llvm/lib/Transforms/Scalar/IndVarSimplify.cpp

779 lines
30 KiB
C++
Raw Normal View History

//===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This transformation analyzes and transforms the induction variables (and
// computations derived from them) into simpler forms suitable for subsequent
// analysis and transformation.
//
// This transformation makes the following changes to each loop with an
// identifiable induction variable:
// 1. All loops are transformed to have a SINGLE canonical induction variable
// which starts at zero and steps by one.
// 2. The canonical induction variable is guaranteed to be the first PHI node
// in the loop header block.
// 3. The canonical induction variable is guaranteed to be in a wide enough
// type so that IV expressions need not be (directly) zero-extended or
// sign-extended.
// 4. Any pointer arithmetic recurrences are raised to use array subscripts.
//
// If the trip count of a loop is computable, this pass also makes the following
// changes:
// 1. The exit condition for the loop is canonicalized to compare the
// induction value against the exit value. This turns loops like:
// 'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
// 2. Any use outside of the loop of an expression derived from the indvar
// is changed to compute the derived value outside of the loop, eliminating
// the dependence on the exit value of the induction variable. If the only
// purpose of the loop is to compute the exit value of some derived
// expression, this transformation will make the loop dead.
//
// This transformation should be followed by strength reduction after all of the
// desired loop transformations have been performed.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "indvars"
#include "llvm/Transforms/Scalar.h"
#include "llvm/BasicBlock.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/LLVMContext.h"
#include "llvm/Type.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
using namespace llvm;
STATISTIC(NumRemoved , "Number of aux indvars removed");
STATISTIC(NumInserted, "Number of canonical indvars added");
STATISTIC(NumReplaced, "Number of exit values replaced");
STATISTIC(NumLFTR , "Number of loop exit tests replaced");
namespace {
class IndVarSimplify : public LoopPass {
IVUsers *IU;
LoopInfo *LI;
ScalarEvolution *SE;
DominatorTree *DT;
bool Changed;
public:
static char ID; // Pass identification, replacement for typeid
IndVarSimplify() : LoopPass(&ID) {}
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addRequired<ScalarEvolution>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequiredID(LCSSAID);
AU.addRequired<IVUsers>();
AU.addPreserved<ScalarEvolution>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreservedID(LCSSAID);
AU.addPreserved<IVUsers>();
AU.setPreservesCFG();
}
private:
void RewriteNonIntegerIVs(Loop *L);
ICmpInst *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
SCEVExpander &Rewriter);
void RewriteLoopExitValues(Loop *L, const SCEV *BackedgeTakenCount,
SCEVExpander &Rewriter);
void RewriteIVExpressions(Loop *L, const Type *LargestType,
SCEVExpander &Rewriter);
void SinkUnusedInvariants(Loop *L);
void HandleFloatingPointIV(Loop *L, PHINode *PH);
};
}
char IndVarSimplify::ID = 0;
static RegisterPass<IndVarSimplify>
X("indvars", "Canonicalize Induction Variables");
Pass *llvm::createIndVarSimplifyPass() {
return new IndVarSimplify();
}
/// LinearFunctionTestReplace - This method rewrites the exit condition of the
/// loop to be a canonical != comparison against the incremented loop induction
/// variable. This pass is able to rewrite the exit tests of any loop where the
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
/// is actually a much broader range than just linear tests.
ICmpInst *IndVarSimplify::LinearFunctionTestReplace(Loop *L,
const SCEV *BackedgeTakenCount,
Value *IndVar,
BasicBlock *ExitingBlock,
BranchInst *BI,
SCEVExpander &Rewriter) {
// If the exiting block is not the same as the backedge block, we must compare
// against the preincremented value, otherwise we prefer to compare against
// the post-incremented value.
Value *CmpIndVar;
const SCEV *RHS = BackedgeTakenCount;
if (ExitingBlock == L->getLoopLatch()) {
// Add one to the "backedge-taken" count to get the trip count.
