llvm/lib/Analysis/MemoryDependenceAnalysis.cpp

550 lines
21 KiB
C++
Raw Normal View History

//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements an analysis that determines, for a given memory
// operation, what preceding memory operations it depends on. It builds on
// alias analysis information, and tries to provide a lazy, caching interface to
// a common kind of alias information query.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "memdep"
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Function.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetData.h"
using namespace llvm;
// Control the calculation of non-local dependencies by only examining the
// predecessors if the basic block has less than X amount (50 by default).
static cl::opt<int>
PredLimit("nonlocaldep-threshold", cl::Hidden, cl::init(50),
cl::desc("Control the calculation of non-local"
"dependencies (default = 50)"));
STATISTIC(NumCacheNonlocal, "Number of cached non-local responses");
STATISTIC(NumUncacheNonlocal, "Number of uncached non-local responses");
char MemoryDependenceAnalysis::ID = 0;
// Register this pass...
static RegisterPass<MemoryDependenceAnalysis> X("memdep",
"Memory Dependence Analysis", false, true);
/// verifyRemoved - Verify that the specified instruction does not occur
/// in our internal data structures.
void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
E = LocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
assert(I->second.getPointer() != D &&
"Inst occurs in data structures");
}
for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
E = NonLocalDeps.end(); I != E; ++I) {
assert(I->first != D && "Inst occurs in data structures");
for (DenseMap<BasicBlock*, DepResultTy>::iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(II->second.getPointer() != D && "Inst occurs in data structures");
}
for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
E = ReverseLocalDeps.end(); I != E; ++I)
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
E = ReverseNonLocalDeps.end();
I != E; ++I)
for (SmallPtrSet<Instruction*, 4>::const_iterator II = I->second.begin(),
EE = I->second.end(); II != EE; ++II)
assert(*II != D && "Inst occurs in data structures");
}
/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
///
void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequiredTransitive<AliasAnalysis>();
AU.addRequiredTransitive<TargetData>();
}
/// getCallSiteDependency - Private helper for finding the local dependencies
/// of a call site.
MemDepResult MemoryDependenceAnalysis::
getCallSiteDependency(CallSite C, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData &TD = getAnalysis<TargetData>();
// Walk backwards through the block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If this inst is a memory op, get the pointer it accessed
Value *Pointer = 0;
uint64_t PointerSize = 0;
if (StoreInst *S = dyn_cast<StoreInst>(Inst)) {
Pointer = S->getPointerOperand();
PointerSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
} else if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
Pointer = AI;
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
PointerSize = C->getZExtValue() *
TD.getTypeStoreSize(AI->getAllocatedType());
else
PointerSize = ~0UL;
} else if (VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
Pointer = V->getOperand(0);
PointerSize = TD.getTypeStoreSize(V->getType());
} else if (FreeInst *F = dyn_cast<FreeInst>(Inst)) {
Pointer = F->getPointerOperand();
// FreeInsts erase the entire structure
PointerSize = ~0UL;
} else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
if (AA.getModRefBehavior(CallSite::get(Inst)) ==
AliasAnalysis::DoesNotAccessMemory)
continue;
return MemDepResult::get(Inst);
} else
continue;
if (AA.getModRefInfo(C, Pointer, PointerSize) != AliasAnalysis::NoModRef)
return MemDepResult::get(Inst);
}
// No dependence found.
return MemDepResult::getNonLocal();
}
/// nonLocalHelper - Private helper used to calculate non-local dependencies
/// by doing DFS on the predecessors of a block to find its dependencies.
void MemoryDependenceAnalysis::nonLocalHelper(Instruction* query,
BasicBlock* block,
DenseMap<BasicBlock*, DepResultTy> &resp) {
// Set of blocks that we've already visited in our DFS
SmallPtrSet<BasicBlock*, 4> visited;
// If we're updating a dirtied cache entry, we don't need to reprocess
// already computed entries.
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = resp.begin(),
E = resp.end(); I != E; ++I)
if (I->second.getInt() != Dirty)
visited.insert(I->first);
// Current stack of the DFS
SmallVector<BasicBlock*, 4> stack;
for (pred_iterator PI = pred_begin(block), PE = pred_end(block);
PI != PE; ++PI)
stack.push_back(*PI);
// Do a basic DFS
while (!stack.empty()) {
BasicBlock* BB = stack.back();
// If we've already visited this block, no need to revist
if (visited.count(BB)) {
stack.pop_back();
continue;
}
// If we find a new block with a local dependency for query,
// then we insert the new dependency and backtrack.
if (BB != block) {
visited.insert(BB);
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
if (!localDep.isNonLocal()) {
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
stack.pop_back();
continue;
}
// If we re-encounter the starting block, we still need to search it
// because there might be a dependency in the starting block AFTER
// the position of the query. This is necessary to get loops right.
