llvm/lib/Target/CellSPU/SPUInstrInfo.td

3148 lines
118 KiB
TableGen
Raw Normal View History

//==- SPUInstrInfo.td - Describe the Cell SPU Instructions -*- tablegen -*-==//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by a team from the Computer Systems Research
// Department at The Aerospace Corporation and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Cell SPU Instructions:
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// TODO Items (not urgent today, but would be nice, low priority)
//
// ANDBI, ORBI: SPU constructs a 4-byte constant for these instructions by
// concatenating the byte argument b as "bbbb". Could recognize this bit pattern
// in 16-bit and 32-bit constants and reduce instruction count.
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Pseudo instructions:
//===----------------------------------------------------------------------===//
let hasCtrlDep = 1, Defs = [R1], Uses = [R1] in {
def ADJCALLSTACKDOWN : Pseudo<(outs), (ins u16imm:$amt),
"${:comment} ADJCALLSTACKDOWN",
[(callseq_start imm:$amt)]>;
def ADJCALLSTACKUP : Pseudo<(outs), (ins u16imm:$amt),
"${:comment} ADJCALLSTACKUP",
[(callseq_end imm:$amt)]>;
}
//===----------------------------------------------------------------------===//
// DWARF debugging Pseudo Instructions
//===----------------------------------------------------------------------===//
def DWARF_LOC : Pseudo<(outs), (ins i32imm:$line, i32imm:$col, i32imm:$file),
"${:comment} .loc $file, $line, $col",
[(dwarf_loc (i32 imm:$line), (i32 imm:$col),
(i32 imm:$file))]>;
//===----------------------------------------------------------------------===//
// Loads:
// NB: The ordering is actually important, since the instruction selection
// will try each of the instructions in sequence, i.e., the D-form first with
// the 10-bit displacement, then the A-form with the 16 bit displacement, and
// finally the X-form with the register-register.
//===----------------------------------------------------------------------===//
let isLoad = 1 in {
def LQDv16i8:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v16i8 VECREG:$rT), (load dform_addr:$src))]>;
def LQDv8i16:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v8i16 VECREG:$rT), (load dform_addr:$src))]>;
def LQDv4i32:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v4i32 VECREG:$rT), (load dform_addr:$src))]>;
def LQDv2i64:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v2i64 VECREG:$rT), (load dform_addr:$src))]>;
def LQDv4f32:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v4f32 VECREG:$rT), (load dform_addr:$src))]>;
def LQDv2f64:
RI10Form<0b00101100, (outs VECREG:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set (v2f64 VECREG:$rT), (load dform_addr:$src))]>;
def LQDr128:
RI10Form<0b00101100, (outs GPRC:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set GPRC:$rT, (load dform_addr:$src))]>;
def LQDr64:
RI10Form<0b00101100, (outs R64C:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set R64C:$rT, (load dform_addr:$src))]>;
def LQDr32:
RI10Form<0b00101100, (outs R32C:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set R32C:$rT, (load dform_addr:$src))]>;
// Floating Point
def LQDf32:
RI10Form<0b00101100, (outs R32FP:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set R32FP:$rT, (load dform_addr:$src))]>;
def LQDf64:
RI10Form<0b00101100, (outs R64FP:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set R64FP:$rT, (load dform_addr:$src))]>;
// END Floating Point
def LQDr16:
RI10Form<0b00101100, (outs R16C:$rT), (ins memri10:$src),
"lqd\t$rT, $src", LoadStore,
[(set R16C:$rT, (load dform_addr:$src))]>;
def LQAv16i8:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v16i8 VECREG:$rT), (load aform_addr:$src))]>;
def LQAv8i16:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v8i16 VECREG:$rT), (load aform_addr:$src))]>;
def LQAv4i32:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v4i32 VECREG:$rT), (load aform_addr:$src))]>;
def LQAv2i64:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v2i64 VECREG:$rT), (load aform_addr:$src))]>;
def LQAv4f32:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v4f32 VECREG:$rT), (load aform_addr:$src))]>;
def LQAv2f64:
RI16Form<0b100001100, (outs VECREG:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set (v2f64 VECREG:$rT), (load aform_addr:$src))]>;
def LQAr128:
RI16Form<0b100001100, (outs GPRC:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set GPRC:$rT, (load aform_addr:$src))]>;
def LQAr64:
RI16Form<0b100001100, (outs R64C:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set R64C:$rT, (load aform_addr:$src))]>;
def LQAr32:
RI16Form<0b100001100, (outs R32C:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set R32C:$rT, (load aform_addr:$src))]>;
def LQAf32:
RI16Form<0b100001100, (outs R32FP:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set R32FP:$rT, (load aform_addr:$src))]>;
def LQAf64:
RI16Form<0b100001100, (outs R64FP:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set R64FP:$rT, (load aform_addr:$src))]>;
def LQAr16:
RI16Form<0b100001100, (outs R16C:$rT), (ins addr256k:$src),
"lqa\t$rT, $src", LoadStore,
[(set R16C:$rT, (load aform_addr:$src))]>;
def LQXv16i8:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v16i8 VECREG:$rT), (load xform_addr:$src))]>;
def LQXv8i16:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v8i16 VECREG:$rT), (load xform_addr:$src))]>;
def LQXv4i32:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v4i32 VECREG:$rT), (load xform_addr:$src))]>;
def LQXv2i64:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v2i64 VECREG:$rT), (load xform_addr:$src))]>;
def LQXv4f32:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v4f32 VECREG:$rT), (load xform_addr:$src))]>;
def LQXv2f64:
RRForm<0b00100011100, (outs VECREG:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set (v2f64 VECREG:$rT), (load xform_addr:$src))]>;
def LQXr128:
RRForm<0b00100011100, (outs GPRC:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set GPRC:$rT, (load xform_addr:$src))]>;
def LQXr64:
RRForm<0b00100011100, (outs R64C:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set R64C:$rT, (load xform_addr:$src))]>;
def LQXr32:
RRForm<0b00100011100, (outs R32C:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set R32C:$rT, (load xform_addr:$src))]>;
def LQXf32:
RRForm<0b00100011100, (outs R32FP:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set R32FP:$rT, (load xform_addr:$src))]>;
def LQXf64:
RRForm<0b00100011100, (outs R64FP:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set R64FP:$rT, (load xform_addr:$src))]>;
def LQXr16:
RRForm<0b00100011100, (outs R16C:$rT), (ins memrr:$src),
"lqx\t$rT, $src", LoadStore,
[(set R16C:$rT, (load xform_addr:$src))]>;
/* Load quadword, PC relative: Not much use at this point in time.
Might be of use later for relocatable code.
def LQR : RI16Form<0b111001100, (outs VECREG:$rT), (ins s16imm:$disp),
"lqr\t$rT, $disp", LoadStore,
[(set VECREG:$rT, (load iaddr:$disp))]>;
*/
// Catch-all for unaligned loads:
}
//===----------------------------------------------------------------------===//
// Stores:
//===----------------------------------------------------------------------===//
let isStore = 1 in {
def STQDv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v16i8 VECREG:$rT), dform_addr:$src)]>;
def STQDv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v8i16 VECREG:$rT), dform_addr:$src)]>;
def STQDv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v4i32 VECREG:$rT), dform_addr:$src)]>;
def STQDv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v2i64 VECREG:$rT), dform_addr:$src)]>;
def STQDv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v4f32 VECREG:$rT), dform_addr:$src)]>;
def STQDv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store (v2f64 VECREG:$rT), dform_addr:$src)]>;
def STQDr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store GPRC:$rT, dform_addr:$src)]>;
def STQDr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store R64C:$rT, dform_addr:$src)]>;
def STQDr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store R32C:$rT, dform_addr:$src)]>;
// Floating Point
def STQDf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store R32FP:$rT, dform_addr:$src)]>;
def STQDf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store R64FP:$rT, dform_addr:$src)]>;
def STQDr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memri10:$src),
"stqd\t$rT, $src", LoadStore,
[(store R16C:$rT, dform_addr:$src)]>;
def STQAv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v16i8 VECREG:$rT), aform_addr:$src)]>;
def STQAv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v8i16 VECREG:$rT), aform_addr:$src)]>;
def STQAv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v4i32 VECREG:$rT), aform_addr:$src)]>;
def STQAv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v2i64 VECREG:$rT), aform_addr:$src)]>;
def STQAv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v4f32 VECREG:$rT), aform_addr:$src)]>;
def STQAv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store (v2f64 VECREG:$rT), aform_addr:$src)]>;
def STQAr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store GPRC:$rT, aform_addr:$src)]>;
def STQAr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store R64C:$rT, aform_addr:$src)]>;
def STQAr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store R32C:$rT, aform_addr:$src)]>;
// Floating Point
def STQAf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store R32FP:$rT, aform_addr:$src)]>;
def STQAf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, addr256k:$src),
"stqa\t$rT, $src", LoadStore,
[(store R64FP:$rT, aform_addr:$src)]>;
def STQXv16i8 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v16i8 VECREG:$rT), xform_addr:$src)]>;
def STQXv8i16 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v8i16 VECREG:$rT), xform_addr:$src)]>;
def STQXv4i32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v4i32 VECREG:$rT), xform_addr:$src)]>;
def STQXv2i64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v2i64 VECREG:$rT), xform_addr:$src)]>;
def STQXv4f32 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v4f32 VECREG:$rT), xform_addr:$src)]>;
def STQXv2f64 : RI10Form<0b00100100, (outs), (ins VECREG:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store (v2f64 VECREG:$rT), xform_addr:$src)]>;
def STQXr128 : RI10Form<0b00100100, (outs), (ins GPRC:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store GPRC:$rT, xform_addr:$src)]>;
def STQXr64 : RI10Form<0b00100100, (outs), (ins R64C:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store R64C:$rT, xform_addr:$src)]>;
def STQXr32 : RI10Form<0b00100100, (outs), (ins R32C:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store R32C:$rT, xform_addr:$src)]>;
// Floating Point
def STQXf32 : RI10Form<0b00100100, (outs), (ins R32FP:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store R32FP:$rT, xform_addr:$src)]>;
def STQXf64 : RI10Form<0b00100100, (outs), (ins R64FP:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store R64FP:$rT, xform_addr:$src)]>;
def STQXr16 : RI10Form<0b00100100, (outs), (ins R16C:$rT, memrr:$src),
"stqx\t$rT, $src", LoadStore,
[(store R16C:$rT, xform_addr:$src)]>;
/* Store quadword, PC relative: Not much use at this point in time. Might
be useful for relocatable code.
def STQR : RI16Form<0b111000100, (outs), (ins VECREG:$rT, s16imm:$disp),
"stqr\t$rT, $disp", LoadStore,
[(store VECREG:$rT, iaddr:$disp)]>;
*/
}
//===----------------------------------------------------------------------===//
// Generate Controls for Insertion:
//===----------------------------------------------------------------------===//
def CBD :
RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
"cbd\t$rT, $src", ShuffleOp,
[(set (v16i8 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
def CBX : RRForm<0b00101011100, (outs VECREG:$rT), (ins memrr:$src),
"cbx\t$rT, $src", ShuffleOp,
[(set (v16i8 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
def CHD : RI7Form<0b10101111100, (outs VECREG:$rT), (ins memri7:$src),
"chd\t$rT, $src", ShuffleOp,
[(set (v8i16 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
def CHX : RRForm<0b10101011100, (outs VECREG:$rT), (ins memrr:$src),
"chx\t$rT, $src", ShuffleOp,
[(set (v8i16 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
def CWD : RI7Form<0b01101111100, (outs VECREG:$rT), (ins memri7:$src),
"cwd\t$rT, $src", ShuffleOp,
[(set (v4i32 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
def CWX : RRForm<0b01101011100, (outs VECREG:$rT), (ins memrr:$src),
"cwx\t$rT, $src", ShuffleOp,
[(set (v4i32 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
def CDD : RI7Form<0b11101111100, (outs VECREG:$rT), (ins memri7:$src),
"cdd\t$rT, $src", ShuffleOp,
[(set (v2i64 VECREG:$rT), (SPUvecinsmask dform2_addr:$src))]>;
def CDX : RRForm<0b11101011100, (outs VECREG:$rT), (ins memrr:$src),
"cdx\t$rT, $src", ShuffleOp,
[(set (v2i64 VECREG:$rT), (SPUvecinsmask xform_addr:$src))]>;
//===----------------------------------------------------------------------===//
// Constant formation:
//===----------------------------------------------------------------------===//
def ILHv8i16:
RI16Form<0b110000010, (outs VECREG:$rT), (ins s16imm:$val),
"ilh\t$rT, $val", ImmLoad,
[(set (v8i16 VECREG:$rT), (v8i16 v8i16SExt16Imm:$val))]>;
def ILHr16:
RI16Form<0b110000010, (outs R16C:$rT), (ins s16imm:$val),
"ilh\t$rT, $val", ImmLoad,
[(set R16C:$rT, immSExt16:$val)]>;
// IL does sign extension!