// If this addition may overflow, we have to be more pessimistic and
// cast the induction variable before doing the add.
const SCEV *Zero = SE->getIntegerSCEV(0, BackedgeTakenCount->getType());
const SCEV *N =
SE->getAddExpr(BackedgeTakenCount,
SE->getIntegerSCEV(1, BackedgeTakenCount->getType()));
if ((isa<SCEVConstant>(N) && !N->isZero()) ||
SE->isLoopGuardedByCond(L, ICmpInst::ICMP_NE, N, Zero)) {
// No overflow. Cast the sum.
RHS = SE->getTruncateOrZeroExtend(N, IndVar->getType());
} else {
// Potential overflow. Cast before doing the add.
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
RHS = SE->getAddExpr(RHS,
SE->getIntegerSCEV(1, IndVar->getType()));
}
// The BackedgeTaken expression contains the number of times that the
// backedge branches to the loop header. This is one less than the
// number of times the loop executes, so use the incremented indvar.
CmpIndVar = L->getCanonicalInductionVariableIncrement();
} else {
// We have to use the preincremented value...
RHS = SE->getTruncateOrZeroExtend(BackedgeTakenCount,
IndVar->getType());
CmpIndVar = IndVar;
}
// Expand the code for the iteration count.
assert(RHS->isLoopInvariant(L) &&
"Computed iteration count is not loop invariant!");
Value *ExitCnt = Rewriter.expandCodeFor(RHS, IndVar->getType(), BI);
// Insert a new icmp_ne or icmp_eq instruction before the branch.
ICmpInst::Predicate Opcode;
if (L->contains(BI->getSuccessor(0)))
Opcode = ICmpInst::ICMP_NE;
else
Opcode = ICmpInst::ICMP_EQ;
DEBUG(errs() << "INDVARS: Rewriting loop exit condition to:\n"
<< " LHS:" << *CmpIndVar << '\n'
<< " op:\t"
<< (Opcode == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
<< " RHS:\t" << *RHS << "\n");
ICmpInst *Cond = new ICmpInst(BI, Opcode, CmpIndVar, ExitCnt, "exitcond");
Instruction *OrigCond = cast<Instruction>(BI->getCondition());
// It's tempting to use replaceAllUsesWith here to fully replace the old
// comparison, but that's not immediately safe, since users of the old
// comparison may not be dominated by the new comparison. Instead, just
// update the branch to use the new comparison; in the common case this
// will make old comparison dead.
BI->setCondition(Cond);
RecursivelyDeleteTriviallyDeadInstructions(OrigCond);
++NumLFTR;
Changed = true;
return Cond;
}
/// RewriteLoopExitValues - Check to see if this loop has a computable
/// loop-invariant execution count. If so, this means that we can compute the
/// final value of any expressions that are recurrent in the loop, and
/// substitute the exit values from the loop into any instructions outside of
/// the loop that use the final values of the current expressions.
///
/// This is mostly redundant with the regular IndVarSimplify activities that
/// happen later, except that it's more powerful in some cases, because it's
/// able to brute-force evaluate arbitrary instructions as long as they have
/// constant operands at the beginning of the loop.
void IndVarSimplify::RewriteLoopExitValues(Loop *L,
const SCEV *BackedgeTakenCount,
SCEVExpander &Rewriter) {
// Verify the input to the pass in already in LCSSA form.
assert(L->isLCSSAForm());
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getUniqueExitBlocks(ExitBlocks);
// Find all values that are computed inside the loop, but used outside of it.
// Because of LCSSA, these values will only occur in LCSSA PHI Nodes. Scan
// the exit blocks of the loop to find them.
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
BasicBlock *ExitBB = ExitBlocks[i];
// If there are no PHI nodes in this exit block, then no values defined
// inside the loop are used on this path, skip it.
PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
if (!PN) continue;
unsigned NumPreds = PN->getNumIncomingValues();
// Iterate over all of the PHI nodes.
BasicBlock::iterator BBI = ExitBB->begin();
while ((PN = dyn_cast<PHINode>(BBI++))) {
if (PN->use_empty())
continue; // dead use, don't replace it
// Iterate over all of the values in all the PHI nodes.
for (unsigned i = 0; i != NumPreds; ++i) {
// If the value being merged in is not integer or is not defined
// in the loop, skip it.
Value *InVal = PN->getIncomingValue(i);
if (!isa<Instruction>(InVal) ||
// SCEV only supports integer expressions for now.
(!isa<IntegerType>(InVal->getType()) &&
!isa<PointerType>(InVal->getType())))
continue;
// If this pred is for a subloop, not L itself, skip it.
if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
continue; // The Block is in a subloop, skip it.
// Check that InVal is defined in the loop.
Instruction *Inst = cast<Instruction>(InVal);
if (!L->contains(Inst->getParent()))
continue;
// Okay, this instruction has a user outside of the current loop
// and varies predictably *inside* the loop. Evaluate the value it
// contains when the loop exits, if possible.
const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
if (!ExitValue->isLoopInvariant(L))
continue;
Changed = true;
++NumReplaced;
Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
DEBUG(errs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
<< " LoopVal = " << *Inst << "\n");
PN->setIncomingValue(i, ExitVal);
// If this instruction is dead now, delete it.
RecursivelyDeleteTriviallyDeadInstructions(Inst);
if (NumPreds == 1) {
// Completely replace a single-pred PHI. This is safe, because the
// NewVal won't be variant in the loop, so we don't need an LCSSA phi
// node anymore.
PN->replaceAllUsesWith(ExitVal);
RecursivelyDeleteTriviallyDeadInstructions(PN);
}
}
if (NumPreds != 1) {
// Clone the PHI and delete the original one. This lets IVUsers and
// any other maps purge the original user from their records.
PHINode *NewPN = cast<PHINode>(PN->clone());
NewPN->takeName(PN);
NewPN->insertBefore(PN);
PN->replaceAllUsesWith(NewPN);
PN->eraseFromParent();
}
}
}
}
void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
// First step. Check to see if there are any floating-point recurrences.
// If there are, change them into integer recurrences, permitting analysis by
// the SCEV routines.
//
BasicBlock *Header = L->getHeader();
SmallVector<WeakVH, 8> PHIs;
for (BasicBlock::iterator I = Header->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I)
PHIs.push_back(PN);
for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i]))
HandleFloatingPointIV(L, PN);
// If the loop previously had floating-point IV, ScalarEvolution
// may not have been able to compute a trip count. Now that we've done some
// re-writing, the trip count may be computable.
if (Changed)
SE->forgetLoop(L);
}
bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
IU = &getAnalysis<IVUsers>();
LI = &getAnalysis<LoopInfo>();
SE = &getAnalysis<ScalarEvolution>();
DT = &getAnalysis<DominatorTree>();
Changed = false;
// If there are any floating-point recurrences, attempt to
// transform them to use integer recurrences.
RewriteNonIntegerIVs(L);
BasicBlock *ExitingBlock = L->getExitingBlock(); // may be null
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
// Create a rewriter object which we'll use to transform the code with.
SCEVExpander Rewriter(*SE);
// Check to see if this loop has a computable loop-invariant execution count.
// If so, this means that we can compute the final value of any expressions
// that are recurrent in the loop, and substitute the exit values from the
// loop into any instructions outside of the loop that use the final values of
// the current expressions.