} else if (BB == block) {
visited.insert(BB);
MemDepResult localDep = getDependencyFrom(query, BB->end(), BB);
if (localDep.getInst() != query)
resp.insert(std::make_pair(BB, ConvFromResult(localDep)));
stack.pop_back();
continue;
}
// If we didn't find anything, recurse on the precessors of this block
// Only do this for blocks with a small number of predecessors.
bool predOnStack = false;
bool inserted = false;
if (std::distance(pred_begin(BB), pred_end(BB)) <= PredLimit) {
for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
PI != PE; ++PI)
if (!visited.count(*PI)) {
stack.push_back(*PI);
inserted = true;
} else
predOnStack = true;
}
// If we inserted a new predecessor, then we'll come back to this block
if (inserted)
continue;
// If we didn't insert because we have no predecessors, then this
// query has no dependency at all.
else if (!inserted && !predOnStack) {
resp.insert(std::make_pair(BB, DepResultTy(0, None)));
// If we didn't insert because our predecessors are already on the stack,
// then we might still have a dependency, but it will be discovered during
// backtracking.
} else if (!inserted && predOnStack){
resp.insert(std::make_pair(BB, DepResultTy(0, NonLocal)));
}
stack.pop_back();
}
}
/// getNonLocalDependency - Fills the passed-in map with the non-local
/// dependencies of the queries. The map will contain NonLocal for
/// blocks between the query and its dependencies.
void MemoryDependenceAnalysis::getNonLocalDependency(Instruction* query,
DenseMap<BasicBlock*, MemDepResult> &resp) {
if (NonLocalDeps.count(query)) {
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
NumCacheNonlocal++;
SmallVector<BasicBlock*, 4> dirtied;
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I)
if (I->second.getInt() == Dirty)
dirtied.push_back(I->first);
for (SmallVector<BasicBlock*, 4>::iterator I = dirtied.begin(),
E = dirtied.end(); I != E; ++I) {
MemDepResult localDep = getDependencyFrom(query, (*I)->end(), *I);
if (!localDep.isNonLocal())
cached[*I] = ConvFromResult(localDep);
else {
cached.erase(*I);
nonLocalHelper(query, *I, cached);
}
}
// Update the reverse non-local dependency cache.
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I) {
if (Instruction *Inst = I->second.getPointer())
ReverseNonLocalDeps[Inst].insert(query);
resp[I->first] = ConvToResult(I->second);
}
return;
}
NumUncacheNonlocal++;
// If not, go ahead and search for non-local deps.
DenseMap<BasicBlock*, DepResultTy> &cached = NonLocalDeps[query];
nonLocalHelper(query, query->getParent(), cached);
// Update the non-local dependency cache
for (DenseMap<BasicBlock*, DepResultTy>::iterator I = cached.begin(),
E = cached.end(); I != E; ++I) {
// FIXME: Merge with the code above!
if (Instruction *Inst = I->second.getPointer())
ReverseNonLocalDeps[Inst].insert(query);
resp[I->first] = ConvToResult(I->second);
}
}
/// getDependency - Return the instruction on which a memory operation
/// depends. The local parameter indicates if the query should only
/// evaluate dependencies within the same basic block.
MemDepResult MemoryDependenceAnalysis::
getDependencyFrom(Instruction *QueryInst, BasicBlock::iterator ScanIt,
BasicBlock *BB) {
AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
TargetData &TD = getAnalysis<TargetData>();
// Get the pointer value for which dependence will be determined
Value *MemPtr = 0;
uint64_t MemSize = 0;
bool MemVolatile = false;
if (StoreInst* S = dyn_cast<StoreInst>(QueryInst)) {
MemPtr = S->getPointerOperand();
MemSize = TD.getTypeStoreSize(S->getOperand(0)->getType());
MemVolatile = S->isVolatile();
} else if (LoadInst* L = dyn_cast<LoadInst>(QueryInst)) {
MemPtr = L->getPointerOperand();
MemSize = TD.getTypeStoreSize(L->getType());
MemVolatile = L->isVolatile();
} else if (VAArgInst* V = dyn_cast<VAArgInst>(QueryInst)) {
MemPtr = V->getOperand(0);
MemSize = TD.getTypeStoreSize(V->getType());
} else if (FreeInst* F = dyn_cast<FreeInst>(QueryInst)) {
MemPtr = F->getPointerOperand();
// FreeInsts erase the entire structure, not just a field.
