llvm/lib/Support/BlockFrequency.cpp

151 lines
3.7 KiB
C++
Raw Normal View History

//====--------------- lib/Support/BlockFrequency.cpp -----------*- C++ -*-====//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements Block Frequency class.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/BlockFrequency.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
using namespace llvm;
/// Multiply FREQ by N and store result in W array.
static void mult96bit(uint64_t freq, uint32_t N, uint64_t W[2]) {
uint64_t u0 = freq & UINT32_MAX;
uint64_t u1 = freq >> 32;
// Represent 96-bit value as w[2]:w[1]:w[0];
uint32_t w[3] = { 0, 0, 0 };
uint64_t t = u0 * N;
uint64_t k = t >> 32;
w[0] = t;
t = u1 * N + k;
w[1] = t;
w[2] = t >> 32;
// W[1] - higher bits.
// W[0] - lower bits.
W[0] = w[0] + ((uint64_t) w[1] << 32);
W[1] = w[2];
}
/// Divide 96-bit value stored in W array by D.
/// Return 64-bit quotient, saturated to UINT64_MAX on overflow.
static uint64_t div96bit(uint64_t W[2], uint32_t D) {
uint64_t y = W[0];
uint64_t x = W[1];
unsigned i;
assert(x != 0 && "This is really a 64-bit division");
// This long division algorithm automatically saturates on overflow.
for (i = 0; i < 64 && x; ++i) {
uint32_t t = -((x >> 31) & 1); // Splat bit 31 to bits 0-31.
x = (x << 1) | (y >> 63);
y = y << 1;
if ((x | t) >= D) {
x -= D;
++y;
}
}
return y << (64 - i);
}
void BlockFrequency::scale(uint32_t N, uint32_t D) {
assert(D != 0 && "Division by zero");
// Calculate Frequency * N.
uint64_t MulLo = (Frequency & UINT32_MAX) * N;
uint64_t MulHi = (Frequency >> 32) * N;
uint64_t MulRes = (MulHi << 32) + MulLo;
// If the product fits in 64 bits, just use built-in division.
if (MulHi <= UINT32_MAX && MulRes >= MulLo) {
Frequency = MulRes / D;
return;
}
// Product overflowed, use 96-bit operations.
// 96-bit value represented as W[1]:W[0].
uint64_t W[2];
mult96bit(Frequency, N, W);
Frequency = div96bit(W, D);
return;
}
BlockFrequency &BlockFrequency::operator*=(const BranchProbability &Prob) {
scale(Prob.getNumerator(), Prob.getDenominator());
return *this;
}
const BlockFrequency
BlockFrequency::operator*(const BranchProbability &Prob) const {
BlockFrequency Freq(Frequency);
Freq *= Prob;
return Freq;
}
BlockFrequency &BlockFrequency::operator/=(const BranchProbability &Prob) {
scale(Prob.getDenominator(), Prob.getNumerator());
return *this;
}
BlockFrequency BlockFrequency::operator/(const BranchProbability &Prob) const {
BlockFrequency Freq(Frequency);
Freq /= Prob;
return Freq;
}
BlockFrequency &BlockFrequency::operator+=(const BlockFrequency &Freq) {
uint64_t Before = Freq.Frequency;
Frequency += Freq.Frequency;
// If overflow, set frequency to the maximum value.
if (Frequency < Before)
Frequency = UINT64_MAX;
return *this;
}
const BlockFrequency
BlockFrequency::operator+(const BlockFrequency &Prob) const {
BlockFrequency Freq(Frequency);
Freq += Prob;
return Freq;
}
void BlockFrequency::print(raw_ostream &OS) const {
// Convert fixed-point number to decimal.
OS << Frequency / getEntryFrequency() << ".";
uint64_t Rem = Frequency % getEntryFrequency();
uint64_t Eps = 1;
do {
Rem *= 10;
Eps *= 10;
OS << Rem / getEntryFrequency();
Rem = Rem % getEntryFrequency();
} while (Rem >= Eps/2);
}
namespace llvm {
raw_ostream &operator<<(raw_ostream &OS, const BlockFrequency &Freq) {
Freq.print(OS);
return OS;
}
}