//
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
RewriteLoopExitValues(L, BackedgeTakenCount, Rewriter);
// Compute the type of the largest recurrence expression, and decide whether
// a canonical induction variable should be inserted.
const Type *LargestType = 0;
bool NeedCannIV = false;
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
LargestType = BackedgeTakenCount->getType();
LargestType = SE->getEffectiveSCEVType(LargestType);
// If we have a known trip count and a single exit block, we'll be
// rewriting the loop exit test condition below, which requires a
// canonical induction variable.
if (ExitingBlock)
NeedCannIV = true;
}
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
const SCEV *Stride = IU->StrideOrder[i];
const Type *Ty = SE->getEffectiveSCEVType(Stride->getType());
if (!LargestType ||
SE->getTypeSizeInBits(Ty) >
SE->getTypeSizeInBits(LargestType))
LargestType = Ty;
std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
if (!SI->second->Users.empty())
NeedCannIV = true;
}
// Now that we know the largest of of the induction variable expressions
// in this loop, insert a canonical induction variable of the largest size.
Value *IndVar = 0;
if (NeedCannIV) {
// Check to see if the loop already has a canonical-looking induction
// variable. If one is present and it's wider than the planned canonical
// induction variable, temporarily remove it, so that the Rewriter
// doesn't attempt to reuse it.
PHINode *OldCannIV = L->getCanonicalInductionVariable();
if (OldCannIV) {
if (SE->getTypeSizeInBits(OldCannIV->getType()) >
SE->getTypeSizeInBits(LargestType))
OldCannIV->removeFromParent();
else
OldCannIV = 0;
}
IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L, LargestType);
++NumInserted;
Changed = true;
DEBUG(errs() << "INDVARS: New CanIV: " << *IndVar << '\n');
// Now that the official induction variable is established, reinsert
// the old canonical-looking variable after it so that the IR remains
// consistent. It will be deleted as part of the dead-PHI deletion at
// the end of the pass.
if (OldCannIV)
OldCannIV->insertAfter(cast<Instruction>(IndVar));
}
// If we have a trip count expression, rewrite the loop's exit condition
// using it. We can currently only handle loops with a single exit.
ICmpInst *NewICmp = 0;
if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && ExitingBlock) {
assert(NeedCannIV &&
"LinearFunctionTestReplace requires a canonical induction variable");
// Can't rewrite non-branch yet.
if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()))
NewICmp = LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
ExitingBlock, BI, Rewriter);
}
// Rewrite IV-derived expressions. Clears the rewriter cache.
RewriteIVExpressions(L, LargestType, Rewriter);
// The Rewriter may not be used from this point on.
// Loop-invariant instructions in the preheader that aren't used in the
// loop may be sunk below the loop to reduce register pressure.
SinkUnusedInvariants(L);
// For completeness, inform IVUsers of the IV use in the newly-created
// loop exit test instruction.
if (NewICmp)
IU->AddUsersIfInteresting(cast<Instruction>(NewICmp->getOperand(0)));
// Clean up dead instructions.
DeleteDeadPHIs(L->getHeader());
// Check a post-condition.
assert(L->isLCSSAForm() && "Indvars did not leave the loop in lcssa form!");
return Changed;
}
void IndVarSimplify::RewriteIVExpressions(Loop *L, const Type *LargestType,
SCEVExpander &Rewriter) {
SmallVector<WeakVH, 16> DeadInsts;
// Rewrite all induction variable expressions in terms of the canonical
// induction variable.
//
// If there were induction variables of other sizes or offsets, manually
// add the offsets to the primary induction variable and cast, avoiding
// the need for the code evaluation methods to insert induction variables
// of different sizes.
for (unsigned i = 0, e = IU->StrideOrder.size(); i != e; ++i) {
const SCEV *Stride = IU->StrideOrder[i];
std::map<const SCEV *, IVUsersOfOneStride *>::iterator SI =
IU->IVUsesByStride.find(IU->StrideOrder[i]);
assert(SI != IU->IVUsesByStride.end() && "Stride doesn't exist!");
ilist<IVStrideUse> &List = SI->second->Users;
for (ilist<IVStrideUse>::iterator UI = List.begin(),
E = List.end(); UI != E; ++UI) {
Value *Op = UI->getOperandValToReplace();
const Type *UseTy = Op->getType();
Instruction *User = UI->getUser();
// Compute the final addrec to expand into code.