MemSize = ~0UL;
} else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst))
return getCallSiteDependency(CallSite::get(QueryInst), ScanIt, BB);
else // Non-memory instructions depend on nothing.
return MemDepResult::getNone();
// Walk backwards through the basic block, looking for dependencies
while (ScanIt != BB->begin()) {
Instruction *Inst = --ScanIt;
// If the access is volatile and this is a volatile load/store, return a
// dependence.
if (MemVolatile &&
((isa<LoadInst>(Inst) && cast<LoadInst>(Inst)->isVolatile()) ||
(isa<StoreInst>(Inst) && cast<StoreInst>(Inst)->isVolatile())))
return MemDepResult::get(Inst);
// MemDep is broken w.r.t. loads: it says that two loads of the same pointer
// depend on each other. :(
// FIXME: ELIMINATE THIS!
if (LoadInst *L = dyn_cast<LoadInst>(Inst)) {
Value *Pointer = L->getPointerOperand();
uint64_t PointerSize = TD.getTypeStoreSize(L->getType());
// If we found a pointer, check if it could be the same as our pointer
AliasAnalysis::AliasResult R =
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
// May-alias loads don't depend on each other without a dependence.
if (isa<LoadInst>(QueryInst) && R == AliasAnalysis::MayAlias)
continue;
return MemDepResult::get(Inst);
}
// FIXME: This claims that an access depends on the allocation. This may
// make sense, but is dubious at best. It would be better to fix GVN to
// handle a 'None' Query.
if (AllocationInst *AI = dyn_cast<AllocationInst>(Inst)) {
Value *Pointer = AI;
uint64_t PointerSize;
if (ConstantInt *C = dyn_cast<ConstantInt>(AI->getArraySize()))
PointerSize = C->getZExtValue() *
TD.getTypeStoreSize(AI->getAllocatedType());
else
PointerSize = ~0UL;
AliasAnalysis::AliasResult R =
AA.alias(Pointer, PointerSize, MemPtr, MemSize);
if (R == AliasAnalysis::NoAlias)
continue;
return MemDepResult::get(Inst);
}
// See if this instruction mod/ref's the pointer.
AliasAnalysis::ModRefResult MRR = AA.getModRefInfo(Inst, MemPtr, MemSize);
if (MRR == AliasAnalysis::NoModRef)
continue;
// Loads don't depend on read-only instructions.
if (isa<LoadInst>(QueryInst) && MRR == AliasAnalysis::Ref)
continue;
// Otherwise, there is a dependence.
return MemDepResult::get(Inst);
}
// If we found nothing, return the non-local flag.
return MemDepResult::getNonLocal();
}
/// getDependency - Return the instruction on which a memory operation
/// depends.
MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
Instruction *ScanPos = QueryInst;
// Check for a cached result
DepResultTy &LocalCache = LocalDeps[QueryInst];
// If the cached entry is non-dirty, just return it.
if (LocalCache.getInt() != Dirty)
return ConvToResult(LocalCache);
// Otherwise, if we have a dirty entry, we know we can start the scan at that
// instruction, which may save us some work.
if (Instruction *Inst = LocalCache.getPointer())
ScanPos = Inst;
// Do the scan.
MemDepResult Res =
getDependencyFrom(QueryInst, ScanPos, QueryInst->getParent());
// Remember the result!
// FIXME: Don't convert back and forth! Make a shared helper function.
LocalCache = ConvFromResult(Res);
if (Instruction *I = Res.getInst())
ReverseLocalDeps[I].insert(QueryInst);
return Res;
}
/// dropInstruction - Remove an instruction from the analysis, making
/// absolutely conservative assumptions when updating the cache. This is
/// useful, for example when an instruction is changed rather than removed.
void MemoryDependenceAnalysis::dropInstruction(Instruction* drop) {
LocalDepMapType::iterator depGraphEntry = LocalDeps.find(drop);
if (depGraphEntry != LocalDeps.end())
if (Instruction *Inst = depGraphEntry->second.getPointer())
ReverseLocalDeps[Inst].erase(drop);
// Drop dependency information for things that depended on this instr
SmallPtrSet<Instruction*, 4>& set = ReverseLocalDeps[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
LocalDeps.erase(*I);
LocalDeps.erase(drop);
ReverseLocalDeps.erase(drop);
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[drop].begin(), DE = NonLocalDeps[drop].end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getPointer())
ReverseNonLocalDeps[Inst].erase(drop);
if (ReverseNonLocalDeps.count(drop)) {
SmallPtrSet<Instruction*, 4>& set =
ReverseNonLocalDeps[drop];
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
DI != DE; ++DI)
if (DI->second == DepResultTy(drop, Normal))
// FIXME: Why not remember the old insertion point??
