mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-13 14:47:00 +00:00
593 lines
22 KiB
C++
593 lines
22 KiB
C++
|
//===- LevelRaise.cpp - Code to change LLVM to higher level -----------------=//
|
||
|
//
|
||
|
// This file implements the 'raising' part of the LevelChange API. This is
|
||
|
// useful because, in general, it makes the LLVM code terser and easier to
|
||
|
// analyze. Note that it is good to run DCE after doing this transformation.
|
||
|
//
|
||
|
// Eliminate silly things in the source that do not effect the level, but do
|
||
|
// clean up the code:
|
||
|
// * Casts of casts
|
||
|
// - getelementptr/load & getelementptr/store are folded into a direct
|
||
|
// load or store
|
||
|
// - Convert this code (for both alloca and malloc):
|
||
|
// %reg110 = shl uint %n, ubyte 2 ;;<uint>
|
||
|
// %reg108 = alloca ubyte, uint %reg110 ;;<ubyte*>
|
||
|
// %cast76 = cast ubyte* %reg108 to uint* ;;<uint*>
|
||
|
// To: %cast76 = alloca uint, uint %n
|
||
|
// Convert explicit addressing to use getelementptr instruction where possible
|
||
|
// - ...
|
||
|
//
|
||
|
// Convert explicit addressing on pointers to use getelementptr instruction.
|
||
|
// - If a pointer is used by arithmetic operation, insert an array casted
|
||
|
// version into the source program, only for the following pointer types:
|
||
|
// * Method argument pointers
|
||
|
// - Pointers returned by alloca or malloc
|
||
|
// - Pointers returned by function calls
|
||
|
// - If a pointer is indexed with a value scaled by a constant size equal
|
||
|
// to the element size of the array, the expression is replaced with a
|
||
|
// getelementptr instruction.
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "llvm/Transforms/LevelChange.h"
|
||
|
#include "llvm/Method.h"
|
||
|
#include "llvm/Support/STLExtras.h"
|
||
|
#include "llvm/iOther.h"
|
||
|
#include "llvm/iMemory.h"
|
||
|
#include "llvm/ConstPoolVals.h"
|
||
|
#include "llvm/Target/TargetData.h"
|
||
|
#include <map>
|
||
|
#include <algorithm>
|
||
|
|
||
|
#include "llvm/Assembly/Writer.h"
|
||
|
|
||
|
//#define DEBUG_PEEPHOLE_INSTS 1
|
||
|
|
||
|
#ifdef DEBUG_PEEPHOLE_INSTS
|
||
|
#define PRINT_PEEPHOLE(ID, NUM, I) \
|
||
|
cerr << "Inst P/H " << ID << "[" << NUM << "] " << I;
|
||
|
#else
|
||
|
#define PRINT_PEEPHOLE(ID, NUM, I)
|
||
|
#endif
|
||
|
|
||
|
#define PRINT_PEEPHOLE1(ID, I1) do { PRINT_PEEPHOLE(ID, 0, I1); } while (0)
|
||
|
#define PRINT_PEEPHOLE2(ID, I1, I2) \
|
||
|
do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); } while (0)
|
||
|
#define PRINT_PEEPHOLE3(ID, I1, I2, I3) \
|
||
|
do { PRINT_PEEPHOLE(ID, 0, I1); PRINT_PEEPHOLE(ID, 1, I2); \
|
||
|
PRINT_PEEPHOLE(ID, 2, I3); } while (0)
|
||
|
|
||
|
|
||
|
// TargetData Hack: Eventually we will have annotations given to us by the
|
||
|
// backend so that we know stuff about type size and alignments. For now
|
||
|
// though, just use this, because it happens to match the model that GCC uses.
|
||
|
//
|
||
|
const TargetData TD("LevelRaise: Should be GCC though!");
|
||
|
|
||
|
|
||
|
// losslessCastableTypes - Return true if the types are bitwise equivalent.
|
||
|
// This predicate returns true if it is possible to cast from one type to
|
||
|
// another without gaining or losing precision, or altering the bits in any way.
|
||
|
//
|
||
|
static bool losslessCastableTypes(const Type *T1, const Type *T2) {
|
||
|
assert(T1->isPrimitiveType() || isa<PointerType>(T1));
|
||
|
assert(T2->isPrimitiveType() || isa<PointerType>(T2));
|
||
|
|
||
|
if (T1->getPrimitiveID() == T2->getPrimitiveID())
|
||
|
return true; // Handles identity cast, and cast of differing pointer types
|
||
|
|
||
|
// Now we know that they are two differing primitive or pointer types
|
||
|
switch (T1->getPrimitiveID()) {
|
||
|
case Type::UByteTyID: return T2 == Type::SByteTy;
|
||
|
case Type::SByteTyID: return T2 == Type::UByteTy;
|
||
|
case Type::UShortTyID: return T2 == Type::ShortTy;
|
||
|
case Type::ShortTyID: return T2 == Type::UShortTy;
|
||
|
case Type::UIntTyID: return T2 == Type::IntTy;
|
||
|
case Type::IntTyID: return T2 == Type::UIntTy;
|
||
|
case Type::ULongTyID:
|
||
|
case Type::LongTyID:
|
||
|
case Type::PointerTyID:
|
||
|
return T2 == Type::ULongTy || T2 == Type::LongTy ||
|
||
|
T2->getPrimitiveID() == Type::PointerTyID;
|
||
|
default:
|
||
|
return false; // Other types have no identity values
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
// isReinterpretingCast - Return true if the cast instruction specified will
|
||
|
// cause the operand to be "reinterpreted". A value is reinterpreted if the
|
||
|
// cast instruction would cause the underlying bits to change.