const SCEV *AR = IU->getReplacementExpr(*UI);
// FIXME: It is an extremely bad idea to indvar substitute anything more
// complex than affine induction variables. Doing so will put expensive
// polynomial evaluations inside of the loop, and the str reduction pass
// currently can only reduce affine polynomials. For now just disable
// indvar subst on anything more complex than an affine addrec, unless
// it can be expanded to a trivial value.
if (!AR->isLoopInvariant(L) && !Stride->isLoopInvariant(L))
continue;
// Determine the insertion point for this user. By default, insert
// immediately before the user. The SCEVExpander class will automatically
// hoist loop invariants out of the loop. For PHI nodes, there may be
// multiple uses, so compute the nearest common dominator for the
// incoming blocks.
Instruction *InsertPt = User;
if (PHINode *PHI = dyn_cast<PHINode>(InsertPt))
for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i)
if (PHI->getIncomingValue(i) == Op) {
if (InsertPt == User)
InsertPt = PHI->getIncomingBlock(i)->getTerminator();
else
InsertPt =
DT->findNearestCommonDominator(InsertPt->getParent(),
PHI->getIncomingBlock(i))
->getTerminator();
}
// Now expand it into actual Instructions and patch it into place.
Value *NewVal = Rewriter.expandCodeFor(AR, UseTy, InsertPt);
// Patch the new value into place.
if (Op->hasName())
NewVal->takeName(Op);
User->replaceUsesOfWith(Op, NewVal);
UI->setOperandValToReplace(NewVal);
DEBUG(errs() << "INDVARS: Rewrote IV '" << *AR << "' " << *Op << '\n'
<< " into = " << *NewVal << "\n");
++NumRemoved;
Changed = true;
// The old value may be dead now.
DeadInsts.push_back(Op);
}
}
// Clear the rewriter cache, because values that are in the rewriter's cache
// can be deleted in the loop below, causing the AssertingVH in the cache to
// trigger.
Rewriter.clear();
// Now that we're done iterating through lists, clean up any instructions
// which are now dead.
while (!DeadInsts.empty()) {
Instruction *Inst = dyn_cast_or_null<Instruction>(DeadInsts.pop_back_val());
if (Inst)
RecursivelyDeleteTriviallyDeadInstructions(Inst);
}
}
/// If there's a single exit block, sink any loop-invariant values that
/// were defined in the preheader but not used inside the loop into the
/// exit block to reduce register pressure in the loop.
void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
BasicBlock *ExitBlock = L->getExitBlock();
if (!ExitBlock) return;
BasicBlock *Preheader = L->getLoopPreheader();
if (!Preheader) return;
Instruction *InsertPt = ExitBlock->getFirstNonPHI();
BasicBlock::iterator I = Preheader->getTerminator();
while (I != Preheader->begin()) {
--I;
// New instructions were inserted at the end of the preheader.
if (isa<PHINode>(I))
break;
// Don't move instructions which might have side effects, since the side
// effects need to complete before instructions inside the loop. Also
// don't move instructions which might read memory, since the loop may
// modify memory. Note that it's okay if the instruction might have
// undefined behavior: LoopSimplify guarantees that the preheader
// dominates the exit block.
if (I->mayHaveSideEffects() || I->mayReadFromMemory())
continue;
// Don't sink static AllocaInsts out of the entry block, which would
// turn them into dynamic allocas!
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (AI->isStaticAlloca())
continue;
// Determine if there is a use in or before the loop (direct or
// otherwise).
bool UsedInLoop = false;
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI) {
BasicBlock *UseBB = cast<Instruction>(UI)->getParent();
if (PHINode *P = dyn_cast<PHINode>(UI)) {
unsigned i =
PHINode::getIncomingValueNumForOperand(UI.getOperandNo());
UseBB = P->getIncomingBlock(i);
}
if (UseBB == Preheader || L->contains(UseBB)) {
UsedInLoop = true;
break;
}
}
// If there is, the def must remain in the preheader.
if (UsedInLoop)
continue;
// Otherwise, sink it to the exit block.