def ILr64:
RI16Form<0b100000010, (outs R64C:$rT), (ins s16imm_i64:$val),
"il\t$rT, $val", ImmLoad,
[(set R64C:$rT, immSExt16:$val)]>;
def ILv2i64:
RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm_i64:$val),
"il\t$rT, $val", ImmLoad,
[(set VECREG:$rT, (v2i64 v2i64SExt16Imm:$val))]>;
def ILv4i32:
RI16Form<0b100000010, (outs VECREG:$rT), (ins s16imm:$val),
"il\t$rT, $val", ImmLoad,
[(set VECREG:$rT, (v4i32 v4i32SExt16Imm:$val))]>;
def ILr32:
RI16Form<0b100000010, (outs R32C:$rT), (ins s16imm_i32:$val),
"il\t$rT, $val", ImmLoad,
[(set R32C:$rT, immSExt16:$val)]>;
def ILf32:
RI16Form<0b100000010, (outs R32FP:$rT), (ins s16imm_f32:$val),
"il\t$rT, $val", ImmLoad,
[(set R32FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>;
def ILf64:
RI16Form<0b100000010, (outs R64FP:$rT), (ins s16imm_f64:$val),
"il\t$rT, $val", ImmLoad,
[(set R64FP:$rT, (SPUFPconstant fpimmSExt16:$val))]>;
def ILHUv4i32:
RI16Form<0b010000010, (outs VECREG:$rT), (ins u16imm:$val),
"ilhu\t$rT, $val", ImmLoad,
[(set VECREG:$rT, (v4i32 immILHUvec:$val))]>;
def ILHUr32:
RI16Form<0b010000010, (outs R32C:$rT), (ins u16imm:$val),
"ilhu\t$rT, $val", ImmLoad,
[(set R32C:$rT, hi16:$val)]>;
// ILHUf32: Used to custom lower float constant loads
def ILHUf32:
RI16Form<0b010000010, (outs R32FP:$rT), (ins f16imm:$val),
"ilhu\t$rT, $val", ImmLoad,
[(set R32FP:$rT, (SPUFPconstant hi16_f32:$val))]>;
// ILHUhi: Used for loading high portion of an address. Note the symbolHi
// printer used for the operand.
def ILHUhi : RI16Form<0b010000010, (outs R32C:$rT), (ins symbolHi:$val),
"ilhu\t$rT, $val", ImmLoad,
[(set R32C:$rT, hi16:$val)]>;
// Immediate load address (can also be used to load 18-bit unsigned constants,
// see the zext 16->32 pattern)
def ILAr64:
RI18Form<0b1000010, (outs R64C:$rT), (ins u18imm_i64:$val),
"ila\t$rT, $val", LoadNOP,
[(set R64C:$rT, imm18:$val)]>;
// TODO: ILAv2i64
def ILAv2i64:
RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val),
"ila\t$rT, $val", LoadNOP,
[(set (v2i64 VECREG:$rT), v2i64Uns18Imm:$val)]>;
def ILAv4i32:
RI18Form<0b1000010, (outs VECREG:$rT), (ins u18imm:$val),
"ila\t$rT, $val", LoadNOP,
[(set (v4i32 VECREG:$rT), v4i32Uns18Imm:$val)]>;
def ILAr32:
RI18Form<0b1000010, (outs R32C:$rT), (ins u18imm:$val),
"ila\t$rT, $val", LoadNOP,
[(set R32C:$rT, imm18:$val)]>;
def ILAf32:
RI18Form<0b1000010, (outs R32FP:$rT), (ins f18imm:$val),
"ila\t$rT, $val", LoadNOP,
[(set R32FP:$rT, (SPUFPconstant fpimm18:$val))]>;
def ILAf64:
RI18Form<0b1000010, (outs R64FP:$rT), (ins f18imm_f64:$val),
"ila\t$rT, $val", LoadNOP,
[(set R64FP:$rT, (SPUFPconstant fpimm18:$val))]>;
def ILAlo:
RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLo:$val),
"ila\t$rT, $val", ImmLoad,
[(set R32C:$rT, imm18:$val)]>;
def ILAlsa:
RI18Form<0b1000010, (outs R32C:$rT), (ins symbolLSA:$val),
"ila\t$rT, $val", ImmLoad,
[/* no pattern */]>;
// Immediate OR, Halfword Lower: The "other" part of loading large constants
// into 32-bit registers. See the anonymous pattern Pat<(i32 imm:$imm), ...>
// Note that these are really two operand instructions, but they're encoded
// as three operands with the first two arguments tied-to each other.
def IOHLvec:
RI16Form<0b100000110, (outs VECREG:$rT), (ins VECREG:$rS, u16imm:$val),
"iohl\t$rT, $val", ImmLoad,
[/* insert intrinsic here */]>,
RegConstraint<"$rS = $rT">,
NoEncode<"$rS">;
def IOHLr32:
RI16Form<0b100000110, (outs R32C:$rT), (ins R32C:$rS, i32imm:$val),
"iohl\t$rT, $val", ImmLoad,
[/* insert intrinsic here */]>,
RegConstraint<"$rS = $rT">,
NoEncode<"$rS">;
def IOHLf32:
RI16Form<0b100000110, (outs R32FP:$rT), (ins R32FP:$rS, f32imm:$val),
"iohl\t$rT, $val", ImmLoad,
[/* insert intrinsic here */]>,
RegConstraint<"$rS = $rT">,
NoEncode<"$rS">;
// Form select mask for bytes using immediate, used in conjunction with the
// SELB instruction:
def FSMBIv16i8 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
"fsmbi\t$rT, $val", SelectOp,
[(set (v16i8 VECREG:$rT), (SPUfsmbi_v16i8 immU16:$val))]>;
def FSMBIv8i16 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
"fsmbi\t$rT, $val", SelectOp,
[(set (v8i16 VECREG:$rT), (SPUfsmbi_v8i16 immU16:$val))]>;
def FSMBIvecv4i32 : RI16Form<0b101001100, (outs VECREG:$rT), (ins u16imm:$val),
"fsmbi\t$rT, $val", SelectOp,
[(set (v4i32 VECREG:$rT), (SPUfsmbi_v4i32 immU16:$val))]>;
//===----------------------------------------------------------------------===//
// Integer and Logical Operations:
//===----------------------------------------------------------------------===//
def AHv8i16:
RRForm<0b00010011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"ah\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (int_spu_si_ah VECREG:$rA, VECREG:$rB))]>;
def : Pat<(add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)),
(AHv8i16 VECREG:$rA, VECREG:$rB)>;
// [(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
def AHr16:
RRForm<0b00010011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"ah\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (add R16C:$rA, R16C:$rB))]>;
def AHIvec:
RI10Form<0b10111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ahi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (add (v8i16 VECREG:$rA),
v8i16SExt10Imm:$val))]>;
def AHIr16 : RI10Form<0b10111000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"ahi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (add R16C:$rA, v8i16SExt10Imm:$val))]>;
def Avec : RRForm<0b00000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"a\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def : Pat<(add (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)),
(Avec VECREG:$rA, VECREG:$rB)>;
def Ar32 : RRForm<0b00000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"a\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (add R32C:$rA, R32C:$rB))]>;
def AIvec:
RI10Form<0b00111000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ai\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (add (v4i32 VECREG:$rA),
v4i32SExt10Imm:$val))]>;
def AIr32 : RI10Form<0b00111000, (outs R32C:$rT),
(ins R32C:$rA, s10imm_i32:$val),
"ai\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (add R32C:$rA, i32ImmSExt10:$val))]>;
def SFHvec : RRForm<0b00010010000, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB),
"sfh\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (sub (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
def SFHr16 : RRForm<0b00010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"sfh\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (sub R16C:$rA, R16C:$rB))]>;
def SFHIvec:
RI10Form<0b10110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"sfhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (sub v8i16SExt10Imm:$val,
(v8i16 VECREG:$rA)))]>;
def SFHIr16 : RI10Form<0b10110000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"sfhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (sub i16ImmSExt10:$val, R16C:$rA))]>;
def SFvec : RRForm<0b00000010000, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB),
"sf\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (sub (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def SFr32 : RRForm<0b00000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"sf\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (sub R32C:$rA, R32C:$rB))]>;
def SFIvec:
RI10Form<0b00110000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"sfi\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (sub v4i32SExt10Imm:$val,
(v4i32 VECREG:$rA)))]>;
def SFIr32 : RI10Form<0b00110000, (outs R32C:$rT),
(ins R32C:$rA, s10imm_i32:$val),
"sfi\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (sub i32ImmSExt10:$val, R32C:$rA))]>;
// ADDX: only available in vector form, doesn't match a pattern.
def ADDXvec:
RRForm<0b00000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"addx\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// CG: only available in vector form, doesn't match a pattern.
def CGvec:
RRForm<0b01000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"cg\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// SFX: only available in vector form, doesn't match a pattern
def SFXvec:
RRForm<0b10000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"sfx\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// BG: only available in vector form, doesn't match a pattern.
def BGvec:
RRForm<0b01000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"bg\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// BGX: only available in vector form, doesn't match a pattern.
def BGXvec:
RRForm<0b11000010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB,
VECREG:$rCarry),
"bgx\t$rT, $rA, $rB", IntegerOp,
[]>,
RegConstraint<"$rCarry = $rT">,
NoEncode<"$rCarry">;
// Halfword multiply variants:
// N.B: These can be used to build up larger quantities (16x16 -> 32)
def MPYv8i16:
RRForm<0b00100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
[(set (v8i16 VECREG:$rT), (SPUmpy_v8i16 (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def MPYr16:
RRForm<0b00100011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"mpy\t$rT, $rA, $rB", IntegerMulDiv,
[(set R16C:$rT, (mul R16C:$rA, R16C:$rB))]>;
def MPYUv4i32:
RRForm<0b00110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
[(set (v4i32 VECREG:$rT),
(SPUmpyu_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def MPYUr16:
RRForm<0b00110011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
[(set R32C:$rT, (mul (zext R16C:$rA),
(zext R16C:$rB)))]>;
def MPYUr32:
RRForm<0b00110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyu\t$rT, $rA, $rB", IntegerMulDiv,
[(set R32C:$rT, (SPUmpyu_i32 R32C:$rA, R32C:$rB))]>;
// mpyi: multiply 16 x s10imm -> 32 result (custom lowering for 32 bit result,
// this only produces the lower 16 bits)
def MPYIvec:
RI10Form<0b00101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
[(set (v8i16 VECREG:$rT), (mul (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
def MPYIr16:
RI10Form<0b00101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"mpyi\t$rT, $rA, $val", IntegerMulDiv,
[(set R16C:$rT, (mul R16C:$rA, i16ImmSExt10:$val))]>;
// mpyui: same issues as other multiplies, plus, this doesn't match a
// pattern... but may be used during target DAG selection or lowering
def MPYUIvec:
RI10Form<0b10101110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
[]>;
def MPYUIr16:
RI10Form<0b10101110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"mpyui\t$rT, $rA, $val", IntegerMulDiv,
[]>;
// mpya: 16 x 16 + 16 -> 32 bit result
def MPYAvec:
RRRForm<0b0011, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
[(set (v4i32 VECREG:$rT), (add (v4i32 (bitconvert (mul (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))),
(v4i32 VECREG:$rC)))]>;
def MPYAr32:
RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
[(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
R32C:$rC))]>;
def : Pat<(add (mul (sext R16C:$rA), (sext R16C:$rB)), R32C:$rC),
(MPYAr32 R16C:$rA, R16C:$rB, R32C:$rC)>;
def MPYAr32_sextinreg:
RRRForm<0b0011, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
"mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
[(set R32C:$rT, (add (mul (sext_inreg R32C:$rA, i16),
(sext_inreg R32C:$rB, i16)),
R32C:$rC))]>;
//def MPYAr32:
// RRRForm<0b0011, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB, R32C:$rC),
// "mpya\t$rT, $rA, $rB, $rC", IntegerMulDiv,
// [(set R32C:$rT, (add (sext (mul R16C:$rA, R16C:$rB)),
// R32C:$rC))]>;
// mpyh: multiply high, used to synthesize 32-bit multiplies
def MPYHv4i32:
RRForm<0b10100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
[(set (v4i32 VECREG:$rT),
(SPUmpyh_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def MPYHr32:
RRForm<0b10100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyh\t$rT, $rA, $rB", IntegerMulDiv,
[(set R32C:$rT, (SPUmpyh_i32 R32C:$rA, R32C:$rB))]>;
// mpys: multiply high and shift right (returns the top half of
// a 16-bit multiply, sign extended to 32 bits.)
