< " SDOperand Tmp2 = "
<< "CurDAG->getTargetGlobalAddress(GV, TLI.getPointerTy());\n"
<< " AddToISelQueue(Chain);\n"
<< " SDOperand Ops[] = { Tmp1, Tmp2, Chain };\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::DECLARE,\n"
<< " MVT::Other, Ops, 3);\n"
<< "}\n\n";
OS << "SDNode *Select_EXTRACT_SUBREG(const SDOperand &N) {\n"
<< " SDOperand N0 = N.getOperand(0);\n"
<< " SDOperand N1 = N.getOperand(1);\n"
<< " unsigned C = cast<ConstantSDNode>(N1)->getValue();\n"
<< " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(N0);\n"
<< " SDOperand Ops[] = { N0, Tmp };\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::EXTRACT_SUBREG,\n"
<< " N.getValueType(), Ops, 2);\n"
<< "}\n\n";
OS << "SDNode *Select_INSERT_SUBREG(const SDOperand &N) {\n"
<< " SDOperand N0 = N.getOperand(0);\n"
<< " SDOperand N1 = N.getOperand(1);\n"
<< " SDOperand N2 = N.getOperand(2);\n"
<< " unsigned C = cast<ConstantSDNode>(N2)->getValue();\n"
<< " SDOperand Tmp = CurDAG->getTargetConstant(C, MVT::i32);\n"
<< " AddToISelQueue(N1);\n"
<< " SDOperand Ops[] = { N0, N1, Tmp };\n"
<< " if (N0.getOpcode() == ISD::UNDEF) {\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG,\n"
<< " N.getValueType(), Ops+1, 2);\n"
<< " } else {\n"
<< " AddToISelQueue(N0);\n"
<< " return CurDAG->getTargetNode(TargetInstrInfo::INSERT_SUBREG,\n"
<< " N.getValueType(), Ops, 3);\n"
<< " }\n"
<< "}\n\n";
OS << "// The main instruction selector code.\n"
<< "SDNode *SelectCode(SDOperand N) {\n"
<< " if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n"
<< " N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS
<< "INSTRUCTION_LIST_END)) {\n"
<< " return NULL; // Already selected.\n"
<< " }\n\n"
<< " MVT::ValueType NVT = N.Val->getValueType(0);\n"
<< " switch (N.getOpcode()) {\n"
<< " default: break;\n"
<< " case ISD::EntryToken: // These leaves remain the same.\n"
<< " case ISD::BasicBlock:\n"
<< " case ISD::Register:\n"
<< " case ISD::HANDLENODE:\n"
<< " case ISD::TargetConstant:\n"
<< " case ISD::TargetConstantPool:\n"
<< " case ISD::TargetFrameIndex:\n"
<< " case ISD::TargetExternalSymbol:\n"
<< " case ISD::TargetJumpTable:\n"
<< " case ISD::TargetGlobalTLSAddress:\n"
<< " case ISD::TargetGlobalAddress: {\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::AssertSext:\n"
<< " case ISD::AssertZext: {\n"
<< " AddToISelQueue(N.getOperand(0));\n"
<< " ReplaceUses(N, N.getOperand(0));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::TokenFactor:\n"
<< " case ISD::CopyFromReg:\n"
<< " case ISD::CopyToReg: {\n"
<< " for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i)\n"
<< " AddToISelQueue(N.getOperand(i));\n"
<< " return NULL;\n"
<< " }\n"
<< " case ISD::INLINEASM: return Select_INLINEASM(N);\n"
<< " case ISD::LABEL: return Select_LABEL(N);\n"
<< " case ISD::DECLARE: return Select_DECLARE(N);\n"
<< " case ISD::EXTRACT_SUBREG: return Select_EXTRACT_SUBREG(N);\n"
<< " case ISD::INSERT_SUBREG: return Select_INSERT_SUBREG(N);\n";
// Loop over all of the case statements, emiting a call to each method we
// emitted above.
for (std::map<std::string, std::vector<const PatternToMatch*> >::iterator
PBOI = PatternsByOpcode.begin(), E = PatternsByOpcode.end();
PBOI != E; ++PBOI) {
const std::string &OpName = PBOI->first;
// Potentially multiple versions of select for this opcode. One for each
// ValueType of the node (or its first true operand if it doesn't produce a
// result.
std::map<std::string, std::vector<std::string> >::iterator OpVTI =
OpcodeVTMap.find(OpName);
std::vector<std::string> &OpVTs = OpVTI->second;
OS << " case " << OpName << ": {\n";
// Keep track of whether we see a pattern that has an iPtr result.
bool HasPtrPattern = false;
bool HasDefaultPattern = false;
OS << " switch (NVT) {\n";
for (unsigned i = 0, e = OpVTs.size(); i < e; ++i) {
std::string &VTStr = OpVTs[i];
if (VTStr.empty()) {
HasDefaultPattern = true;
continue;
}
// If this is a match on iPTR: don't emit it directly, we need special
// code.