Instruction *ToMove = I;
bool Done = false;
if (I != Preheader->begin())
--I;
else
Done = true;
ToMove->moveBefore(InsertPt);
if (Done)
break;
InsertPt = ToMove;
}
}
/// Return true if it is OK to use SIToFPInst for an inducation variable
/// with given inital and exit values.
static bool useSIToFPInst(ConstantFP &InitV, ConstantFP &ExitV,
uint64_t intIV, uint64_t intEV) {
if (InitV.getValueAPF().isNegative() || ExitV.getValueAPF().isNegative())
return true;
// If the iteration range can be handled by SIToFPInst then use it.
APInt Max = APInt::getSignedMaxValue(32);
if (Max.getZExtValue() > static_cast<uint64_t>(abs64(intEV - intIV)))
return true;
return false;
}
/// convertToInt - Convert APF to an integer, if possible.
static bool convertToInt(const APFloat &APF, uint64_t *intVal) {
bool isExact = false;
if (&APF.getSemantics() == &APFloat::PPCDoubleDouble)
return false;
if (APF.convertToInteger(intVal, 32, APF.isNegative(),
APFloat::rmTowardZero, &isExact)
!= APFloat::opOK)
return false;
if (!isExact)
return false;
return true;
}
/// HandleFloatingPointIV - If the loop has floating induction variable
/// then insert corresponding integer induction variable if possible.
/// For example,
/// for(double i = 0; i < 10000; ++i)
/// bar(i)
/// is converted into
/// for(int i = 0; i < 10000; ++i)
/// bar((double)i);
///
void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PH) {
unsigned IncomingEdge = L->contains(PH->getIncomingBlock(0));
unsigned BackEdge = IncomingEdge^1;
// Check incoming value.
ConstantFP *InitValue = dyn_cast<ConstantFP>(PH->getIncomingValue(IncomingEdge));
if (!InitValue) return;
uint64_t newInitValue =
Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(InitValue->getValueAPF(), &newInitValue))
return;
// Check IV increment. Reject this PH if increement operation is not
// an add or increment value can not be represented by an integer.
BinaryOperator *Incr =
dyn_cast<BinaryOperator>(PH->getIncomingValue(BackEdge));
if (!Incr) return;
if (Incr->getOpcode() != Instruction::FAdd) return;
ConstantFP *IncrValue = NULL;
unsigned IncrVIndex = 1;
if (Incr->getOperand(1) == PH)
IncrVIndex = 0;
IncrValue = dyn_cast<ConstantFP>(Incr->getOperand(IncrVIndex));
if (!IncrValue) return;
uint64_t newIncrValue =
Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(IncrValue->getValueAPF(), &newIncrValue))
return;
// Check Incr uses. One user is PH and the other users is exit condition used
// by the conditional terminator.
Value::use_iterator IncrUse = Incr->use_begin();
Instruction *U1 = cast<Instruction>(IncrUse++);
if (IncrUse == Incr->use_end()) return;
Instruction *U2 = cast<Instruction>(IncrUse++);
if (IncrUse != Incr->use_end()) return;
// Find exit condition.
FCmpInst *EC = dyn_cast<FCmpInst>(U1);
if (!EC)
EC = dyn_cast<FCmpInst>(U2);
if (!EC) return;
if (BranchInst *BI = dyn_cast<BranchInst>(EC->getParent()->getTerminator())) {
if (!BI->isConditional()) return;
if (BI->getCondition() != EC) return;
}
// Find exit value. If exit value can not be represented as an interger then
// do not handle this floating point PH.