def MPYSvec:
RRForm<0b11100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
def MPYSr16:
RRForm<0b11100011110, (outs R32C:$rT), (ins R16C:$rA, R16C:$rB),
"mpys\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
// mpyhh: multiply high-high (returns the 32-bit result from multiplying
// the top 16 bits of the $rA, $rB)
def MPYHHv8i16:
RRForm<0b01100011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
[(set (v8i16 VECREG:$rT),
(SPUmpyhh_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
def MPYHHr32:
RRForm<0b01100011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyhh\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
// mpyhha: Multiply high-high, add to $rT:
def MPYHHAvec:
RRForm<0b01100010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
def MPYHHAr32:
RRForm<0b01100010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyhha\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
// mpyhhu: Multiply high-high, unsigned
def MPYHHUvec:
RRForm<0b01110011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
def MPYHHUr32:
RRForm<0b01110011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyhhu\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
// mpyhhau: Multiply high-high, unsigned
def MPYHHAUvec:
RRForm<0b01110010110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
def MPYHHAUr32:
RRForm<0b01110010110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"mpyhhau\t$rT, $rA, $rB", IntegerMulDiv,
[]>;
// clz: Count leading zeroes
def CLZv4i32:
RRForm_1<0b10100101010, (outs VECREG:$rT), (ins VECREG:$rA),
"clz\t$rT, $rA", IntegerOp,
[/* intrinsic */]>;
def CLZr32:
RRForm_1<0b10100101010, (outs R32C:$rT), (ins R32C:$rA),
"clz\t$rT, $rA", IntegerOp,
[(set R32C:$rT, (ctlz R32C:$rA))]>;
// cntb: Count ones in bytes (aka "population count")
// NOTE: This instruction is really a vector instruction, but the custom
// lowering code uses it in unorthodox ways to support CTPOP for other
// data types!
def CNTBv16i8:
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v16i8 VECREG:$rT), (SPUcntb_v16i8 (v16i8 VECREG:$rA)))]>;
def CNTBv8i16 :
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v8i16 VECREG:$rT), (SPUcntb_v8i16 (v8i16 VECREG:$rA)))]>;
def CNTBv4i32 :
RRForm_1<0b00101101010, (outs VECREG:$rT), (ins VECREG:$rA),
"cntb\t$rT, $rA", IntegerOp,
[(set (v4i32 VECREG:$rT), (SPUcntb_v4i32 (v4i32 VECREG:$rA)))]>;
// fsmb: Form select mask for bytes. N.B. Input operand, $rA, is 16-bits
def FSMB:
RRForm_1<0b01101101100, (outs VECREG:$rT), (ins R16C:$rA),
"fsmb\t$rT, $rA", SelectOp,
[]>;
// fsmh: Form select mask for halfwords. N.B., Input operand, $rA, is
// only 8-bits wide (even though it's input as 16-bits here)
def FSMH:
RRForm_1<0b10101101100, (outs VECREG:$rT), (ins R16C:$rA),
"fsmh\t$rT, $rA", SelectOp,
[]>;
// fsm: Form select mask for words. Like the other fsm* instructions,
// only the lower 4 bits of $rA are significant.
def FSM:
RRForm_1<0b00101101100, (outs VECREG:$rT), (ins R16C:$rA),
"fsm\t$rT, $rA", SelectOp,
[]>;
// gbb: Gather all low order bits from each byte in $rA into a single 16-bit
// quantity stored into $rT
def GBB:
RRForm_1<0b01001101100, (outs R16C:$rT), (ins VECREG:$rA),
"gbb\t$rT, $rA", GatherOp,
[]>;
// gbh: Gather all low order bits from each halfword in $rA into a single
// 8-bit quantity stored in $rT
def GBH:
RRForm_1<0b10001101100, (outs R16C:$rT), (ins VECREG:$rA),
"gbh\t$rT, $rA", GatherOp,
[]>;
// gb: Gather all low order bits from each word in $rA into a single
// 4-bit quantity stored in $rT
def GB:
RRForm_1<0b00001101100, (outs R16C:$rT), (ins VECREG:$rA),
"gb\t$rT, $rA", GatherOp,
[]>;
// avgb: average bytes
def AVGB:
RRForm<0b11001011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"avgb\t$rT, $rA, $rB", ByteOp,
[]>;
// absdb: absolute difference of bytes
def ABSDB:
RRForm<0b11001010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"absdb\t$rT, $rA, $rB", ByteOp,
[]>;
// sumb: sum bytes into halfwords
def SUMB:
RRForm<0b11001010010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"sumb\t$rT, $rA, $rB", ByteOp,
[]>;
// Sign extension operations:
def XSBHvec:
RRForm_1<0b01101101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
"xsbh\t$rDst, $rSrc", IntegerOp,
[(set (v8i16 VECREG:$rDst), (sext (v16i8 VECREG:$rSrc)))]>;
// Ordinary form for XSBH
def XSBHr16:
RRForm_1<0b01101101010, (outs R16C:$rDst), (ins R16C:$rSrc),
"xsbh\t$rDst, $rSrc", IntegerOp,
[(set R16C:$rDst, (sext_inreg R16C:$rSrc, i8))]>;
// 32-bit form for XSBH: used to sign extend 8-bit quantities to 16-bit
// quantities to 32-bit quantities via a 32-bit register (see the sext 8->32
// pattern below). Intentionally doesn't match a pattern because we want the
// sext 8->32 pattern to do the work for us, namely because we need the extra
// XSHWr32.
def XSBHr32:
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
"xsbh\t$rDst, $rSrc", IntegerOp,
[(set R32C:$rDst, (sext_inreg R32C:$rSrc, i8))]>;
// Sign extend halfwords to words:
def XSHWvec:
RRForm_1<0b01101101010, (outs VECREG:$rDest), (ins VECREG:$rSrc),
"xshw\t$rDest, $rSrc", IntegerOp,
[(set (v4i32 VECREG:$rDest), (sext (v8i16 VECREG:$rSrc)))]>;
def XSHWr32:
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R32C:$rSrc),
"xshw\t$rDst, $rSrc", IntegerOp,
[(set R32C:$rDst, (sext_inreg R32C:$rSrc, i16))]>;
def XSHWr16:
RRForm_1<0b01101101010, (outs R32C:$rDst), (ins R16C:$rSrc),
"xshw\t$rDst, $rSrc", IntegerOp,
[(set R32C:$rDst, (sext R16C:$rSrc))]>;
def XSWDvec:
RRForm_1<0b01100101010, (outs VECREG:$rDst), (ins VECREG:$rSrc),
"xswd\t$rDst, $rSrc", IntegerOp,
[(set (v2i64 VECREG:$rDst), (sext (v4i32 VECREG:$rSrc)))]>;
def XSWDr64:
RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R64C:$rSrc),
"xswd\t$rDst, $rSrc", IntegerOp,
[(set R64C:$rDst, (sext_inreg R64C:$rSrc, i32))]>;
def XSWDr32:
RRForm_1<0b01100101010, (outs R64C:$rDst), (ins R32C:$rSrc),
"xswd\t$rDst, $rSrc", IntegerOp,
[(set R64C:$rDst, (SPUsext32_to_64 R32C:$rSrc))]>;
def : Pat<(sext R32C:$inp),
(XSWDr32 R32C:$inp)>;
// AND operations
def ANDv16i8:
RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA),
(v16i8 VECREG:$rB)))]>;
def ANDv8i16:
RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)))]>;
def ANDv4i32:
RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA),
(v4i32 VECREG:$rB)))]>;
def ANDr32:
RRForm<0b10000011000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (and R32C:$rA, R32C:$rB))]>;
//===---------------------------------------------
// Special instructions to perform the fabs instruction
def ANDfabs32:
RRForm<0b10000011000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern */]>;
def ANDfabs64:
RRForm<0b10000011000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern */]>;
// Could use ANDv4i32, but won't for clarity
def ANDfabsvec:
RRForm<0b10000011000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern */]>;
//===---------------------------------------------
def ANDr16:
RRForm<0b10000011000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (and R16C:$rA, R16C:$rB))]>;
// Hacked form of AND to zero-extend 16-bit quantities to 32-bit
// quantities -- see 16->32 zext pattern.
//
// This pattern is somewhat artificial, since it might match some
// compiler generated pattern but it is unlikely to do so.
def AND2To4:
RRForm<0b10000011000, (outs R32C:$rT), (ins R16C:$rA, R32C:$rB),
"and\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (and (zext R16C:$rA), R32C:$rB))]>;
// N.B.: vnot_conv is one of those special target selection pattern fragments,
// in which we expect there to be a bit_convert on the constant. Bear in mind
// that llvm translates "not <reg>" to "xor <reg>, -1" (or in this case, a
// constant -1 vector.)
def ANDCv16i8:
RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"andc\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (and (v16i8 VECREG:$rA),
(vnot (v16i8 VECREG:$rB))))]>;
def ANDCv8i16:
RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"andc\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (and (v8i16 VECREG:$rA),
(vnot (v8i16 VECREG:$rB))))]>;
def ANDCv4i32:
RRForm<0b10000011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"andc\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (and (v4i32 VECREG:$rA),
(vnot (v4i32 VECREG:$rB))))]>;
def ANDCr32:
RRForm<0b10000011010, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"andc\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (and R32C:$rA, (not R32C:$rB)))]>;
def ANDCr16:
RRForm<0b10000011010, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"andc\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (and R16C:$rA, (not R16C:$rB)))]>;
def ANDBIv16i8:
RI10Form<0b01101000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
"andbi\t$rT, $rA, $val", IntegerOp,
[(set (v16i8 VECREG:$rT),
(and (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>;
def ANDHIv8i16:
RI10Form<0b10101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"andhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT),
(and (v8i16 VECREG:$rA), v8i16SExt10Imm:$val))]>;
def ANDHIr16:
RI10Form<0b10101000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"andhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (and R16C:$rA, i16ImmU10:$val))]>;
def ANDIv4i32:
RI10Form<0b00101000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"andi\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT),
(and (v4i32 VECREG:$rA), v4i32SExt10Imm:$val))]>;
def ANDIr32:
RI10Form<0b10101000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
"andi\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (and R32C:$rA, i32ImmSExt10:$val))]>;
// Hacked form of ANDI to zero-extend i16 quantities to i32. See the
// zext 16->32 pattern below.
