llvm/lib/CodeGen/LiveIntervalAnalysis.cpp

1165 lines
45 KiB
C++
Raw Normal View History

//===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveInterval analysis pass which is used
// by the Linear Scan Register allocator. This pass linearizes the
// basic blocks of the function in DFS order and uses the
// LiveVariables pass to conservatively compute live intervals for
// each virtual and physical register.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "liveintervals"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "VirtRegMap.h"
#include "llvm/Value.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/MRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include <algorithm>
#include <cmath>
#include <iostream>
using namespace llvm;
namespace {
RegisterPass<LiveIntervals> X("liveintervals", "Live Interval Analysis");
static Statistic<> numIntervals
("liveintervals", "Number of original intervals");
static Statistic<> numIntervalsAfter
("liveintervals", "Number of intervals after coalescing");
static Statistic<> numJoins
("liveintervals", "Number of interval joins performed");
static Statistic<> numPeep
("liveintervals", "Number of identity moves eliminated after coalescing");
static Statistic<> numFolded
("liveintervals", "Number of loads/stores folded into instructions");
static cl::opt<bool>
EnableJoining("join-liveintervals",
cl::desc("Join compatible live intervals"),
cl::init(true));
}
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<LiveVariables>();
AU.addPreservedID(PHIEliminationID);
AU.addRequiredID(PHIEliminationID);
AU.addRequiredID(TwoAddressInstructionPassID);
AU.addRequired<LoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void LiveIntervals::releaseMemory() {
mi2iMap_.clear();
i2miMap_.clear();
r2iMap_.clear();
r2rMap_.clear();
}
static bool isZeroLengthInterval(LiveInterval *li) {
for (LiveInterval::Ranges::const_iterator
i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
return false;
return true;
}
/// runOnMachineFunction - Register allocate the whole function
///
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
mf_ = &fn;
tm_ = &fn.getTarget();
mri_ = tm_->getRegisterInfo();
tii_ = tm_->getInstrInfo();
lv_ = &getAnalysis<LiveVariables>();
allocatableRegs_ = mri_->getAllocatableSet(fn);
r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
// If this function has any live ins, insert a dummy instruction at the
// beginning of the function that we will pretend "defines" the values. This
// is to make the interval analysis simpler by providing a number.
if (fn.livein_begin() != fn.livein_end()) {
unsigned FirstLiveIn = fn.livein_begin()->first;
// Find a reg class that contains this live in.
const TargetRegisterClass *RC = 0;
for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
E = mri_->regclass_end(); RCI != E; ++RCI)
if ((*RCI)->contains(FirstLiveIn)) {
RC = *RCI;
break;
}
MachineInstr *OldFirstMI = fn.begin()->begin();
mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
FirstLiveIn, FirstLiveIn, RC);
assert(OldFirstMI != fn.begin()->begin() &&
"copyRetToReg didn't insert anything!");
}
// number MachineInstrs
unsigned miIndex = 0;
for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
mbb != mbbEnd; ++mbb)
for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
mi != miEnd; ++mi) {
bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
assert(inserted && "multiple MachineInstr -> index mappings");
i2miMap_.push_back(mi);
miIndex += InstrSlots::NUM;
}
// Note intervals due to live-in values.
if (fn.livein_begin() != fn.livein_end()) {
MachineBasicBlock *Entry = fn.begin();
for (MachineFunction::livein_iterator I = fn.livein_begin(),
E = fn.livein_end(); I != E; ++I) {
handlePhysicalRegisterDef(Entry, Entry->begin(),
getOrCreateInterval(I->first), 0);
for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
handlePhysicalRegisterDef(Entry, Entry->begin(),
getOrCreateInterval(*AS), 0);
}
}
computeIntervals();
numIntervals += getNumIntervals();
DEBUG(std::cerr << "********** INTERVALS **********\n";
for (iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
});
// join intervals if requested
if (EnableJoining) joinIntervals();
numIntervalsAfter += getNumIntervals();
// perform a final pass over the instructions and compute spill
// weights, coalesce virtual registers and remove identity moves
const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
MachineBasicBlock* mbb = mbbi;
unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
mii != mie; ) {
// if the move will be an identity move delete it
unsigned srcReg, dstReg, RegRep;
if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
(RegRep = rep(srcReg)) == rep(dstReg)) {
// remove from def list
LiveInterval &interval = getOrCreateInterval(RegRep);
RemoveMachineInstrFromMaps(mii);
mii = mbbi->erase(mii);
++numPeep;
}
else {
for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
const MachineOperand& mop = mii->getOperand(i);
if (mop.isRegister() && mop.getReg() &&
MRegisterInfo::isVirtualRegister(mop.getReg())) {
// replace register with representative register
unsigned reg = rep(mop.getReg());
mii->getOperand(i).setReg(reg);
LiveInterval &RegInt = getInterval(reg);
RegInt.weight +=
(mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
}
}
++mii;
}
}
}
for (iterator I = begin(), E = end(); I != E; ++I) {
LiveInterval &li = I->second;
if (MRegisterInfo::isVirtualRegister(li.reg)) {
// If the live interval length is essentially zero, i.e. in every live
// range the use follows def immediately, it doesn't make sense to spill
// it and hope it will be easier to allocate for this li.