ConstantFP *EV = NULL;
unsigned EVIndex = 1;
if (EC->getOperand(1) == Incr)
EVIndex = 0;
EV = dyn_cast<ConstantFP>(EC->getOperand(EVIndex));
if (!EV) return;
uint64_t intEV = Type::getInt32Ty(PH->getContext())->getPrimitiveSizeInBits();
if (!convertToInt(EV->getValueAPF(), &intEV))
return;
// Find new predicate for integer comparison.
CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
switch (EC->getPredicate()) {
case CmpInst::FCMP_OEQ:
case CmpInst::FCMP_UEQ:
NewPred = CmpInst::ICMP_EQ;
break;
case CmpInst::FCMP_OGT:
case CmpInst::FCMP_UGT:
NewPred = CmpInst::ICMP_UGT;
break;
case CmpInst::FCMP_OGE:
case CmpInst::FCMP_UGE:
NewPred = CmpInst::ICMP_UGE;
break;
case CmpInst::FCMP_OLT:
case CmpInst::FCMP_ULT:
NewPred = CmpInst::ICMP_ULT;
break;
case CmpInst::FCMP_OLE:
case CmpInst::FCMP_ULE:
NewPred = CmpInst::ICMP_ULE;
break;
default:
break;
}
if (NewPred == CmpInst::BAD_ICMP_PREDICATE) return;
// Insert new integer induction variable.
PHINode *NewPHI = PHINode::Create(Type::getInt32Ty(PH->getContext()),
PH->getName()+".int", PH);
NewPHI->addIncoming(ConstantInt::get(Type::getInt32Ty(PH->getContext()),
newInitValue),
PH->getIncomingBlock(IncomingEdge));
Value *NewAdd = BinaryOperator::CreateAdd(NewPHI,
ConstantInt::get(Type::getInt32Ty(PH->getContext()),
newIncrValue),
Incr->getName()+".int", Incr);
NewPHI->addIncoming(NewAdd, PH->getIncomingBlock(BackEdge));
// The back edge is edge 1 of newPHI, whatever it may have been in the
// original PHI.
ConstantInt *NewEV = ConstantInt::get(Type::getInt32Ty(PH->getContext()),
intEV);
Value *LHS = (EVIndex == 1 ? NewPHI->getIncomingValue(1) : NewEV);
Value *RHS = (EVIndex == 1 ? NewEV : NewPHI->getIncomingValue(1));
ICmpInst *NewEC = new ICmpInst(EC->getParent()->getTerminator(),
NewPred, LHS, RHS, EC->getName());
// In the following deltions, PH may become dead and may be deleted.
// Use a WeakVH to observe whether this happens.
WeakVH WeakPH = PH;
// Delete old, floating point, exit comparision instruction.
NewEC->takeName(EC);
EC->replaceAllUsesWith(NewEC);
RecursivelyDeleteTriviallyDeadInstructions(EC);
// Delete old, floating point, increment instruction.
Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
RecursivelyDeleteTriviallyDeadInstructions(Incr);
// Replace floating induction variable, if it isn't already deleted.
// Give SIToFPInst preference over UIToFPInst because it is faster on
// platforms that are widely used.
if (WeakPH && !PH->use_empty()) {
if (useSIToFPInst(*InitValue, *EV, newInitValue, intEV)) {
SIToFPInst *Conv = new SIToFPInst(NewPHI, PH->getType(), "indvar.conv",
PH->getParent()->getFirstNonPHI());
PH->replaceAllUsesWith(Conv);
} else {
UIToFPInst *Conv = new UIToFPInst(NewPHI, PH->getType(), "indvar.conv",
PH->getParent()->getFirstNonPHI());
PH->replaceAllUsesWith(Conv);
}
RecursivelyDeleteTriviallyDeadInstructions(PH);
}
// Add a new IVUsers entry for the newly-created integer PHI.
IU->AddUsersIfInteresting(NewPHI);
}