//
// Note that this pattern is somewhat artificial, since it might match
// something the compiler generates but is unlikely to occur in practice.
def ANDI2To4:
RI10Form<0b10101000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
"andi\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (and (zext R16C:$rA), i32ImmSExt10:$val))]>;
// Bitwise OR group:
// Bitwise "or" (N.B.: These are also register-register copy instructions...)
def ORv16i8:
RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>;
def ORv8i16:
RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
def ORv4i32:
RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def ORv4f32:
RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set (v4f32 VECREG:$rT),
(v4f32 (bitconvert (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))))]>;
def ORv2f64:
RRForm<0b10000010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set (v2f64 VECREG:$rT),
(v2f64 (bitconvert (or (v2i64 VECREG:$rA), (v2i64 VECREG:$rB)))))]>;
def ORgprc:
RRForm<0b10000010000, (outs GPRC:$rT), (ins GPRC:$rA, GPRC:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set GPRC:$rT, (or GPRC:$rA, GPRC:$rB))]>;
def ORr64:
RRForm<0b10000010000, (outs R64C:$rT), (ins R64C:$rA, R64C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set R64C:$rT, (or R64C:$rA, R64C:$rB))]>;
def ORr32:
RRForm<0b10000010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (or R32C:$rA, R32C:$rB))]>;
def ORr16:
RRForm<0b10000010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (or R16C:$rA, R16C:$rB))]>;
// ORv*_*: Used in scalar->vector promotions:
def ORv8i16_i16:
RRForm<0b10000010000, (outs VECREG:$rT), (ins R16C:$rA, R16C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(v8i16 (SPUpromote_scalar R16C:$rA)),
(ORv8i16_i16 R16C:$rA, R16C:$rA)>;
def ORv4i32_i32:
RRForm<0b10000010000, (outs VECREG:$rT), (ins R32C:$rA, R32C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(v4i32 (SPUpromote_scalar R32C:$rA)),
(ORv4i32_i32 R32C:$rA, R32C:$rA)>;
def ORv2i64_i64:
RRForm<0b10000010000, (outs VECREG:$rT), (ins R64C:$rA, R64C:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(v2i64 (SPUpromote_scalar R64C:$rA)),
(ORv2i64_i64 R64C:$rA, R64C:$rA)>;
def ORv4f32_f32:
RRForm<0b10000010000, (outs VECREG:$rT), (ins R32FP:$rA, R32FP:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(v4f32 (SPUpromote_scalar R32FP:$rA)),
(ORv4f32_f32 R32FP:$rA, R32FP:$rA)>;
def ORv2f64_f64:
RRForm<0b10000010000, (outs VECREG:$rT), (ins R64FP:$rA, R64FP:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(v2f64 (SPUpromote_scalar R64FP:$rA)),
(ORv2f64_f64 R64FP:$rA, R64FP:$rA)>;
// ORi*_v*: Used to extract vector element 0 (the preferred slot)
def ORi16_v8i16:
RRForm<0b10000010000, (outs R16C:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(SPUextract_elt0 (v8i16 VECREG:$rA)),
(ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;
def : Pat<(SPUextract_elt0_chained (v8i16 VECREG:$rA)),
(ORi16_v8i16 VECREG:$rA, VECREG:$rA)>;
def ORi32_v4i32:
RRForm<0b10000010000, (outs R32C:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(SPUextract_elt0 (v4i32 VECREG:$rA)),
(ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;
def : Pat<(SPUextract_elt0_chained (v4i32 VECREG:$rA)),
(ORi32_v4i32 VECREG:$rA, VECREG:$rA)>;
def ORi64_v2i64:
RRForm<0b10000010000, (outs R64C:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(SPUextract_elt0 (v2i64 VECREG:$rA)),
(ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;
def : Pat<(SPUextract_elt0_chained (v2i64 VECREG:$rA)),
(ORi64_v2i64 VECREG:$rA, VECREG:$rA)>;
def ORf32_v4f32:
RRForm<0b10000010000, (outs R32FP:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(SPUextract_elt0 (v4f32 VECREG:$rA)),
(ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;
def : Pat<(SPUextract_elt0_chained (v4f32 VECREG:$rA)),
(ORf32_v4f32 VECREG:$rA, VECREG:$rA)>;
def ORf64_v2f64:
RRForm<0b10000010000, (outs R64FP:$rT), (ins VECREG:$rA, VECREG:$rB),
"or\t$rT, $rA, $rB", IntegerOp,
[/* no pattern */]>;
def : Pat<(SPUextract_elt0 (v2f64 VECREG:$rA)),
(ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;
def : Pat<(SPUextract_elt0_chained (v2f64 VECREG:$rA)),
(ORf64_v2f64 VECREG:$rA, VECREG:$rA)>;
// ORC: Bitwise "or" with complement (match before ORvec, ORr32)
def ORCv16i8:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"orc\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (or (v16i8 VECREG:$rA),
(vnot (v16i8 VECREG:$rB))))]>;
def ORCv8i16:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"orc\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA),
(vnot (v8i16 VECREG:$rB))))]>;
def ORCv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"orc\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA),
(vnot (v4i32 VECREG:$rB))))]>;
def ORCr32:
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"orc\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (or R32C:$rA, (not R32C:$rB)))]>;
def ORCr16:
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"orc\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (or R16C:$rA, (not R16C:$rB)))]>;
// OR byte immediate
def ORBIv16i8:
RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
"orbi\t$rT, $rA, $val", IntegerOp,
[(set (v16i8 VECREG:$rT),
(or (v16i8 VECREG:$rA), (v16i8 v16i8U8Imm:$val)))]>;
// OR halfword immediate
def ORHIv8i16:
RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"orhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (or (v8i16 VECREG:$rA),
v8i16SExt10Imm:$val))]>;
def ORHIr16:
RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"orhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (or R16C:$rA, i16ImmSExt10:$val))]>;
// Bitwise "or" with immediate
def ORIv4i32:
RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (or (v4i32 VECREG:$rA),
v4i32SExt10Imm:$val))]>;
def ORIr32:
RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (or R32C:$rA, i32ImmSExt10:$val))]>;
// Hacked forms of or immediate to copy one 32- and 64-bit FP register
// to another. Do not match patterns.
def ORIf32:
RI10Form_1<0b00100000, (outs R32FP:$rT), (ins R32FP:$rA, s10imm_i32:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[/* no pattern */]>;
def ORIf64:
RI10Form_1<0b00100000, (outs R64FP:$rT), (ins R64FP:$rA, s10imm_i32:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[/* no pattern */]>;
def ORIr64:
RI10Form_1<0b00100000, (outs R64C:$rT), (ins R64C:$rA, s10imm_i32:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[/* no pattern */]>;
// ORI2To4: hacked version of the ori instruction to extend 16-bit quantities
// to 32-bit quantities. used exclusively to match "anyext" conversions (vide
// infra "anyext 16->32" pattern.)
def ORI2To4:
RI10Form<0b00100000, (outs R32C:$rT), (ins R16C:$rA, s10imm_i32:$val),
"ori\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (or (anyext R16C:$rA), i32ImmSExt10:$val))]>;
// ORX: "or" across the vector: or's $rA's word slots leaving the result in
// $rT[0], slots 1-3 are zeroed.
//
// Needs to match an intrinsic pattern.
def ORXv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"orx\t$rT, $rA, $rB", IntegerOp,
[]>;
def XORv16i8:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), (v16i8 VECREG:$rB)))]>;
def XORv8i16:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA), (v8i16 VECREG:$rB)))]>;
def XORv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA), (v4i32 VECREG:$rB)))]>;
def XORr32:
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (xor R32C:$rA, R32C:$rB))]>;
//==----------------------------------------------------------
// Special forms for floating point instructions.
// Bitwise ORs and ANDs don't make sense for normal floating
// point numbers. These operations (fneg and fabs), however,
// require bitwise logical ops to manipulate the sign bit.
def XORfneg32:
RRForm<0b10010010000, (outs R32FP:$rT), (ins R32FP:$rA, R32C:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern, see fneg32 */]>;
// KLUDGY! Better way to do this without a VECREG? bitconvert?
// VECREG is assumed to contain two identical 64-bit masks, so
// it doesn't matter which word we select for the xor
def XORfneg64:
RRForm<0b10010010000, (outs R64FP:$rT), (ins R64FP:$rA, VECREG:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern, see fneg64 */]>;
// Could use XORv4i32, but will use this for clarity
def XORfnegvec:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[/* Intentionally does not match a pattern, see fneg{32,64} */]>;
//==----------------------------------------------------------
def XORr16:
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"xor\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (xor R16C:$rA, R16C:$rB))]>;
def XORBIv16i8:
RI10Form<0b01100000, (outs VECREG:$rT), (ins VECREG:$rA, u10imm:$val),
"xorbi\t$rT, $rA, $val", IntegerOp,
[(set (v16i8 VECREG:$rT), (xor (v16i8 VECREG:$rA), v16i8U8Imm:$val))]>;
def XORHIv8i16:
RI10Form<0b10100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"xorhi\t$rT, $rA, $val", IntegerOp,
[(set (v8i16 VECREG:$rT), (xor (v8i16 VECREG:$rA),
v8i16SExt10Imm:$val))]>;
def XORHIr16:
RI10Form<0b10100000, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"xorhi\t$rT, $rA, $val", IntegerOp,
[(set R16C:$rT, (xor R16C:$rA, i16ImmSExt10:$val))]>;
def XORIv4i32:
RI10Form<0b00100000, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"xori\t$rT, $rA, $val", IntegerOp,
[(set (v4i32 VECREG:$rT), (xor (v4i32 VECREG:$rA),
v4i32SExt10Imm:$val))]>;
def XORIr32:
RI10Form<0b00100000, (outs R32C:$rT), (ins R32C:$rA, s10imm_i32:$val),
"xori\t$rT, $rA, $val", IntegerOp,
[(set R32C:$rT, (xor R32C:$rA, i32ImmSExt10:$val))]>;
// NAND:
def NANDv16i8:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nand\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (vnot (and (v16i8 VECREG:$rA),
(v16i8 VECREG:$rB))))]>;
def NANDv8i16:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nand\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (vnot (and (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB))))]>;
def NANDv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nand\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (vnot (and (v4i32 VECREG:$rA),
(v4i32 VECREG:$rB))))]>;
def NANDr32:
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"nand\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (not (and R32C:$rA, R32C:$rB)))]>;
def NANDr16:
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"nand\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (not (and R16C:$rA, R16C:$rB)))]>;
// NOR:
def NORv16i8:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nor\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (vnot (or (v16i8 VECREG:$rA),
(v16i8 VECREG:$rB))))]>;
def NORv8i16:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nor\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (vnot (or (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB))))]>;
def NORv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"nor\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (vnot (or (v4i32 VECREG:$rA),
(v4i32 VECREG:$rB))))]>;
def NORr32:
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"nor\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (not (or R32C:$rA, R32C:$rB)))]>;
def NORr16:
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"nor\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (not (or R16C:$rA, R16C:$rB)))]>;
// EQV: Equivalence (1 for each same bit, otherwise 0)
def EQVv16i8:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"eqv\t$rT, $rA, $rB", IntegerOp,
[(set (v16i8 VECREG:$rT), (or (and (v16i8 VECREG:$rA),
(v16i8 VECREG:$rB)),
(and (vnot (v16i8 VECREG:$rA)),
(vnot (v16i8 VECREG:$rB)))))]>;
def : Pat<(xor (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rB))),
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
def : Pat<(xor (vnot (v16i8 VECREG:$rA)), (v16i8 VECREG:$rB)),
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
def EQVv8i16:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"eqv\t$rT, $rA, $rB", IntegerOp,
[(set (v8i16 VECREG:$rT), (or (and (v8i16 VECREG:$rA),
(v8i16 VECREG:$rB)),
(and (vnot (v8i16 VECREG:$rA)),
(vnot (v8i16 VECREG:$rB)))))]>;
def : Pat<(xor (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rB))),
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
def : Pat<(xor (vnot (v8i16 VECREG:$rA)), (v8i16 VECREG:$rB)),
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
def EQVv4i32:
RRForm<0b10010010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"eqv\t$rT, $rA, $rB", IntegerOp,
[(set (v4i32 VECREG:$rT), (or (and (v4i32 VECREG:$rA),
(v4i32 VECREG:$rB)),
(and (vnot (v4i32 VECREG:$rA)),
(vnot (v4i32 VECREG:$rB)))))]>;
def : Pat<(xor (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rB))),
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
def : Pat<(xor (vnot (v4i32 VECREG:$rA)), (v4i32 VECREG:$rB)),
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
def EQVr32:
RRForm<0b10010010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"eqv\t$rT, $rA, $rB", IntegerOp,
[(set R32C:$rT, (or (and R32C:$rA, R32C:$rB),
(and (not R32C:$rA), (not R32C:$rB))))]>;
def : Pat<(xor R32C:$rA, (not R32C:$rB)),
(EQVr32 R32C:$rA, R32C:$rB)>;
def : Pat<(xor (not R32C:$rA), R32C:$rB),
(EQVr32 R32C:$rA, R32C:$rB)>;