if (isZeroLengthInterval(&li))
li.weight = float(HUGE_VAL);
}
}
DEBUG(dump());
return true;
}
/// print - Implement the dump method.
void LiveIntervals::print(std::ostream &O, const Module* ) const {
O << "********** INTERVALS **********\n";
for (const_iterator I = begin(), E = end(); I != E; ++I) {
I->second.print(std::cerr, mri_);
std::cerr << "\n";
}
O << "********** MACHINEINSTRS **********\n";
for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
mbbi != mbbe; ++mbbi) {
O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
for (MachineBasicBlock::iterator mii = mbbi->begin(),
mie = mbbi->end(); mii != mie; ++mii) {
O << getInstructionIndex(mii) << '\t' << *mii;
}
}
}
std::vector<LiveInterval*> LiveIntervals::
addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
// since this is called after the analysis is done we don't know if
// LiveVariables is available
lv_ = getAnalysisToUpdate<LiveVariables>();
std::vector<LiveInterval*> added;
assert(li.weight != HUGE_VAL &&
"attempt to spill already spilled interval!");
DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: ";
li.print(std::cerr, mri_); std::cerr << '\n');
const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
for (LiveInterval::Ranges::const_iterator
i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
unsigned index = getBaseIndex(i->start);
unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
for (; index != end; index += InstrSlots::NUM) {
// skip deleted instructions
while (index != end && !getInstructionFromIndex(index))
index += InstrSlots::NUM;
if (index == end) break;
MachineInstr *MI = getInstructionFromIndex(index);
// NewRegLiveIn - This instruction might have multiple uses of the spilled
// register. In this case, for the first use, keep track of the new vreg
// that we reload it into. If we see a second use, reuse this vreg
// instead of creating live ranges for two reloads.
unsigned NewRegLiveIn = 0;
for_operand:
for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
MachineOperand& mop = MI->getOperand(i);
if (mop.isRegister() && mop.getReg() == li.reg) {
if (NewRegLiveIn && mop.isUse()) {
// We already emitted a reload of this value, reuse it for
// subsequent operands.
MI->getOperand(i).setReg(NewRegLiveIn);
DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
<< " for operand #" << i << '\n');
} else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
// Attempt to fold the memory reference into the instruction. If we
// can do this, we don't need to insert spill code.
if (lv_)
lv_->instructionChanged(MI, fmi);
MachineBasicBlock &MBB = *MI->getParent();
vrm.virtFolded(li.reg, MI, i, fmi);
mi2iMap_.erase(MI);
i2miMap_[index/InstrSlots::NUM] = fmi;
mi2iMap_[fmi] = index;
MI = MBB.insert(MBB.erase(MI), fmi);
++numFolded;
// Folding the load/store can completely change the instruction in
// unpredictable ways, rescan it from the beginning.
goto for_operand;
} else {
// This is tricky. We need to add information in the interval about
// the spill code so we have to use our extra load/store slots.
//
// If we have a use we are going to have a load so we start the
// interval from the load slot onwards. Otherwise we start from the
// def slot.
unsigned start = (mop.isUse() ?
getLoadIndex(index) :
getDefIndex(index));
// If we have a def we are going to have a store right after it so
// we end the interval after the use of the next
// instruction. Otherwise we end after the use of this instruction.
unsigned end = 1 + (mop.isDef() ?
getStoreIndex(index) :
getUseIndex(index));
// create a new register for this spill
NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
MI->getOperand(i).setReg(NewRegLiveIn);
vrm.grow();
vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
assert(nI.empty());
// the spill weight is now infinity as it
// cannot be spilled again
nI.weight = float(HUGE_VAL);
LiveRange LR(start, end, nI.getNextValue(~0U, 0));
DEBUG(std::cerr << " +" << LR);
nI.addRange(LR);
added.push_back(&nI);
// update live variables if it is available
if (lv_)
lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
// If this is a live in, reuse it for subsequent live-ins. If it's
// a def, we can't do this.
if (!mop.isUse()) NewRegLiveIn = 0;
DEBUG(std::cerr << "\t\t\t\tadded new interval: ";
nI.print(std::cerr, mri_); std::cerr << '\n');
}
}
}
}
}
return added;
}
void LiveIntervals::printRegName(unsigned reg) const {
if (MRegisterInfo::isPhysicalRegister(reg))
std::cerr << mri_->getName(reg);
else
std::cerr << "%reg" << reg;
}
void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock *mbb,
MachineBasicBlock::iterator mi,
LiveInterval &interval) {
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
// Virtual registers may be defined multiple times (due to phi
// elimination and 2-addr elimination). Much of what we do only has to be
// done once for the vreg. We use an empty interval to detect the first
// time we see a vreg.
if (interval.empty()) {
// Get the Idx of the defining instructions.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
unsigned ValNum;
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
ValNum = interval.getNextValue(~0U, 0);
else
ValNum = interval.getNextValue(defIndex, SrcReg);
assert(ValNum == 0 && "First value in interval is not 0?");
ValNum = 0; // Clue in the optimizer.