if (VTStr == "_iPTR") {
HasPtrPattern = true;
continue;
}
OS << " case MVT::" << VTStr.substr(1) << ":\n"
<< " return Select_" << getLegalCName(OpName)
<< VTStr << "(N);\n";
}
OS << " default:\n";
// If there is an iPTR result version of this pattern, emit it here.
if (HasPtrPattern) {
OS << " if (NVT == TLI.getPointerTy())\n";
OS << " return Select_" << getLegalCName(OpName) <<"_iPTR(N);\n";
}
if (HasDefaultPattern) {
OS << " return Select_" << getLegalCName(OpName) << "(N);\n";
}
OS << " break;\n";
OS << " }\n";
OS << " break;\n";
OS << " }\n";
}
OS << " } // end of big switch.\n\n"
<< " cerr << \"Cannot yet select: \";\n"
<< " if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n"
<< " N.getOpcode() != ISD::INTRINSIC_VOID) {\n"
<< " N.Val->dump(CurDAG);\n"
<< " } else {\n"
<< " unsigned iid = cast<ConstantSDNode>(N.getOperand("
"N.getOperand(0).getValueType() == MVT::Other))->getValue();\n"
<< " cerr << \"intrinsic %\"<< "
"Intrinsic::getName((Intrinsic::ID)iid);\n"
<< " }\n"
<< " cerr << '\\n';\n"
<< " abort();\n"
<< " return NULL;\n"
<< "}\n";
}
void DAGISelEmitter::run(std::ostream &OS) {
EmitSourceFileHeader("DAG Instruction Selector for the " +
CGP.getTargetInfo().getName() + " target", OS);
OS << "// *** NOTE: This file is #included into the middle of the target\n"
<< "// *** instruction selector class. These functions are really "
<< "methods.\n\n";
OS << "// Instruction selector priority queue:\n"
<< "std::vector<SDNode*> ISelQueue;\n";
OS << "/// Keep track of nodes which have already been added to queue.\n"
<< "unsigned char *ISelQueued;\n";
OS << "/// Keep track of nodes which have already been selected.\n"
<< "unsigned char *ISelSelected;\n";
OS << "/// IsChainCompatible - Returns true if Chain is Op or Chain does\n";
OS << "/// not reach Op.\n";
OS << "static bool IsChainCompatible(SDNode *Chain, SDNode *Op) {\n";
OS << " if (Chain->getOpcode() == ISD::EntryToken)\n";
OS << " return true;\n";
OS << " else if (Chain->getOpcode() == ISD::TokenFactor)\n";
OS << " return false;\n";
OS << " else if (Chain->getNumOperands() > 0) {\n";
OS << " SDOperand C0 = Chain->getOperand(0);\n";
OS << " if (C0.getValueType() == MVT::Other)\n";
OS << " return C0.Val != Op && IsChainCompatible(C0.Val, Op);\n";
OS << " }\n";
OS << " return true;\n";
OS << "}\n";
OS << "/// Sorting functions for the selection queue.\n"
<< "struct isel_sort : public std::binary_function"
<< "<SDNode*, SDNode*, bool> {\n"
<< " bool operator()(const SDNode* left, const SDNode* right) "
<< "const {\n"
<< " return (left->getNodeId() > right->getNodeId());\n"
<< " }\n"
<< "};\n\n";
OS << "inline void setQueued(int Id) {\n";
OS << " ISelQueued[Id / 8] |= 1 << (Id % 8);\n";
OS << "}\n";
OS << "inline bool isQueued(int Id) {\n";
OS << " return ISelQueued[Id / 8] & (1 << (Id % 8));\n";
OS << "}\n";
OS << "inline void setSelected(int Id) {\n";
OS << " ISelSelected[Id / 8] |= 1 << (Id % 8);\n";
OS << "}\n";
OS << "inline bool isSelected(int Id) {\n";
OS << " return ISelSelected[Id / 8] & (1 << (Id % 8));\n";
OS << "}\n\n";
OS << "void AddToISelQueue(SDOperand N) DISABLE_INLINE {\n";
OS << " int Id = N.Val->getNodeId();\n";
OS << " if (Id != -1 && !isQueued(Id)) {\n";
OS << " ISelQueue.push_back(N.Val);\n";
OS << " std::push_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
OS << " setQueued(Id);\n";
OS << " }\n";
OS << "}\n\n";
OS << "class VISIBILITY_HIDDEN ISelQueueUpdater :\n";
OS << " public SelectionDAG::DAGUpdateListener {\n";
OS << " std::vector<SDNode*> &ISelQueue;\n";
OS << " bool HadDelete;\n";
OS << " public:\n";
OS << " ISelQueueUpdater(std::vector<SDNode*> &isq)\n";