def EQVr16:
RRForm<0b10010010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"eqv\t$rT, $rA, $rB", IntegerOp,
[(set R16C:$rT, (or (and R16C:$rA, R16C:$rB),
(and (not R16C:$rA), (not R16C:$rB))))]>;
def : Pat<(xor R16C:$rA, (not R16C:$rB)),
(EQVr16 R16C:$rA, R16C:$rB)>;
def : Pat<(xor (not R16C:$rA), R16C:$rB),
(EQVr16 R16C:$rA, R16C:$rB)>;
// gcc optimizes (p & q) | (~p & ~q) -> ~(p | q) | (p & q), so match that
// pattern also:
def : Pat<(or (vnot (or (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
(and (v16i8 VECREG:$rA), (v16i8 VECREG:$rB))),
(EQVv16i8 VECREG:$rA, VECREG:$rB)>;
def : Pat<(or (vnot (or (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
(and (v8i16 VECREG:$rA), (v8i16 VECREG:$rB))),
(EQVv8i16 VECREG:$rA, VECREG:$rB)>;
def : Pat<(or (vnot (or (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
(and (v4i32 VECREG:$rA), (v4i32 VECREG:$rB))),
(EQVv4i32 VECREG:$rA, VECREG:$rB)>;
def : Pat<(or (not (or R32C:$rA, R32C:$rB)), (and R32C:$rA, R32C:$rB)),
(EQVr32 R32C:$rA, R32C:$rB)>;
def : Pat<(or (not (or R16C:$rA, R16C:$rB)), (and R16C:$rA, R16C:$rB)),
(EQVr16 R16C:$rA, R16C:$rB)>;
// Select bits:
def SELBv16i8:
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
[(set (v16i8 VECREG:$rT),
(SPUselb_v16i8 (v16i8 VECREG:$rA), (v16i8 VECREG:$rB),
(v16i8 VECREG:$rC)))]>;
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rB), (vnot (v16i8 VECREG:$rC)))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (v16i8 VECREG:$rC)),
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rC), (v16i8 VECREG:$rA)),
(and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v16i8 VECREG:$rA), (vnot (v16i8 VECREG:$rC))),
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rB), (v16i8 VECREG:$rC))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v16i8 VECREG:$rC)), (v16i8 VECREG:$rA)),
(and (v16i8 VECREG:$rC), (v16i8 VECREG:$rB))),
(SELBv16i8 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def SELBv8i16:
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
[(set (v8i16 VECREG:$rT),
(SPUselb_v8i16 (v8i16 VECREG:$rA), (v8i16 VECREG:$rB),
(v8i16 VECREG:$rC)))]>;
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rB), (vnot (v8i16 VECREG:$rC)))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (v8i16 VECREG:$rC)),
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rC), (v8i16 VECREG:$rA)),
(and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v8i16 VECREG:$rA), (vnot (v8i16 VECREG:$rC))),
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rB), (v8i16 VECREG:$rC))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v8i16 VECREG:$rC)), (v8i16 VECREG:$rA)),
(and (v8i16 VECREG:$rC), (v8i16 VECREG:$rB))),
(SELBv8i16 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def SELBv4i32:
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
[(set (v4i32 VECREG:$rT),
(SPUselb_v4i32 (v4i32 VECREG:$rA), (v4i32 VECREG:$rB),
(v4i32 VECREG:$rC)))]>;
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rB), (vnot (v4i32 VECREG:$rC)))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (v4i32 VECREG:$rC)),
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rC), (v4i32 VECREG:$rA)),
(and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (v4i32 VECREG:$rA), (vnot (v4i32 VECREG:$rC))),
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rB), (v4i32 VECREG:$rC))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(or (and (vnot (v4i32 VECREG:$rC)), (v4i32 VECREG:$rA)),
(and (v4i32 VECREG:$rC), (v4i32 VECREG:$rB))),
(SELBv4i32 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def SELBr32:
RRRForm<0b1000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB, R32C:$rC),
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
[]>;
// And the various patterns that can be matched... (all 8 of them :-)
def : Pat<(or (and R32C:$rA, R32C:$rC),
(and R32C:$rB, (not R32C:$rC))),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and R32C:$rC, R32C:$rA),
(and R32C:$rB, (not R32C:$rC))),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and R32C:$rA, R32C:$rC),
(and (not R32C:$rC), R32C:$rB)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and R32C:$rC, R32C:$rA),
(and (not R32C:$rC), R32C:$rB)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
(and R32C:$rB, R32C:$rC)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and R32C:$rA, (not R32C:$rC)),
(and R32C:$rC, R32C:$rB)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and (not R32C:$rC), R32C:$rA),
(and R32C:$rB, R32C:$rC)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def : Pat<(or (and (not R32C:$rC), R32C:$rA),
(and R32C:$rC, R32C:$rB)),
(SELBr32 R32C:$rA, R32C:$rB, R32C:$rC)>;
def SELBr16:
RRRForm<0b1000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB, R16C:$rC),
"selb\t$rT, $rA, $rB, $rC", IntegerOp,
[]>;
def : Pat<(or (and R16C:$rA, R16C:$rC),
(and R16C:$rB, (not R16C:$rC))),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and R16C:$rC, R16C:$rA),
(and R16C:$rB, (not R16C:$rC))),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and R16C:$rA, R16C:$rC),
(and (not R16C:$rC), R16C:$rB)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and R16C:$rC, R16C:$rA),
(and (not R16C:$rC), R16C:$rB)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
(and R16C:$rB, R16C:$rC)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and R16C:$rA, (not R16C:$rC)),
(and R16C:$rC, R16C:$rB)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and (not R16C:$rC), R16C:$rA),
(and R16C:$rB, R16C:$rC)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
def : Pat<(or (and (not R16C:$rC), R16C:$rA),
(and R16C:$rC, R16C:$rB)),
(SELBr16 R16C:$rA, R16C:$rB, R16C:$rC)>;
//===----------------------------------------------------------------------===//
// Vector shuffle...
//===----------------------------------------------------------------------===//
def SHUFB:
RRRForm<0b1000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"shufb\t$rT, $rA, $rB, $rC", IntegerOp,
[/* insert intrinsic here */]>;
// SPUshuffle is generated in LowerVECTOR_SHUFFLE and gets replaced with SHUFB.
// See the SPUshuffle SDNode operand above, which sets up the DAG pattern
// matcher to emit something when the LowerVECTOR_SHUFFLE generates a node with
// the SPUISD::SHUFB opcode.
def : Pat<(SPUshuffle (v16i8 VECREG:$rA), (v16i8 VECREG:$rB), VECREG:$rC),
(SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(SPUshuffle (v8i16 VECREG:$rA), (v8i16 VECREG:$rB), VECREG:$rC),
(SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(SPUshuffle (v4i32 VECREG:$rA), (v4i32 VECREG:$rB), VECREG:$rC),
(SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
def : Pat<(SPUshuffle (v2i64 VECREG:$rA), (v2i64 VECREG:$rB), VECREG:$rC),
(SHUFB VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
//===----------------------------------------------------------------------===//
// Shift and rotate group:
//===----------------------------------------------------------------------===//
def SHLHv8i16:
RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
"shlh\t$rT, $rA, $rB", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), R16C:$rB))]>;
// $rB gets promoted to 32-bit register type when confronted with
// this llvm assembly code:
//
// define i16 @shlh_i16_1(i16 %arg1, i16 %arg2) {
// %A = shl i16 %arg1, %arg2
// ret i16 %A
// }
//
// However, we will generate this code when lowering 8-bit shifts and rotates.
def SHLHr16:
RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"shlh\t$rT, $rA, $rB", RotateShift,
[(set R16C:$rT, (shl R16C:$rA, R16C:$rB))]>;
def SHLHr16_r32:
RRForm<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
"shlh\t$rT, $rA, $rB", RotateShift,
[(set R16C:$rT, (shl R16C:$rA, R32C:$rB))]>;
def SHLHIv8i16:
RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"shlhi\t$rT, $rA, $val", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)))]>;
def : Pat<(SPUvec_shl_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)),
(SHLHIv8i16 VECREG:$rA, imm:$val)>;
def SHLHIr16:
RI7Form<0b11111010000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
"shlhi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (shl R16C:$rA, (i32 uimm7:$val)))]>;
def : Pat<(shl R16C:$rA, (i16 uimm7:$val)),
(SHLHIr16 R16C:$rA, uimm7:$val)>;
def SHLv4i32:
RRForm<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
"shl\t$rT, $rA, $rB", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), R16C:$rB))]>;
def SHLr32:
RRForm<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"shl\t$rT, $rA, $rB", RotateShift,
[(set R32C:$rT, (shl R32C:$rA, R32C:$rB))]>;
def SHLIv4i32:
RI7Form<0b11111010000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"shli\t$rT, $rA, $val", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)))]>;
def: Pat<(SPUvec_shl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)),
(SHLIv4i32 VECREG:$rA, uimm7:$val)>;
def SHLIr32:
RI7Form<0b11111010000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
"shli\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (shl R32C:$rA, (i32 uimm7:$val)))]>;
def : Pat<(shl R32C:$rA, (i16 uimm7:$val)),
(SHLIr32 R32C:$rA, uimm7:$val)>;
// SHLQBI vec form: Note that this will shift the entire vector (the 128-bit
// register) to the left. Vector form is here to ensure type correctness.
def SHLQBIvec:
RRForm<0b11011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"shlqbi\t$rT, $rA, $rB", RotateShift,
[/* intrinsic */]>;
// See note above on SHLQBI.
def SHLQBIIvec:
RI7Form<0b11011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"shlqbii\t$rT, $rA, $val", RotateShift,
[/* intrinsic */]>;
// SHLQBY, SHLQBYI vector forms: Shift the entire vector to the left by bytes,
// not by bits.
def SHLQBYvec:
RI7Form<0b11111011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"shlqbyi\t$rT, $rA, $rB", RotateShift,
[/* intrinsic */]>;
def SHLQBYIvec:
RI7Form<0b11111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"shlqbyi\t$rT, $rA, $val", RotateShift,
[/* intrinsic */]>;
// ROTH v8i16 form:
def ROTHv8i16:
RRForm<0b00111010000, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"roth\t$rT, $rA, $rB", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_rotl_v8i16 VECREG:$rA, VECREG:$rB))]>;
def ROTHr16:
RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"roth\t$rT, $rA, $rB", RotateShift,
[(set R16C:$rT, (rotl R16C:$rA, R16C:$rB))]>;
def ROTHr16_r32:
RRForm<0b00111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
"roth\t$rT, $rA, $rB", RotateShift,
[(set R16C:$rT, (rotl R16C:$rA, R32C:$rB))]>;
def ROTHIv8i16:
RI7Form<0b00111110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"rothi\t$rT, $rA, $val", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)))]>;
def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i16 uimm7:$val)),
(ROTHIv8i16 VECREG:$rA, imm:$val)>;
def : Pat<(SPUvec_rotl_v8i16 VECREG:$rA, (i32 uimm7:$val)),
(ROTHIv8i16 VECREG:$rA, imm:$val)>;
def ROTHIr16:
RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm:$val),
"rothi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (rotl R16C:$rA, (i16 uimm7:$val)))]>;
def ROTHIr16_i32:
RI7Form<0b00111110000, (outs R16C:$rT), (ins R16C:$rA, u7imm_i32:$val),
"rothi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (rotl R16C:$rA, (i32 uimm7:$val)))]>;
def ROTv4i32:
RRForm<0b00011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rot\t$rT, $rA, $rB", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), R32C:$rB))]>;
def ROTr32:
RRForm<0b00011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"rot\t$rT, $rA, $rB", RotateShift,
[(set R32C:$rT, (rotl R32C:$rA, R32C:$rB))]>;
def ROTIv4i32:
RI7Form<0b00011110000, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
"roti\t$rT, $rA, $val", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_rotl_v4i32 (v4i32 VECREG:$rA), (i16 uimm7:$val)),
(ROTIv4i32 VECREG:$rA, imm:$val)>;
def ROTIr32:
RI7Form<0b00011110000, (outs R32C:$rT), (ins R32C:$rA, u7imm_i32:$val),
"roti\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (rotl R32C:$rA, (i32 uimm7:$val)))]>;
def ROTIr32_i16:
RI7Form<0b00111110000, (outs R32C:$rT), (ins R32C:$rA, u7imm:$val),
"roti\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (rotl R32C:$rA, (i16 uimm7:$val)))]>;
// ROTQBY* vector forms: This rotates the entire vector, but vector registers
// are used here for type checking (instances where ROTQBI is used actually
// use vector registers)
def ROTQBYvec:
RRForm<0b00111011100, (outs VECREG:$rT), (ins VECREG:$rA, R16C:$rB),
"rotqby\t$rT, $rA, $rB", RotateShift,
[(set (v16i8 VECREG:$rT), (SPUrotbytes_left (v16i8 VECREG:$rA), R16C:$rB))]>;
def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), R16C:$rB),
(ROTQBYvec VECREG:$rA, R16C:$rB)>;
// See ROTQBY note above.
def ROTQBYIvec:
RI7Form<0b00111111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"rotqbyi\t$rT, $rA, $val", RotateShift,
[(set (v16i8 VECREG:$rT),
(SPUrotbytes_left (v16i8 VECREG:$rA), (i16 uimm7:$val)))]>;
def : Pat<(SPUrotbytes_left_chained (v16i8 VECREG:$rA), (i16 uimm7:$val)),
(ROTQBYIvec VECREG:$rA, uimm7:$val)>;
// See ROTQBY note above.
def ROTQBYBIvec:
RI7Form<0b00110011100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm:$val),
"rotqbybi\t$rT, $rA, $val", RotateShift,
[/* intrinsic */]>;
// See ROTQBY note above.