// Loop over all of the blocks that the vreg is defined in. There are
// two cases we have to handle here. The most common case is a vreg
// whose lifetime is contained within a basic block. In this case there
// will be a single kill, in MBB, which comes after the definition.
if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
// FIXME: what about dead vars?
unsigned killIdx;
if (vi.Kills[0] != mi)
killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
else
killIdx = defIndex+1;
// If the kill happens after the definition, we have an intra-block
// live range.
if (killIdx > defIndex) {
assert(vi.AliveBlocks.empty() &&
"Shouldn't be alive across any blocks!");
LiveRange LR(defIndex, killIdx, ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << "\n");
return;
}
}
// The other case we handle is when a virtual register lives to the end
// of the defining block, potentially live across some blocks, then is
// live into some number of blocks, but gets killed. Start by adding a
// range that goes from this definition to the end of the defining block.
LiveRange NewLR(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
ValNum);
DEBUG(std::cerr << " +" << NewLR);
interval.addRange(NewLR);
// Iterate over all of the blocks that the variable is completely
// live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
// live interval.
for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
if (vi.AliveBlocks[i]) {
MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
if (!mbb->empty()) {
LiveRange LR(getInstructionIndex(&mbb->front()),
getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
}
}
// Finally, this virtual register is live from the start of any killing
// block to the 'use' slot of the killing instruction.
for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
MachineInstr *Kill = vi.Kills[i];
LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
getUseIndex(getInstructionIndex(Kill))+1,
ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
} else {
// If this is the second time we see a virtual register definition, it
// must be due to phi elimination or two addr elimination. If this is
// the result of two address elimination, then the vreg is the first
// operand, and is a def-and-use.
if (mi->getOperand(0).isRegister() &&
mi->getOperand(0).getReg() == interval.reg &&
mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
// If this is a two-address definition, then we have already processed
// the live range. The only problem is that we didn't realize there
// are actually two values in the live interval. Because of this we
// need to take the LiveRegion that defines this register and split it
// into two values.
unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
// Delete the initial value, which should be short and continuous,
// because the 2-addr copy must be in the same MBB as the redef.
interval.removeRange(DefIndex, RedefIndex);
// Two-address vregs should always only be redefined once. This means
// that at this point, there should be exactly one value number in it.
assert(interval.containsOneValue() && "Unexpected 2-addr liveint!");
// The new value number (#1) is defined by the instruction we claimed
// defined value #0.
unsigned ValNo = interval.getNextValue(0, 0);
interval.setValueNumberInfo(1, interval.getValNumInfo(0));
// Value#0 is now defined by the 2-addr instruction.
interval.setValueNumberInfo(0, std::make_pair(~0U, 0U));
// Add the new live interval which replaces the range for the input copy.
LiveRange LR(DefIndex, RedefIndex, ValNo);
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
// If this redefinition is dead, we need to add a dummy unit live
// range covering the def slot.
if (lv_->RegisterDefIsDead(mi, interval.reg))
interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
} else {
// Otherwise, this must be because of phi elimination. If this is the
// first redefinition of the vreg that we have seen, go back and change
// the live range in the PHI block to be a different value number.
if (interval.containsOneValue()) {
assert(vi.Kills.size() == 1 &&
"PHI elimination vreg should have one kill, the PHI itself!");
// Remove the old range that we now know has an incorrect number.
MachineInstr *Killer = vi.Kills[0];
unsigned Start = getInstructionIndex(Killer->getParent()->begin());
unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: ";
interval.print(std::cerr, mri_); std::cerr << "\n");
interval.removeRange(Start, End);
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
// Replace the interval with one of a NEW value number. Note that this
// value number isn't actually defined by an instruction, weird huh? :)
LiveRange LR(Start, End, interval.getNextValue(~0U, 0));
DEBUG(std::cerr << " replace range with " << LR);
interval.addRange(LR);
DEBUG(std::cerr << "RESULT: "; interval.print(std::cerr, mri_));
}
// In the case of PHI elimination, each variable definition is only
// live until the end of the block. We've already taken care of the
// rest of the live range.
unsigned defIndex = getDefIndex(getInstructionIndex(mi));
unsigned ValNum;
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*mi, SrcReg, DstReg))
ValNum = interval.getNextValue(~0U, 0);
else
ValNum = interval.getNextValue(defIndex, SrcReg);
LiveRange LR(defIndex,
getInstructionIndex(&mbb->back()) + InstrSlots::NUM, ValNum);
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR);
}
}
DEBUG(std::cerr << '\n');
}
void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator mi,
LiveInterval &interval,
unsigned SrcReg) {
// A physical register cannot be live across basic block, so its
// lifetime must end somewhere in its defining basic block.
DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
typedef LiveVariables::killed_iterator KillIter;
unsigned baseIndex = getInstructionIndex(mi);
unsigned start = getDefIndex(baseIndex);
unsigned end = start;
// If it is not used after definition, it is considered dead at
// the instruction defining it. Hence its interval is:
// [defSlot(def), defSlot(def)+1)
if (lv_->RegisterDefIsDead(mi, interval.reg)) {
DEBUG(std::cerr << " dead");
end = getDefIndex(start) + 1;
goto exit;
}
// If it is not dead on definition, it must be killed by a
// subsequent instruction. Hence its interval is:
// [defSlot(def), useSlot(kill)+1)
while (++mi != MBB->end()) {
baseIndex += InstrSlots::NUM;
if (lv_->KillsRegister(mi, interval.reg)) {
DEBUG(std::cerr << " killed");
end = getUseIndex(baseIndex) + 1;
goto exit;
}
}
// The only case we should have a dead physreg here without a killing or
// instruction where we know it's dead is if it is live-in to the function
// and never used.
assert(!SrcReg && "physreg was not killed in defining block!");
end = getDefIndex(start) + 1; // It's dead.
exit:
assert(start < end && "did not find end of interval?");
LiveRange LR(start, end, interval.getNextValue(SrcReg != 0 ? start : ~0U,
SrcReg));
interval.addRange(LR);
DEBUG(std::cerr << " +" << LR << '\n');
}
void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
MachineBasicBlock::iterator MI,
unsigned reg) {
if (MRegisterInfo::isVirtualRegister(reg))
handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
else if (allocatableRegs_[reg]) {
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*MI, SrcReg, DstReg))
SrcReg = 0;
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg), SrcReg);
for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS), 0);
}
}
/// computeIntervals - computes the live intervals for virtual
/// registers. for some ordering of the machine instructions [1,N] a
/// live interval is an interval [i, j) where 1 <= i <= j < N for
/// which a variable is live
void LiveIntervals::computeIntervals() {
DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
DEBUG(std::cerr << "********** Function: "
<< ((Value*)mf_->getFunction())->getName() << '\n');
bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I) {
MachineBasicBlock* mbb = I;
DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
for (; mi != miEnd; ++mi) {
const TargetInstrDescriptor& tid =
tm_->getInstrInfo()->get(mi->getOpcode());
DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
// handle implicit defs
if (tid.ImplicitDefs) {
for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
handleRegisterDef(mbb, mi, *id);
}
// handle explicit defs
for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
MachineOperand& mop = mi->getOperand(i);
// handle register defs - build intervals
if (mop.isRegister() && mop.getReg() && mop.isDef())
handleRegisterDef(mbb, mi, mop.getReg());
}
}
}
}
/// AdjustCopiesBackFrom - We found a non-trivially-coallescable copy with IntA
/// being the source and IntB being the dest, thus this defines a value number
/// in IntB. If the source value number (in IntA) is defined by a copy from B,
/// see if we can merge these two pieces of B into a single value number,
/// eliminating a copy. For example:
///
/// A3 = B0
/// ...
/// B1 = A3 <- this copy
///
/// In this case, B0 can be extended to where the B1 copy lives, allowing the B1
/// value number to be replaced with B0 (which simplifies the B liveinterval).
///
/// This returns true if an interval was modified.
///
bool LiveIntervals::AdjustCopiesBackFrom(LiveInterval &IntA, LiveInterval &IntB,
MachineInstr *CopyMI) {
unsigned CopyIdx = getDefIndex(getInstructionIndex(CopyMI));
// BValNo is a value number in B that is defined by a copy from A. 'B3' in
// the example above.
LiveInterval::iterator BLR = IntB.FindLiveRangeContaining(CopyIdx);
unsigned BValNo = BLR->ValId;
// Get the location that B is defined at. Two options: either this value has
// an unknown definition point or it is defined at CopyIdx. If unknown, we
// can't process it.
unsigned BValNoDefIdx = IntB.getInstForValNum(BValNo);
if (BValNoDefIdx == ~0U) return false;
assert(BValNoDefIdx == CopyIdx &&
"Copy doesn't define the value?");
// AValNo is the value number in A that defines the copy, A0 in the example.