DI->second = DepResultTy(0, Dirty);
}
ReverseNonLocalDeps.erase(drop);
NonLocalDeps.erase(drop);
}
/// removeInstruction - Remove an instruction from the dependence analysis,
/// updating the dependence of instructions that previously depended on it.
/// This method attempts to keep the cache coherent using the reverse map.
void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
// Walk through the Non-local dependencies, removing this one as the value
// for any cached queries.
for (DenseMap<BasicBlock*, DepResultTy>::iterator DI =
NonLocalDeps[RemInst].begin(), DE = NonLocalDeps[RemInst].end();
DI != DE; ++DI)
if (Instruction *Inst = DI->second.getPointer())
ReverseNonLocalDeps[Inst].erase(RemInst);
// Shortly after this, we will look for things that depend on RemInst. In
// order to update these, we'll need a new dependency to base them on. We
// could completely delete any entries that depend on this, but it is better
// to make a more accurate approximation where possible. Compute that better
// approximation if we can.
DepResultTy NewDependency;
// If we have a cached local dependence query for this instruction, remove it.
//
LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
if (LocalDepEntry != LocalDeps.end()) {
DepResultTy LocalDep = LocalDepEntry->second;
// Remove this local dependency info.
LocalDeps.erase(LocalDepEntry);
// Remove us from DepInst's reverse set now that the local dep info is gone.
if (Instruction *Inst = LocalDep.getPointer())
ReverseLocalDeps[Inst].erase(RemInst);
// If we have unconfirmed info, don't trust it.
if (LocalDep.getInt() != Dirty) {
// If we have a confirmed non-local flag, use it.
if (LocalDep.getInt() == NonLocal || LocalDep.getInt() == None) {
// The only time this dependency is confirmed is if it is non-local.
NewDependency = LocalDep;
} else {
// If we have dep info for RemInst, set them to it.
Instruction *NDI = next(BasicBlock::iterator(LocalDep.getPointer()));
if (NDI != RemInst) // Don't use RemInst for the new dependency!
NewDependency = DepResultTy(NDI, Dirty);
}
}
}
// If we don't already have a local dependency answer for this instruction,
// use the immediate successor of RemInst. We use the successor because
// getDependence starts by checking the immediate predecessor of what is in
// the cache.
if (NewDependency == DepResultTy(0, Dirty))
NewDependency = DepResultTy(next(BasicBlock::iterator(RemInst)), Dirty);
// Loop over all of the things that depend on the instruction we're removing.
//
ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseLocalDeps.end()) {
SmallPtrSet<Instruction*, 4> &ReverseDeps = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = ReverseDeps.begin(),
E = ReverseDeps.end(); I != E; ++I) {
Instruction *InstDependingOnRemInst = *I;
// If we thought the instruction depended on itself (possible for
// unconfirmed dependencies) ignore the update.
if (InstDependingOnRemInst == RemInst) continue;
// Insert the new dependencies.
LocalDeps[InstDependingOnRemInst] = NewDependency;
// If our NewDependency is an instruction, make sure to remember that new
// things depend on it.
if (Instruction *Inst = NewDependency.getPointer())
ReverseLocalDeps[Inst].insert(InstDependingOnRemInst);
}
ReverseLocalDeps.erase(RemInst);
}
ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
if (ReverseDepIt != ReverseNonLocalDeps.end()) {
SmallPtrSet<Instruction*, 4>& set = ReverseDepIt->second;
for (SmallPtrSet<Instruction*, 4>::iterator I = set.begin(), E = set.end();
I != E; ++I)
for (DenseMap<BasicBlock*, DepResultTy>::iterator
DI = NonLocalDeps[*I].begin(), DE = NonLocalDeps[*I].end();
DI != DE; ++DI)
if (DI->second == DepResultTy(RemInst, Normal))
// FIXME: Why not remember the old insertion point??
DI->second = DepResultTy(0, Dirty);
ReverseNonLocalDeps.erase(ReverseDepIt);
}
NonLocalDeps.erase(RemInst);
getAnalysis<AliasAnalysis>().deleteValue(RemInst);
DEBUG(verifyRemoved(RemInst));
}