OS << " : ISelQueue(isq), HadDelete(false) {}\n";
OS << " \n";
OS << " bool hadDelete() const { return HadDelete; }\n";
OS << " \n";
OS << " virtual void NodeDeleted(SDNode *N) {\n";
OS << " ISelQueue.erase(std::remove(ISelQueue.begin(), ISelQueue.end(),";
OS << " N),\n ISelQueue.end());\n";
OS << " HadDelete = true;\n";
OS << " }\n";
OS << " \n";
OS << " // Ignore updates.\n";
OS << " virtual void NodeUpdated(SDNode *N) {}\n";
OS << " };\n";
OS << "inline void UpdateQueue(const ISelQueueUpdater &ISQU) {\n";
OS << " if (ISQU.hadDelete())\n";
OS << " std::make_heap(ISelQueue.begin(), ISelQueue.end(),isel_sort());\n";
OS << "}\n\n";
OS << "void ReplaceUses(SDOperand F, SDOperand T) DISABLE_INLINE {\n";
OS << " ISelQueueUpdater ISQU(ISelQueue);\n";
OS << " CurDAG->ReplaceAllUsesOfValueWith(F, T, &ISQU);\n";
OS << " setSelected(F.Val->getNodeId());\n";
OS << " UpdateQueue(ISQU);\n";
OS << "}\n";
OS << "void ReplaceUses(SDNode *F, SDNode *T) DISABLE_INLINE {\n";
OS << " unsigned FNumVals = F->getNumValues();\n";
OS << " unsigned TNumVals = T->getNumValues();\n";
OS << " ISelQueueUpdater ISQU(ISelQueue);\n";
OS << " if (FNumVals != TNumVals) {\n";
OS << " for (unsigned i = 0, e = std::min(FNumVals, TNumVals); "
<< "i < e; ++i)\n";
OS << " CurDAG->ReplaceAllUsesOfValueWith(SDOperand(F, i), "
<< "SDOperand(T, i), &ISQU);\n";
OS << " } else {\n";
OS << " CurDAG->ReplaceAllUsesWith(F, T, &ISQU);\n";
OS << " }\n";
OS << " setSelected(F->getNodeId());\n";
OS << " UpdateQueue(ISQU);\n";
OS << "}\n\n";
OS << "// SelectRoot - Top level entry to DAG isel.\n";
OS << "SDOperand SelectRoot(SDOperand Root) {\n";
OS << " SelectRootInit();\n";
OS << " unsigned NumBytes = (DAGSize + 7) / 8;\n";
OS << " ISelQueued = new unsigned char[NumBytes];\n";
OS << " ISelSelected = new unsigned char[NumBytes];\n";
OS << " memset(ISelQueued, 0, NumBytes);\n";
OS << " memset(ISelSelected, 0, NumBytes);\n";
OS << "\n";
OS << " // Create a dummy node (which is not added to allnodes), that adds\n"
<< " // a reference to the root node, preventing it from being deleted,\n"
<< " // and tracking any changes of the root.\n"
<< " HandleSDNode Dummy(CurDAG->getRoot());\n"
<< " ISelQueue.push_back(CurDAG->getRoot().Val);\n";
OS << " while (!ISelQueue.empty()) {\n";
OS << " SDNode *Node = ISelQueue.front();\n";
OS << " std::pop_heap(ISelQueue.begin(), ISelQueue.end(), isel_sort());\n";
OS << " ISelQueue.pop_back();\n";
OS << " if (!isSelected(Node->getNodeId())) {\n";
OS << " SDNode *ResNode = Select(SDOperand(Node, 0));\n";
OS << " if (ResNode != Node) {\n";
OS << " if (ResNode)\n";
OS << " ReplaceUses(Node, ResNode);\n";
OS << " if (Node->use_empty()) { // Don't delete EntryToken, etc.\n";
OS << " ISelQueueUpdater ISQU(ISelQueue);\n";
OS << " CurDAG->RemoveDeadNode(Node, &ISQU);\n";
OS << " UpdateQueue(ISQU);\n";
OS << " }\n";
OS << " }\n";
OS << " }\n";
OS << " }\n";
OS << "\n";
OS << " delete[] ISelQueued;\n";
OS << " ISelQueued = NULL;\n";
OS << " delete[] ISelSelected;\n";
OS << " ISelSelected = NULL;\n";
OS << " return Dummy.getValue();\n";
OS << "}\n";
EmitNodeTransforms(OS);
EmitPredicateFunctions(OS);
DOUT << "\n\nALL PATTERNS TO MATCH:\n\n";
for (CodeGenDAGPatterns::ptm_iterator I = CGP.ptm_begin(), E = CGP.ptm_end();
I != E; ++I) {
DOUT << "PATTERN: "; DEBUG(I->getSrcPattern()->dump());
DOUT << "\nRESULT: "; DEBUG(I->getDstPattern()->dump());
DOUT << "\n";
}
// At this point, we have full information about the 'Patterns' we need to
// parse, both implicitly from instructions as well as from explicit pattern
// definitions. Emit the resultant instruction selector.
EmitInstructionSelector(OS);
}