LiveInterval::iterator AValLR = IntA.FindLiveRangeContaining(CopyIdx-1);
unsigned AValNo = AValLR->ValId;
// If AValNo is defined as a copy from IntB, we can potentially process this.
// Get the instruction that defines this value number.
unsigned SrcReg = IntA.getSrcRegForValNum(AValNo);
if (!SrcReg) return false; // Not defined by a copy.
// If the value number is not defined by a copy instruction, ignore it.
// If the source register comes from an interval other than IntB, we can't
// handle this.
if (rep(SrcReg) != IntB.reg) return false;
// Get the LiveRange in IntB that this value number starts with.
unsigned AValNoInstIdx = IntA.getInstForValNum(AValNo);
LiveInterval::iterator ValLR = IntB.FindLiveRangeContaining(AValNoInstIdx-1);
// Make sure that the end of the live range is inside the same block as
// CopyMI.
MachineInstr *ValLREndInst = getInstructionFromIndex(ValLR->end-1);
if (!ValLREndInst ||
ValLREndInst->getParent() != CopyMI->getParent()) return false;
// Okay, we now know that ValLR ends in the same block that the CopyMI
// live-range starts. If there are no intervening live ranges between them in
// IntB, we can merge them.
if (ValLR+1 != BLR) return false;
DEBUG(std::cerr << "\nExtending: "; IntB.print(std::cerr, mri_));
// We are about to delete CopyMI, so need to remove it as the 'instruction
// that defines this value #'.
IntB.setValueNumberInfo(BValNo, std::make_pair(~0U, 0));
// Okay, we can merge them. We need to insert a new liverange:
// [ValLR.end, BLR.begin) of either value number, then we merge the
// two value numbers.
unsigned FillerStart = ValLR->end, FillerEnd = BLR->start;
IntB.addRange(LiveRange(FillerStart, FillerEnd, BValNo));
// If the IntB live range is assigned to a physical register, and if that
// physreg has aliases,
if (MRegisterInfo::isPhysicalRegister(IntB.reg)) {
for (const unsigned *AS = mri_->getAliasSet(IntB.reg); *AS; ++AS) {
LiveInterval &AliasLI = getInterval(*AS);
AliasLI.addRange(LiveRange(FillerStart, FillerEnd,
AliasLI.getNextValue(~0U, 0)));
}
}
// Okay, merge "B1" into the same value number as "B0".
if (BValNo != ValLR->ValId)
IntB.MergeValueNumberInto(BValNo, ValLR->ValId);
DEBUG(std::cerr << " result = "; IntB.print(std::cerr, mri_);
std::cerr << "\n");
// Finally, delete the copy instruction.
RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
++numPeep;
return true;
}
/// JoinCopy - Attempt to join intervals corresponding to SrcReg/DstReg,
/// which are the src/dst of the copy instruction CopyMI. This returns true
/// if the copy was successfully coallesced away, or if it is never possible
/// to coallesce these this copy, due to register constraints. It returns
/// false if it is not currently possible to coallesce this interval, but
/// it may be possible if other things get coallesced.
bool LiveIntervals::JoinCopy(MachineInstr *CopyMI,
unsigned SrcReg, unsigned DstReg) {
DEBUG(std::cerr << getInstructionIndex(CopyMI) << '\t' << *CopyMI);
// Get representative registers.
SrcReg = rep(SrcReg);
DstReg = rep(DstReg);
// If they are already joined we continue.
if (SrcReg == DstReg) {
DEBUG(std::cerr << "\tCopy already coallesced.\n");
return true; // Not coallescable.
}
// If they are both physical registers, we cannot join them.
if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
MRegisterInfo::isPhysicalRegister(DstReg)) {
DEBUG(std::cerr << "\tCan not coallesce physregs.\n");
return true; // Not coallescable.
}
// We only join virtual registers with allocatable physical registers.
if (MRegisterInfo::isPhysicalRegister(SrcReg) && !allocatableRegs_[SrcReg]){
DEBUG(std::cerr << "\tSrc reg is unallocatable physreg.\n");
return true; // Not coallescable.
}
if (MRegisterInfo::isPhysicalRegister(DstReg) && !allocatableRegs_[DstReg]){
DEBUG(std::cerr << "\tDst reg is unallocatable physreg.\n");
return true; // Not coallescable.
}
// If they are not of the same register class, we cannot join them.
if (differingRegisterClasses(SrcReg, DstReg)) {
DEBUG(std::cerr << "\tSrc/Dest are different register classes.\n");
return true; // Not coallescable.