//
// Assume that the user of this instruction knows to shift the rotate count
// into bit 29
def ROTQBIvec:
RRForm<0b00011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"rotqbi\t$rT, $rA, $rB", RotateShift,
[/* insert intrinsic here */]>;
// See ROTQBY note above.
def ROTQBIIvec:
RI7Form<0b00011111100, (outs VECREG:$rT), (ins VECREG:$rA, u7imm_i32:$val),
"rotqbii\t$rT, $rA, $val", RotateShift,
[/* insert intrinsic here */]>;
// ROTHM v8i16 form:
// NOTE(1): No vector rotate is generated by the C/C++ frontend (today),
// so this only matches a synthetically generated/lowered code
// fragment.
// NOTE(2): $rB must be negated before the right rotate!
def ROTHMv8i16:
RRForm<0b10111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rothm\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R32C:$rB),
(ROTHMv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), R16C:$rB),
(ROTHMv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), /* R8C */ R16C:$rB),
(ROTHMv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>;
// ROTHM r16 form: Rotate 16-bit quantity to right, zero fill at the left
// Note: This instruction doesn't match a pattern because rB must be negated
// for the instruction to work. Thus, the pattern below the instruction!
def ROTHMr16:
RRForm<0b10111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
"rothm\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated! */]>;
def : Pat<(srl R16C:$rA, R32C:$rB),
(ROTHMr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(srl R16C:$rA, R16C:$rB),
(ROTHMr16 R16C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(srl R16C:$rA, /* R8C */ R16C:$rB),
(ROTHMr16 R16C:$rA,
(SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /* ) */, 0))>;
// ROTHMI v8i16 form: See the comment for ROTHM v8i16. The difference here is
// that the immediate can be complemented, so that the user doesn't have to
// worry about it.
def ROTHMIv8i16:
RI7Form<0b10111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
"rothmi\t$rT, $rA, $val", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i32 imm:$val)))]>;
def: Pat<(SPUvec_srl_v8i16 (v8i16 VECREG:$rA), (i16 imm:$val)),
(ROTHMIv8i16 VECREG:$rA, imm:$val)>;
def ROTHMIr16:
RI7Form<0b10111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm:$val),
"rothmi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (srl R16C:$rA, (i32 uimm7:$val)))]>;
def: Pat<(srl R16C:$rA, (i16 uimm7:$val)),
(ROTHMIr16 R16C:$rA, uimm7:$val)>;
// ROTM v4i32 form: See the ROTHM v8i16 comments.
def ROTMv4i32:
RRForm<0b10011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotm\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R32C:$rB),
(ROTMv4i32 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, R16C:$rB),
(ROTMv4i32 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, /* R8C */ R16C:$rB),
(ROTMv4i32 VECREG:$rA,
(SFIr32 (XSHWr16 /* (XSBHr8 R8C */ R16C:$rB) /*)*/, 0))>;
def ROTMr32:
RRForm<0b10011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"rotm\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(srl R32C:$rA, R32C:$rB),
(ROTMr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(srl R32C:$rA, R16C:$rB),
(ROTMr32 R32C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
// ROTMI v4i32 form: See the comment for ROTHM v8i16.
def ROTMIv4i32:
RI7Form<0b10011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
"rotmi\t$rT, $rA, $val", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_srl_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_srl_v4i32 VECREG:$rA, (i16 uimm7:$val)),
(ROTMIv4i32 VECREG:$rA, uimm7:$val)>;
// ROTMI r32 form: know how to complement the immediate value.
def ROTMIr32:
RI7Form<0b10011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
"rotmi\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (srl R32C:$rA, (i32 uimm7:$val)))]>;
def : Pat<(srl R32C:$rA, (i16 imm:$val)),
(ROTMIr32 R32C:$rA, uimm7:$val)>;
// ROTQMBYvec: This is a vector form merely so that when used in an
// instruction pattern, type checking will succeed. This instruction assumes
// that the user knew to complement $rB.
def ROTQMBYvec:
RRForm<0b10111011100, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotqmby\t$rT, $rA, $rB", RotateShift,
[(set (v16i8 VECREG:$rT),
(SPUrotbytes_right_zfill (v16i8 VECREG:$rA), R32C:$rB))]>;
def ROTQMBYIvec:
RI7Form<0b10111111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
"rotqmbyi\t$rT, $rA, $val", RotateShift,
[(set (v16i8 VECREG:$rT),
(SPUrotbytes_right_zfill (v16i8 VECREG:$rA), (i32 uimm7:$val)))]>;
def : Pat<(SPUrotbytes_right_zfill VECREG:$rA, (i16 uimm7:$val)),
(ROTQMBYIvec VECREG:$rA, uimm7:$val)>;
def ROTQMBYBIvec:
RRForm<0b10110011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"rotqmbybi\t$rT, $rA, $rB", RotateShift,
[/* intrinsic */]>;
def ROTQMBIvec:
RRForm<0b10011011100, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"rotqmbi\t$rT, $rA, $rB", RotateShift,
[/* intrinsic */]>;
def ROTQMBIIvec:
RI7Form<0b10011111100, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
"rotqmbii\t$rT, $rA, $val", RotateShift,
[/* intrinsic */]>;
def ROTMAHv8i16:
RRForm<0b01111010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotmah\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R32C:$rB),
(ROTMAHv8i16 VECREG:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_sra_v8i16 VECREG:$rA, R16C:$rB),
(ROTMAHv8i16 VECREG:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def ROTMAHr16:
RRForm<0b01111010000, (outs R16C:$rT), (ins R16C:$rA, R32C:$rB),
"rotmah\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(sra R16C:$rA, R32C:$rB),
(ROTMAHr16 R16C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(sra R16C:$rA, R16C:$rB),
(ROTMAHr16 R16C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def ROTMAHIv8i16:
RRForm<0b01111110000, (outs VECREG:$rT), (ins VECREG:$rA, rothNeg7imm:$val),
"rotmahi\t$rT, $rA, $val", RotateShift,
[(set (v8i16 VECREG:$rT),
(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_sra_v8i16 (v8i16 VECREG:$rA), (i16 uimm7:$val)),
(ROTMAHIv8i16 (v8i16 VECREG:$rA), (i32 uimm7:$val))>;
def ROTMAHIr16:
RRForm<0b01111110000, (outs R16C:$rT), (ins R16C:$rA, rothNeg7imm_i16:$val),
"rotmahi\t$rT, $rA, $val", RotateShift,
[(set R16C:$rT, (sra R16C:$rA, (i16 uimm7:$val)))]>;
def : Pat<(sra R16C:$rA, (i32 imm:$val)),
(ROTMAHIr16 R16C:$rA, uimm7:$val)>;
def ROTMAv4i32:
RRForm<0b01011010000, (outs VECREG:$rT), (ins VECREG:$rA, R32C:$rB),
"rotma\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R32C:$rB),
(ROTMAv4i32 (v4i32 VECREG:$rA), (SFIr32 R32C:$rB, 0))>;
def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, R16C:$rB),
(ROTMAv4i32 (v4i32 VECREG:$rA),
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def ROTMAr32:
RRForm<0b01011010000, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"rotma\t$rT, $rA, $rB", RotateShift,
[/* see patterns below - $rB must be negated */]>;
def : Pat<(sra R32C:$rA, R32C:$rB),
(ROTMAr32 R32C:$rA, (SFIr32 R32C:$rB, 0))>;
def : Pat<(sra R32C:$rA, R16C:$rB),
(ROTMAr32 R32C:$rA,
(SFIr32 (XSHWr16 R16C:$rB), 0))>;
def ROTMAIv4i32:
RRForm<0b01011110000, (outs VECREG:$rT), (ins VECREG:$rA, rotNeg7imm:$val),
"rotmai\t$rT, $rA, $val", RotateShift,
[(set (v4i32 VECREG:$rT),
(SPUvec_sra_v4i32 VECREG:$rA, (i32 uimm7:$val)))]>;
def : Pat<(SPUvec_sra_v4i32 VECREG:$rA, (i16 uimm7:$val)),
(ROTMAIv4i32 VECREG:$rA, uimm7:$val)>;
def ROTMAIr32:
RRForm<0b01011110000, (outs R32C:$rT), (ins R32C:$rA, rotNeg7imm:$val),
"rotmai\t$rT, $rA, $val", RotateShift,
[(set R32C:$rT, (sra R32C:$rA, (i32 uimm7:$val)))]>;
def : Pat<(sra R32C:$rA, (i16 uimm7:$val)),
(ROTMAIr32 R32C:$rA, uimm7:$val)>;
//===----------------------------------------------------------------------===//
// Branch and conditionals:
//===----------------------------------------------------------------------===//
let isTerminator = 1, isBarrier = 1 in {
// Halt If Equal (r32 preferred slot only, no vector form)
def HEQr32:
RRForm_3<0b00011011110, (outs), (ins R32C:$rA, R32C:$rB),
"heq\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HEQIr32 :
RI10Form_2<0b11111110, (outs), (ins R32C:$rA, s10imm:$val),
"heqi\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
// HGT/HGTI: These instructions use signed arithmetic for the comparison,
// contrasting with HLGT/HLGTI, which use unsigned comparison:
def HGTr32:
RRForm_3<0b00011010010, (outs), (ins R32C:$rA, R32C:$rB),
"hgt\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HGTIr32:
RI10Form_2<0b11110010, (outs), (ins R32C:$rA, s10imm:$val),
"hgti\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
def HLGTr32:
RRForm_3<0b00011011010, (outs), (ins R32C:$rA, R32C:$rB),
"hlgt\t$rA, $rB", BranchResolv,
[/* no pattern to match */]>;
def HLGTIr32:
RI10Form_2<0b11111010, (outs), (ins R32C:$rA, s10imm:$val),
"hlgti\t$rA, $val", BranchResolv,
[/* no pattern to match */]>;
}
// Comparison operators:
def CEQBv16i8:
RRForm<0b00001011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"ceqb\t$rT, $rA, $rB", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQBIv16i8:
RI10Form<0b01111110, (outs VECREG:$rT), (ins VECREG:$rA, s7imm:$val),
"ceqbi\t$rT, $rA, $val", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQHr16:
RRForm<0b00010011110, (outs R16C:$rT), (ins R16C:$rA, R16C:$rB),
"ceqh\t$rT, $rA, $rB", ByteOp,
[/* no pattern to match */]>;
def CEQHv8i16:
RRForm<0b00010011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"ceqh\t$rT, $rA, $rB", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQHIr16:
RI10Form<0b10111110, (outs R16C:$rT), (ins R16C:$rA, s10imm:$val),
"ceqhi\t$rT, $rA, $val", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQHIv8i16:
RI10Form<0b10111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ceqhi\t$rT, $rA, $val", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQr32:
RRForm<0b00000011110, (outs R32C:$rT), (ins R32C:$rA, R32C:$rB),
"ceq\t$rT, $rA, $rB", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQv4i32:
RRForm<0b00000011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"ceq\t$rT, $rA, $rB", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQIr32:
RI10Form<0b00111110, (outs R32C:$rT), (ins R32C:$rA, s10imm:$val),
"ceqi\t$rT, $rA, $val", ByteOp,
[/* no pattern to match: intrinsic */]>;
def CEQIv4i32:
RI10Form<0b00111110, (outs VECREG:$rT), (ins VECREG:$rA, s10imm:$val),
"ceqi\t$rT, $rA, $val", ByteOp,
[/* no pattern to match: intrinsic */]>;
let isCall = 1,
// All calls clobber the non-callee-saved registers:
Defs = [R0, R1, R2, R3, R4, R5, R6, R7, R8, R9,
R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,
R20,R21,R22,R23,R24,R25,R26,R27,R28,R29,
R30,R31,R32,R33,R34,R35,R36,R37,R38,R39,
R40,R41,R42,R43,R44,R45,R46,R47,R48,R49,
R50,R51,R52,R53,R54,R55,R56,R57,R58,R59,
R60,R61,R62,R63,R64,R65,R66,R67,R68,R69,
R70,R71,R72,R73,R74,R75,R76,R77,R78,R79],
// All of these instructions use $lr (aka $0)
Uses = [R0] in {
// Branch relative and set link: Used if we actually know that the target