}
LiveInterval &SrcInt = getInterval(SrcReg);
LiveInterval &DestInt = getInterval(DstReg);
assert(SrcInt.reg == SrcReg && DestInt.reg == DstReg &&
"Register mapping is horribly broken!");
DEBUG(std::cerr << "\t\tInspecting "; SrcInt.print(std::cerr, mri_);
std::cerr << " and "; DestInt.print(std::cerr, mri_);
std::cerr << ": ");
// Okay, attempt to join these two intervals. On failure, this returns false.
// Otherwise, if one of the intervals being joined is a physreg, this method
// always canonicalizes DestInt to be it. The output "SrcInt" will not have
// been modified, so we can use this information below to update aliases.
if (!JoinIntervals(DestInt, SrcInt)) {
// Coallescing failed.
// If we can eliminate the copy without merging the live ranges, do so now.
if (AdjustCopiesBackFrom(SrcInt, DestInt, CopyMI))
return true;
// Otherwise, we are unable to join the intervals.
DEBUG(std::cerr << "Interference!\n");
return false;
}
bool Swapped = SrcReg == DestInt.reg;
if (Swapped)
std::swap(SrcReg, DstReg);
assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
"LiveInterval::join didn't work right!");
// If we're about to merge live ranges into a physical register live range,
// we have to update any aliased register's live ranges to indicate that they
// have clobbered values for this range.
if (MRegisterInfo::isPhysicalRegister(DstReg)) {
for (const unsigned *AS = mri_->getAliasSet(DstReg); *AS; ++AS)
getInterval(*AS).MergeInClobberRanges(SrcInt);
}
DEBUG(std::cerr << "\n\t\tJoined. Result = "; DestInt.print(std::cerr, mri_);
std::cerr << "\n");
// If the intervals were swapped by Join, swap them back so that the register
// mapping (in the r2i map) is correct.
if (Swapped) SrcInt.swap(DestInt);
r2iMap_.erase(SrcReg);
r2rMap_[SrcReg] = DstReg;
// Finally, delete the copy instruction.
RemoveMachineInstrFromMaps(CopyMI);
CopyMI->eraseFromParent();
++numPeep;
++numJoins;
return true;
}
/// ComputeUltimateVN - Assuming we are going to join two live intervals,
/// compute what the resultant value numbers for each value in the input two
/// ranges will be. This is complicated by copies between the two which can
/// and will commonly cause multiple value numbers to be merged into one.
///
/// VN is the value number that we're trying to resolve. InstDefiningValue
/// keeps track of the new InstDefiningValue assignment for the result
/// LiveInterval. ThisFromOther/OtherFromThis are sets that keep track of
/// whether a value in this or other is a copy from the opposite set.
/// ThisValNoAssignments/OtherValNoAssignments keep track of value #'s that have
/// already been assigned.
///
/// ThisFromOther[x] - If x is defined as a copy from the other interval, this
/// contains the value number the copy is from.
///
static unsigned ComputeUltimateVN(unsigned VN,
SmallVector<std::pair<unsigned,
unsigned>, 16> &ValueNumberInfo,
SmallVector<int, 16> &ThisFromOther,
SmallVector<int, 16> &OtherFromThis,
SmallVector<int, 16> &ThisValNoAssignments,
SmallVector<int, 16> &OtherValNoAssignments,
LiveInterval &ThisLI, LiveInterval &OtherLI) {
// If the VN has already been computed, just return it.
if (ThisValNoAssignments[VN] >= 0)
return ThisValNoAssignments[VN];
assert(ThisValNoAssignments[VN] != -2 && "FIXME: Cyclic case, handle it!");
// If this val is not a copy from the other val, then it must be a new value
// number in the destination.
int OtherValNo = ThisFromOther[VN];
if (OtherValNo == -1) {
ValueNumberInfo.push_back(ThisLI.getValNumInfo(VN));
return ThisValNoAssignments[VN] = ValueNumberInfo.size()-1;
}
// Otherwise, this *is* a copy from the RHS. Mark this value number as
// currently being computed, then ask what the ultimate value # of the other
// value is.
ThisValNoAssignments[VN] = -2;
unsigned UltimateVN =
ComputeUltimateVN(OtherValNo, ValueNumberInfo,
OtherFromThis, ThisFromOther,
OtherValNoAssignments, ThisValNoAssignments,
OtherLI, ThisLI);
return ThisValNoAssignments[VN] = UltimateVN;
}
/// JoinIntervals - Attempt to join these two intervals. On failure, this
/// returns false. Otherwise, if one of the intervals being joined is a
/// physreg, this method always canonicalizes LHS to be it. The output
/// "RHS" will not have been modified, so we can use this information
/// below to update aliases.
bool LiveIntervals::JoinIntervals(LiveInterval &LHS, LiveInterval &RHS) {
// Compute the final value assignment, assuming that the live ranges can be
// coallesced.
SmallVector<int, 16> LHSValNoAssignments;
SmallVector<int, 16> RHSValNoAssignments;
SmallVector<std::pair<unsigned,unsigned>, 16> ValueNumberInfo;
LHSValNoAssignments.resize(LHS.getNumValNums(), -1);
RHSValNoAssignments.resize(RHS.getNumValNums(), -1);
// Compute ultimate value numbers for the LHS and RHS values.
if (RHS.containsOneValue()) {
// Copies from a liveinterval with a single value are simple to handle and
// very common, handle the special case here. This is important, because
// often RHS is small and LHS is large (e.g. a physreg).
// Find out if the RHS is defined as a copy from some value in the LHS.
int RHSValID = -1;
std::pair<unsigned,unsigned> RHSValNoInfo;
if (unsigned RHSSrcReg = RHS.getSrcRegForValNum(0)) {
if (rep(RHSSrcReg) != LHS.reg) {
RHSValNoInfo = RHS.getValNumInfo(0);
} else {
// It was defined as a copy from the LHS, find out what value # it is.
unsigned ValInst = RHS.getInstForValNum(0);
RHSValID = LHS.getLiveRangeContaining(ValInst-1)->ValId;
RHSValNoInfo = LHS.getValNumInfo(RHSValID);
}
} else {
RHSValNoInfo = RHS.getValNumInfo(0);
}
ValueNumberInfo.resize(LHS.getNumValNums());
// Okay, *all* of the values in LHS that are defined as a copy from RHS
// should now get updated.
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
if (unsigned LHSSrcReg = LHS.getSrcRegForValNum(VN)) {
if (rep(LHSSrcReg) != RHS.reg) {
// If this is not a copy from the RHS, its value number will be
// unmodified by the coallescing.
ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
LHSValNoAssignments[VN] = VN;
} else if (RHSValID == -1) {
// Otherwise, it is a copy from the RHS, and we don't already have a
// value# for it. Keep the current value number, but remember it.
LHSValNoAssignments[VN] = RHSValID = VN;
ValueNumberInfo[VN] = RHSValNoInfo;
} else {
// Otherwise, use the specified value #.
LHSValNoAssignments[VN] = RHSValID;
if (VN != (unsigned)RHSValID)
ValueNumberInfo[VN].first = ~1U;
else
ValueNumberInfo[VN] = RHSValNoInfo;
}
} else {
ValueNumberInfo[VN] = LHS.getValNumInfo(VN);
LHSValNoAssignments[VN] = VN;
}
}
assert(RHSValID != -1 && "Didn't find value #?");
RHSValNoAssignments[0] = RHSValID;
} else {
// Loop over the value numbers of the LHS, seeing if any are defined from the
// RHS.
SmallVector<int, 16> LHSValsDefinedFromRHS;
LHSValsDefinedFromRHS.resize(LHS.getNumValNums(), -1);
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
unsigned ValSrcReg = LHS.getSrcRegForValNum(VN);
if (ValSrcReg == 0) // Src not defined by a copy?
continue;
// DstReg is known to be a register in the LHS interval. If the src is from
// the RHS interval, we can use its value #.
if (rep(ValSrcReg) != RHS.reg)
continue;
// Figure out the value # from the RHS.
unsigned ValInst = LHS.getInstForValNum(VN);
LHSValsDefinedFromRHS[VN] = RHS.getLiveRangeContaining(ValInst-1)->ValId;
}
// Loop over the value numbers of the RHS, seeing if any are defined from the
// LHS.
SmallVector<int, 16> RHSValsDefinedFromLHS;
RHSValsDefinedFromLHS.resize(RHS.getNumValNums(), -1);
for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
unsigned ValSrcReg = RHS.getSrcRegForValNum(VN);
if (ValSrcReg == 0) // Src not defined by a copy?
continue;
// DstReg is known to be a register in the RHS interval. If the src is from
// the LHS interval, we can use its value #.
if (rep(ValSrcReg) != LHS.reg)
continue;
// Figure out the value # from the LHS.
unsigned ValInst = RHS.getInstForValNum(VN);
RHSValsDefinedFromLHS[VN] = LHS.getLiveRangeContaining(ValInst-1)->ValId;
}
for (unsigned VN = 0, e = LHS.getNumValNums(); VN != e; ++VN) {
if (LHS.getInstForValNum(VN) == ~2U) continue;
ComputeUltimateVN(VN, ValueNumberInfo,
LHSValsDefinedFromRHS, RHSValsDefinedFromLHS,
LHSValNoAssignments, RHSValNoAssignments, LHS, RHS);
}
for (unsigned VN = 0, e = RHS.getNumValNums(); VN != e; ++VN) {
if (RHS.getInstForValNum(VN) == ~2U) continue;
ComputeUltimateVN(VN, ValueNumberInfo,
RHSValsDefinedFromLHS, LHSValsDefinedFromRHS,
RHSValNoAssignments, LHSValNoAssignments, RHS, LHS);
}
}
// Armed with the mappings of LHS/RHS values to ultimate values, walk the
// interval lists to see if these intervals are coallescable.