// is within [-32768, 32767] bytes of the target
def BRSL:
BranchSetLink<0b011001100, (outs), (ins relcalltarget:$func, variable_ops),
"brsl\t$$lr, $func",
[(SPUcall (SPUpcrel tglobaladdr:$func, 0))]>;
// Branch absolute and set link: Used if we actually know that the target
// is an absolute address
def BRASL:
BranchSetLink<0b011001100, (outs), (ins calltarget:$func, variable_ops),
"brasl\t$$lr, $func",
[(SPUcall tglobaladdr:$func)]>;
// Branch indirect and set link if external data. These instructions are not
// actually generated, matched by an intrinsic:
def BISLED_00: BISLEDForm<0b11, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_E0: BISLEDForm<0b10, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_0D: BISLEDForm<0b01, "bisled\t$$lr, $func", [/* empty pattern */]>;
def BISLED_ED: BISLEDForm<0b00, "bisled\t$$lr, $func", [/* empty pattern */]>;
// Branch indirect and set link. This is the "X-form" address version of a
// function call
def BISL:
BIForm<0b10010101100, "bisl\t$$lr, $func", [(SPUcall R32C:$func)]>;
}
// Unconditional branches:
let isBranch = 1, isTerminator = 1, hasCtrlDep = 1, isBarrier = 1 in {
def BR :
UncondBranch<0b001001100, (outs), (ins brtarget:$dest),
"br\t$dest",
[(br bb:$dest)]>;
// Unconditional, absolute address branch
def BRA:
UncondBranch<0b001100000, (outs), (ins brtarget:$dest),
"bra\t$dest",
[/* no pattern */]>;
// Indirect branch
def BI:
BIForm<0b00010101100, "bi\t$func", [(brind R32C:$func)]>;
// Various branches:
def BRNZ:
RI16Form<0b010000100, (outs), (ins R32C:$rCond, brtarget:$dest),
"brnz\t$rCond,$dest",
BranchResolv,
[(brcond R32C:$rCond, bb:$dest)]>;
def BRZ:
RI16Form<0b000000100, (outs), (ins R32C:$rT, brtarget:$dest),
"brz\t$rT,$dest",
BranchResolv,
[/* no pattern */]>;
def BRHNZ:
RI16Form<0b011000100, (outs), (ins R16C:$rCond, brtarget:$dest),
"brhnz\t$rCond,$dest",
BranchResolv,
[(brcond R16C:$rCond, bb:$dest)]>;
def BRHZ:
RI16Form<0b001000100, (outs), (ins R16C:$rT, brtarget:$dest),
"brhz\t$rT,$dest",
BranchResolv,
[/* no pattern */]>;
/*
def BINZ:
BICondForm<0b10010100100, "binz\t$rA, $func",
[(SPUbinz R32C:$rA, R32C:$func)]>;
def BIZ:
BICondForm<0b00010100100, "biz\t$rA, $func",
[(SPUbiz R32C:$rA, R32C:$func)]>;
*/
}
def : Pat<(brcond (i16 (seteq R16C:$rA, 0)), bb:$dest),
(BRHZ R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i16 (setne R16C:$rA, 0)), bb:$dest),
(BRHNZ R16C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
(BRZ R32C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (setne R32C:$rA, 0)), bb:$dest),
(BRZ R32C:$rA, bb:$dest)>;
let isTerminator = 1, isBarrier = 1 in {
let isReturn = 1 in {
def RET:
RETForm<"bi\t$$lr", [(retflag)]>;
}
}
//===----------------------------------------------------------------------===//
// Various brcond predicates:
//===----------------------------------------------------------------------===//
/*
def : Pat<(brcond (i32 (seteq R32C:$rA, 0)), bb:$dest),
(BRZ R32C:$rA, bb:$dest)>;
def : Pat<(brcond (i32 (seteq R32C:$rA, R32C:$rB)), bb:$dest),
(BRNZ (CEQr32 R32C:$rA, R32C:$rB), bb:$dest)>;
def : Pat<(brcond (i16 (seteq R16C:$rA, i16ImmSExt10:$val)), bb:$dest),
(BRHNZ (CEQHIr16 R16C:$rA, i16ImmSExt10:$val), bb:$dest)>;
def : Pat<(brcond (i16 (seteq R16C:$rA, R16C:$rB)), bb:$dest),
(BRHNZ (CEQHr16 R16C:$rA, R16C:$rB), bb:$dest)>;
*/
//===----------------------------------------------------------------------===//
// Single precision floating point instructions
//===----------------------------------------------------------------------===//
def FAv4f32:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fa\t$rT, $rA, $rB", SPrecFP,
[(set (v4f32 VECREG:$rT), (fadd (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;
def FAf32 :
RRForm<0b00100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fa\t$rT, $rA, $rB", SPrecFP,
[(set R32FP:$rT, (fadd R32FP:$rA, R32FP:$rB))]>;
def FSv4f32:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fs\t$rT, $rA, $rB", SPrecFP,
[(set (v4f32 VECREG:$rT), (fsub (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)))]>;
def FSf32 :
RRForm<0b10100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fs\t$rT, $rA, $rB", SPrecFP,
[(set R32FP:$rT, (fsub R32FP:$rA, R32FP:$rB))]>;
// Floating point reciprocal estimate
def FREv4f32 :
RRForm_1<0b00011101100, (outs VECREG:$rT), (ins VECREG:$rA),
"frest\t$rT, $rA", SPrecFP,
[(set (v4f32 VECREG:$rT), (SPUreciprocalEst (v4f32 VECREG:$rA)))]>;
def FREf32 :
RRForm_1<0b00011101100, (outs R32FP:$rT), (ins R32FP:$rA),
"frest\t$rT, $rA", SPrecFP,
[(set R32FP:$rT, (SPUreciprocalEst R32FP:$rA))]>;
// Floating point interpolate (used in conjunction with reciprocal estimate)
def FIv4f32 :
RRForm<0b00101011110, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fi\t$rT, $rA, $rB", SPrecFP,
[(set (v4f32 VECREG:$rT), (SPUinterpolate (v4f32 VECREG:$rA),
(v4f32 VECREG:$rB)))]>;
def FIf32 :
RRForm<0b00101011110, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fi\t$rT, $rA, $rB", SPrecFP,
[(set R32FP:$rT, (SPUinterpolate R32FP:$rA, R32FP:$rB))]>;
// Floating Compare Equal
def FCEQf32 :
RRForm<0b01000011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fceq\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setoeq R32FP:$rA, R32FP:$rB))]>;
def FCMEQf32 :
RRForm<0b01010011110, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcmeq\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setoeq (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
def FCGTf32 :
RRForm<0b01000011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcgt\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setogt R32FP:$rA, R32FP:$rB))]>;
def FCMGTf32 :
RRForm<0b01010011010, (outs R32C:$rT), (ins R32FP:$rA, R32FP:$rB),
"fcmgt\t$rT, $rA, $rB", SPrecFP,
[(set R32C:$rT, (setogt (fabs R32FP:$rA), (fabs R32FP:$rB)))]>;
// FP Status and Control Register Write
// Why isn't rT a don't care in the ISA?
// Should we create a special RRForm_3 for this guy and zero out the rT?
def FSCRWf32 :
RRForm_1<0b01011101110, (outs R32FP:$rT), (ins R32FP:$rA),
"fscrwr\t$rA", SPrecFP,
[/* This instruction requires an intrinsic. Note: rT is unused. */]>;
// FP Status and Control Register Read
def FSCRRf32 :
RRForm_2<0b01011101110, (outs R32FP:$rT), (ins),
"fscrrd\t$rT", SPrecFP,
[/* This instruction requires an intrinsic */]>;
// llvm instruction space
// How do these map onto cell instructions?
// fdiv rA rB
// frest rC rB # c = 1/b (both lines)
// fi rC rB rC
// fm rD rA rC # d = a * 1/b
// fnms rB rD rB rA # b = - (d * b - a) --should == 0 in a perfect world
// fma rB rB rC rD # b = b * c + d
// = -(d *b -a) * c + d
// = a * c - c ( a *b *c - a)
// fcopysign (???)
// Library calls:
// These llvm instructions will actually map to library calls.
// All that's needed, then, is to check that the appropriate library is
// imported and do a brsl to the proper function name.
// frem # fmod(x, y): x - (x/y) * y
// (Note: fmod(double, double), fmodf(float,float)
// fsqrt?
// fsin?
// fcos?
// Unimplemented SPU instruction space
// floating reciprocal absolute square root estimate (frsqest)
// The following are probably just intrinsics
// status and control register write
// status and control register read
//--------------------------------------
// Floating point multiply instructions
//--------------------------------------
def FMv4f32:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"fm\t$rT, $rA, $rB", SPrecFP,
[(set (v4f32 VECREG:$rT), (fmul (v4f32 VECREG:$rA),
(v4f32 VECREG:$rB)))]>;
def FMf32 :
RRForm<0b01100011010, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB),
"fm\t$rT, $rA, $rB", SPrecFP,
[(set R32FP:$rT, (fmul R32FP:$rA, R32FP:$rB))]>;
// Floating point multiply and add
// e.g. d = c + (a * b)
def FMAv4f32:
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fadd (v4f32 VECREG:$rC),
(fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB))))]>;
def FMAf32:
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fma\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT, (fadd R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
// FP multiply and subtract
// Subtracts value in rC from product
// res = a * b - c
def FMSv4f32 :
RRRForm<0b0111, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fsub (fmul (v4f32 VECREG:$rA), (v4f32 VECREG:$rB)),
(v4f32 VECREG:$rC)))]>;
def FMSf32 :
RRRForm<0b0111, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT,
(fsub (fmul R32FP:$rA, R32FP:$rB), R32FP:$rC))]>;
// Floating Negative Mulitply and Subtract
// Subtracts product from value in rC
// res = fneg(fms a b c)
// = - (a * b - c)
// = c - a * b
// NOTE: subtraction order
// fsub a b = a - b
// fs a b = b - a?
def FNMSf32 :
RRRForm<0b1101, (outs R32FP:$rT), (ins R32FP:$rA, R32FP:$rB, R32FP:$rC),
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set R32FP:$rT, (fsub R32FP:$rC, (fmul R32FP:$rA, R32FP:$rB)))]>;
def FNMSv4f32 :
RRRForm<0b1101, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"fnms\t$rT, $rA, $rB, $rC", SPrecFP,
[(set (v4f32 VECREG:$rT),
(fsub (v4f32 VECREG:$rC),
(fmul (v4f32 VECREG:$rA),
(v4f32 VECREG:$rB))))]>;
//--------------------------------------
// Floating Point Conversions
// Signed conversions:
def CSiFv4f32:
CVTIntFPForm<0b0101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"csflt\t$rT, $rA, 0", SPrecFP,
[(set (v4f32 VECREG:$rT), (sint_to_fp (v4i32 VECREG:$rA)))]>;
// Convert signed integer to floating point
def CSiFf32 :
CVTIntFPForm<0b0101101110, (outs R32FP:$rT), (ins R32C:$rA),
"csflt\t$rT, $rA, 0", SPrecFP,
[(set R32FP:$rT, (sint_to_fp R32C:$rA))]>;
// Convert unsigned into to float
def CUiFv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cuflt\t$rT, $rA, 0", SPrecFP,
[(set (v4f32 VECREG:$rT), (uint_to_fp (v4i32 VECREG:$rA)))]>;
def CUiFf32 :
CVTIntFPForm<0b1101101110, (outs R32FP:$rT), (ins R32C:$rA),
"cuflt\t$rT, $rA, 0", SPrecFP,
[(set R32FP:$rT, (uint_to_fp R32C:$rA))]>;
// Convert float to unsigned int
// Assume that scale = 0
def CFUiv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cfltu\t$rT, $rA, 0", SPrecFP,
[(set (v4i32 VECREG:$rT), (fp_to_uint (v4f32 VECREG:$rA)))]>;
def CFUif32 :
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
"cfltu\t$rT, $rA, 0", SPrecFP,
[(set R32C:$rT, (fp_to_uint R32FP:$rA))]>;
// Convert float to signed int
// Assume that scale = 0
def CFSiv4f32 :
CVTIntFPForm<0b1101101110, (outs VECREG:$rT), (ins VECREG:$rA),
"cflts\t$rT, $rA, 0", SPrecFP,
[(set (v4i32 VECREG:$rT), (fp_to_sint (v4f32 VECREG:$rA)))]>;
def CFSif32 :
CVTIntFPForm<0b1101101110, (outs R32C:$rT), (ins R32FP:$rA),
"cflts\t$rT, $rA, 0", SPrecFP,
[(set R32C:$rT, (fp_to_sint R32FP:$rA))]>;
//===----------------------------------------------------------------------==//
// Single<->Double precision conversions
//===----------------------------------------------------------------------==//
// NOTE: We use "vec" name suffix here to avoid confusion (e.g. input is a
// v4f32, output is v2f64--which goes in the name?)
// Floating point extend single to double
// NOTE: Not sure if passing in v4f32 to FESDvec is correct since it
// operates on two double-word slots (i.e. 1st and 3rd fp numbers
// are ignored).
def FESDvec :
RRForm_1<0b00011101110, (outs VECREG:$rT), (ins VECREG:$rA),
"fesd\t$rT, $rA", SPrecFP,
[(set (v2f64 VECREG:$rT), (fextend (v4f32 VECREG:$rA)))]>;
def FESDf32 :
RRForm_1<0b00011101110, (outs R64FP:$rT), (ins R32FP:$rA),
"fesd\t$rT, $rA", SPrecFP,
[(set R64FP:$rT, (fextend R32FP:$rA))]>;
// Floating point round double to single
//def FRDSvec :
// RRForm_1<0b10011101110, (outs VECREG:$rT), (ins VECREG:$rA),
// "frds\t$rT, $rA,", SPrecFP,
// [(set (v4f32 R32FP:$rT), (fround (v2f64 R64FP:$rA)))]>;
def FRDSf64 :
RRForm_1<0b10011101110, (outs R32FP:$rT), (ins R64FP:$rA),
"frds\t$rT, $rA", SPrecFP,
[(set R32FP:$rT, (fround R64FP:$rA))]>;
//ToDo include anyextend?
//===----------------------------------------------------------------------==//
// Double precision floating point instructions
//===----------------------------------------------------------------------==//
def FAf64 :
RRForm<0b00110011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfa\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fadd R64FP:$rA, R64FP:$rB))]>;
def FAv2f64 :
RRForm<0b00110011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfa\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT), (fadd (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FSf64 :
RRForm<0b10100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfs\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fsub R64FP:$rA, R64FP:$rB))]>;
def FSv2f64 :
RRForm<0b10100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfs\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fsub (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FMf64 :
RRForm<0b01100011010, (outs R64FP:$rT), (ins R64FP:$rA, R64FP:$rB),
"dfm\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fmul R64FP:$rA, R64FP:$rB))]>;
def FMv2f64:
RRForm<0b00100011010, (outs VECREG:$rT), (ins VECREG:$rA, VECREG:$rB),
"dfm\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)))]>;
def FMAf64:
RRForm<0b00111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfma\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMAv2f64:
RRForm<0b00111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfma\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fadd (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMSf64 :
RRForm<0b10111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfms\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FMSv2f64 :
RRForm<0b10111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfms\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
(v2f64 VECREG:$rC)))]>;
// FNMS: - (a * b - c)
// - (a * b) + c => c - (a * b)
def FNMSf64 :
RRForm<0b01111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfnms\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fsub R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB)))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def : Pat<(fneg (fsub (fmul R64FP:$rA, R64FP:$rB), R64FP:$rC)),
(FNMSf64 R64FP:$rA, R64FP:$rB, R64FP:$rC)>;
def FNMSv2f64 :
RRForm<0b01111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfnms\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fsub (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA),
(v2f64 VECREG:$rB))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def : Pat<(fneg (fsub (fmul (v2f64 VECREG:$rA), (v2f64 VECREG:$rB)),
(v2f64 VECREG:$rC))),
(FNMSv2f64 VECREG:$rA, VECREG:$rB, VECREG:$rC)>;
// - (a * b + c)
// - (a * b) - c
def FNMAf64 :
RRForm<0b11111010110, (outs R64FP:$rT),
(ins R64FP:$rA, R64FP:$rB, R64FP:$rC),
"dfnma\t$rT, $rA, $rB", DPrecFP,
[(set R64FP:$rT, (fneg (fadd R64FP:$rC, (fmul R64FP:$rA, R64FP:$rB))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
def FNMAv2f64 :
RRForm<0b11111010110, (outs VECREG:$rT),
(ins VECREG:$rA, VECREG:$rB, VECREG:$rC),
"dfnma\t$rT, $rA, $rB", DPrecFP,
[(set (v2f64 VECREG:$rT),
(fneg (fadd (v2f64 VECREG:$rC),
(fmul (v2f64 VECREG:$rA),
(v2f64 VECREG:$rB)))))]>,
RegConstraint<"$rC = $rT">,
NoEncode<"$rC">;
//===----------------------------------------------------------------------==//
// Floating point negation and absolute value
//===----------------------------------------------------------------------==//
def : Pat<(fneg (v4f32 VECREG:$rA)),
(XORfnegvec (v4f32 VECREG:$rA),
(v4f32 (ILHUv4i32 0x8000)))>;
def : Pat<(fneg R32FP:$rA),
(XORfneg32 R32FP:$rA, (ILHUr32 0x8000))>;
def : Pat<(fneg (v2f64 VECREG:$rA)),
(XORfnegvec (v2f64 VECREG:$rA),
(v2f64 (ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80)))>;
def : Pat<(fneg R64FP:$rA),
(XORfneg64 R64FP:$rA,
(ANDBIv16i8 (FSMBIv16i8 0x8080), 0x80))>;
// Floating point absolute value
def : Pat<(fabs R32FP:$rA),
(ANDfabs32 R32FP:$rA, (IOHLr32 (ILHUr32 0x7fff), 0xffff))>;
def : Pat<(fabs (v4f32 VECREG:$rA)),
(ANDfabsvec (v4f32 VECREG:$rA),
(v4f32 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;
def : Pat<(fabs R64FP:$rA),
(ANDfabs64 R64FP:$rA, (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f))>;
def : Pat<(fabs (v2f64 VECREG:$rA)),
(ANDfabsvec (v2f64 VECREG:$rA),
(v2f64 (ANDBIv16i8 (FSMBIv16i8 0xffff), 0x7f)))>;
//===----------------------------------------------------------------------===//
// Execution, Load NOP (execute NOPs belong in even pipeline, load NOPs belong
// in the odd pipeline)
//===----------------------------------------------------------------------===//
def ENOP : I<(outs), (ins), "enop", ExecNOP> {
let Pattern = [];
let Inst{0-10} = 0b10000000010;
let Inst{11-17} = 0;
let Inst{18-24} = 0;
let Inst{25-31} = 0;
}
def LNOP : I<(outs), (ins), "lnop", LoadNOP> {
let Pattern = [];
let Inst{0-10} = 0b10000000000;
let Inst{11-17} = 0;
let Inst{18-24} = 0;
let Inst{25-31} = 0;
}
//===----------------------------------------------------------------------===//
// Bit conversions (type conversions between vector/packed types)
// NOTE: Promotions are handled using the XS* instructions. Truncation
// is not handled.
//===----------------------------------------------------------------------===//
def : Pat<(v16i8 (bitconvert (v8i16 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4i32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2i64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v4f32 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v16i8 (bitconvert (v2f64 VECREG:$src))), (v16i8 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v16i8 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4i32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2i64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v4f32 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v8i16 (bitconvert (v2f64 VECREG:$src))), (v8i16 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v16i8 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v8i16 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2i64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v4f32 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v4i32 (bitconvert (v2f64 VECREG:$src))), (v4i32 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v16i8 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v8i16 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4i32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v4f32 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v2i64 (bitconvert (v2f64 VECREG:$src))), (v2i64 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v16i8 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v8i16 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2i64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v4i32 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v4f32 (bitconvert (v2f64 VECREG:$src))), (v4f32 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v16i8 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v8i16 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v4i32 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2i64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(v2f64 (bitconvert (v2f64 VECREG:$src))), (v2f64 VECREG:$src)>;
def : Pat<(f32 (bitconvert (i32 R32C:$src))), (f32 R32FP:$src)>;
//===----------------------------------------------------------------------===//
// Instruction patterns:
//===----------------------------------------------------------------------===//
// General 32-bit constants:
def : Pat<(i32 imm:$imm),
(IOHLr32 (ILHUr32 (HI16 imm:$imm)), (LO16 imm:$imm))>;
// Single precision float constants:
def : Pat<(SPUFPconstant (f32 fpimm:$imm)),
(IOHLf32 (ILHUf32 (HI16_f32 fpimm:$imm)), (LO16_f32 fpimm:$imm))>;
// General constant 32-bit vectors
def : Pat<(v4i32 v4i32Imm:$imm),
(IOHLvec (v4i32 (ILHUv4i32 (HI16_vec v4i32Imm:$imm))),
(LO16_vec v4i32Imm:$imm))>;
//===----------------------------------------------------------------------===//
// Call instruction patterns:
//===----------------------------------------------------------------------===//
// Return void
def : Pat<(ret),
(RET)>;
//===----------------------------------------------------------------------===//
// Zero/Any/Sign extensions
//===----------------------------------------------------------------------===//
// zext 1->32: Zero extend i1 to i32
def : Pat<(SPUextract_i1_zext R32C:$rSrc),
(ANDIr32 R32C:$rSrc, 0x1)>;
// sext 8->32: Sign extend bytes to words
def : Pat<(sext_inreg R32C:$rSrc, i8),
(XSHWr32 (XSBHr32 R32C:$rSrc))>;
def : Pat<(SPUextract_i8_sext VECREG:$rSrc),
(XSHWr32 (XSBHr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc),
(v4i32 VECREG:$rSrc))))>;
def : Pat<(SPUextract_i8_zext VECREG:$rSrc),
(ANDIr32 (ORi32_v4i32 (v4i32 VECREG:$rSrc), (v4i32 VECREG:$rSrc)),
0xff)>;
// zext 16->32: Zero extend halfwords to words (note that we have to juggle the
// 0xffff constant since it will not fit into an immediate.)
def : Pat<(i32 (zext R16C:$rSrc)),
(AND2To4 R16C:$rSrc, (ILAr32 0xffff))>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xf))),
(ANDI2To4 R16C:$rSrc, 0xf)>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xff))),
(ANDI2To4 R16C:$rSrc, 0xff)>;
def : Pat<(i32 (zext (and R16C:$rSrc, 0xfff))),
(ANDI2To4 R16C:$rSrc, 0xfff)>;
// anyext 16->32: Extend 16->32 bits, irrespective of sign
def : Pat<(i32 (anyext R16C:$rSrc)),
(ORI2To4 R16C:$rSrc, 0)>;
//===----------------------------------------------------------------------===//
// Address translation: SPU, like PPC, has to split addresses into high and
// low parts in order to load them into a register.
//===----------------------------------------------------------------------===//
def : Pat<(SPUhi tglobaladdr:$in, 0), (ILHUhi tglobaladdr:$in)>;
def : Pat<(SPUlo tglobaladdr:$in, 0), (ILAlo tglobaladdr:$in)>;
def : Pat<(SPUdform tglobaladdr:$in, imm:$imm), (ILAlsa tglobaladdr:$in)>;
def : Pat<(SPUhi tconstpool:$in , 0), (ILHUhi tconstpool:$in)>;
def : Pat<(SPUlo tconstpool:$in , 0), (ILAlo tconstpool:$in)>;
def : Pat<(SPUdform tconstpool:$in, imm:$imm), (ILAlsa tconstpool:$in)>;
def : Pat<(SPUhi tjumptable:$in, 0), (ILHUhi tjumptable:$in)>;
def : Pat<(SPUlo tjumptable:$in, 0), (ILAlo tjumptable:$in)>;
def : Pat<(SPUdform tjumptable:$in, imm:$imm), (ILAlsa tjumptable:$in)>;
// Force load of global address to a register. These forms show up in
// SPUISD::DFormAddr pseudo instructions:
/*
def : Pat<(add tglobaladdr:$in, 0), (ILAlsa tglobaladdr:$in)>;
def : Pat<(add tconstpool:$in, 0), (ILAlsa tglobaladdr:$in)>;
def : Pat<(add tjumptable:$in, 0), (ILAlsa tglobaladdr:$in)>;
*/
// Instrinsics:
include "CellSDKIntrinsics.td"