LiveInterval::const_iterator I = LHS.begin();
LiveInterval::const_iterator IE = LHS.end();
LiveInterval::const_iterator J = RHS.begin();
LiveInterval::const_iterator JE = RHS.end();
// Skip ahead until the first place of potential sharing.
if (I->start < J->start) {
I = std::upper_bound(I, IE, J->start);
if (I != LHS.begin()) --I;
} else if (J->start < I->start) {
J = std::upper_bound(J, JE, I->start);
if (J != RHS.begin()) --J;
}
while (1) {
// Determine if these two live ranges overlap.
bool Overlaps;
if (I->start < J->start) {
Overlaps = I->end > J->start;
} else {
Overlaps = J->end > I->start;
}
// If so, check value # info to determine if they are really different.
if (Overlaps) {
// If the live range overlap will map to the same value number in the
// result liverange, we can still coallesce them. If not, we can't.
if (LHSValNoAssignments[I->ValId] != RHSValNoAssignments[J->ValId])
return false;
}
if (I->end < J->end) {
++I;
if (I == IE) break;
} else {
++J;
if (J == JE) break;
}
}
// If we get here, we know that we can coallesce the live ranges. Ask the
// intervals to coallesce themselves now.
LHS.join(RHS, &LHSValNoAssignments[0], &RHSValNoAssignments[0],
ValueNumberInfo);
return true;
}
namespace {
// DepthMBBCompare - Comparison predicate that sort first based on the loop
// depth of the basic block (the unsigned), and then on the MBB number.
struct DepthMBBCompare {
typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
if (LHS.first > RHS.first) return true; // Deeper loops first
return LHS.first == RHS.first &&
LHS.second->getNumber() < RHS.second->getNumber();
}
};
}
void LiveIntervals::CopyCoallesceInMBB(MachineBasicBlock *MBB,
std::vector<CopyRec> &TryAgain) {
DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
for (MachineBasicBlock::iterator MII = MBB->begin(), E = MBB->end();
MII != E;) {
MachineInstr *Inst = MII++;
// If this isn't a copy, we can't join intervals.
unsigned SrcReg, DstReg;
if (!tii_->isMoveInstr(*Inst, SrcReg, DstReg)) continue;
if (!JoinCopy(Inst, SrcReg, DstReg))
TryAgain.push_back(getCopyRec(Inst, SrcReg, DstReg));
}
}
void LiveIntervals::joinIntervals() {
DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
std::vector<CopyRec> TryAgainList;
const LoopInfo &LI = getAnalysis<LoopInfo>();
if (LI.begin() == LI.end()) {
// If there are no loops in the function, join intervals in function order.
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
CopyCoallesceInMBB(I, TryAgainList);
} else {
// Otherwise, join intervals in inner loops before other intervals.
// Unfortunately we can't just iterate over loop hierarchy here because
// there may be more MBB's than BB's. Collect MBB's for sorting.
std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
I != E; ++I)
MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
// Sort by loop depth.
std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
// Finally, join intervals in loop nest order.
for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
CopyCoallesceInMBB(MBBs[i].second, TryAgainList);
}
// Joining intervals can allow other intervals to be joined. Iteratively join
// until we make no progress.
bool ProgressMade = true;
while (ProgressMade) {
ProgressMade = false;
for (unsigned i = 0, e = TryAgainList.size(); i != e; ++i) {
CopyRec &TheCopy = TryAgainList[i];
if (TheCopy.MI &&
JoinCopy(TheCopy.MI, TheCopy.SrcReg, TheCopy.DstReg)) {
TheCopy.MI = 0; // Mark this one as done.
ProgressMade = true;
}
}
}
DEBUG(std::cerr << "*** Register mapping ***\n");
DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
if (r2rMap_[i]) {
std::cerr << " reg " << i << " -> ";
printRegName(r2rMap_[i]);
std::cerr << "\n";
});
}
/// Return true if the two specified registers belong to different register
/// classes. The registers may be either phys or virt regs.
bool LiveIntervals::differingRegisterClasses(unsigned RegA,
unsigned RegB) const {
// Get the register classes for the first reg.
if (MRegisterInfo::isPhysicalRegister(RegA)) {
assert(MRegisterInfo::isVirtualRegister(RegB) &&
"Shouldn't consider two physregs!");
return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
}
// Compare against the regclass for the second reg.
const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
if (MRegisterInfo::isVirtualRegister(RegB))
return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
else
return !RegClass->contains(RegB);
}
LiveInterval LiveIntervals::createInterval(unsigned reg) {
float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
(float)HUGE_VAL : 0.0F;
return LiveInterval(reg, Weight);
}