|
||
|
//
|
||
|
static inline bool isReinterpretingCast(const CastInst *CI) {
|
||
|
return !losslessCastableTypes(CI->getOperand(0)->getType(), CI->getType());
|
||
|
}
|
||
|
|
||
|
|
||
|
// getPointedToStruct - If the argument is a pointer type, and the pointed to
|
||
|
// value is a struct type, return the struct type, else return null.
|
||
|
//
|
||
|
static const StructType *getPointedToStruct(const Type *Ty) {
|
||
|
const PointerType *PT = dyn_cast<PointerType>(Ty);
|
||
|
return PT ? dyn_cast<StructType>(PT->getValueType()) : 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
// getStructOffsetType - Return a vector of offsets that are to be used to index
|
||
|
// into the specified struct type to get as close as possible to index as we
|
||
|
// can. Note that it is possible that we cannot get exactly to Offset, in which
|
||
|
// case we update offset to be the offset we actually obtained. The resultant
|
||
|
// leaf type is returned.
|
||
|
//
|
||
|
static const Type *getStructOffsetType(const Type *Ty, unsigned &Offset,
|
||
|
vector<ConstPoolVal*> &Offsets) {
|
||
|
if (!isa<StructType>(Ty)) {
|
||
|
Offset = 0; // Return the offset that we were able to acheive
|
||
|
return Ty; // Return the leaf type
|
||
|
}
|
||
|
|
||
|
assert(Offset < TD.getTypeSize(Ty) && "Offset not in struct!");
|
||
|
const StructType *STy = cast<StructType>(Ty);
|
||
|
const StructLayout *SL = TD.getStructLayout(STy);
|
||
|
|
||
|
// This loop terminates always on a 0 <= i < MemberOffsets.size()
|
||
|
unsigned i;
|
||
|
for (i = 0; i < SL->MemberOffsets.size()-1; ++i)
|
||
|
if (Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1])
|
||
|
break;
|
||
|
|
||
|
assert(Offset >= SL->MemberOffsets[i] && Offset < SL->MemberOffsets[i+1]);
|
||
|
|
||
|
// Make sure to save the current index...
|
||
|
Offsets.push_back(ConstPoolUInt::get(Type::UByteTy, i));
|
||
|
|
||
|
unsigned SubOffs = Offset - SL->MemberOffsets[i];
|
||
|
const Type *LeafTy = getStructOffsetType(STy->getElementTypes()[i], SubOffs,
|
||
|
Offsets);
|
||
|
Offset = SL->MemberOffsets[i] + SubOffs;
|
||
|
return LeafTy;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI)
|
||
|
// with a value, then remove and delete the original instruction.
|
||
|
//
|
||
|
static void ReplaceInstWithValue(BasicBlock::InstListType &BIL,
|
||
|
BasicBlock::iterator &BI, Value *V) {
|
||
|
Instruction *I = *BI;
|
||
|
// Replaces all of the uses of the instruction with uses of the value
|
||
|
I->replaceAllUsesWith(V);
|
||
|
|
||
|
// Remove the unneccesary instruction now...
|
||
|
BIL.remove(BI);
|
||
|
|
||
|
// Make sure to propogate a name if there is one already...
|
||
|
if (I->hasName() && !V->hasName())
|
||
|
V->setName(I->getName(), BIL.getParent()->getSymbolTable());
|
||
|
|
||
|
// Remove the dead instruction now...
|
||
|
delete I;
|
||
|
}
|
||
|
|
||
|
|
||
|
// ReplaceInstWithInst - Replace the instruction specified by BI with the
|
||
|
// instruction specified by I. The original instruction is deleted and BI is
|
||
|
// updated to point to the new instruction.
|
||
|
//
|
||
|
static void ReplaceInstWithInst(BasicBlock::InstListType &BIL,
|
||
|
BasicBlock::iterator &BI, Instruction *I) {
|
||
|
assert(I->getParent() == 0 &&
|
||
|
"ReplaceInstWithInst: Instruction already inserted into basic block!");
|
||
|
|
||
|
// Insert the new instruction into the basic block...
|
||
|
BI = BIL.insert(BI, I)+1;
|
||
|
|
||
|
// Replace all uses of the old instruction, and delete it.
|
||
|
ReplaceInstWithValue(BIL, BI, I);
|
||
|
|
||
|
// Reexamine the instruction just inserted next time around the cleanup pass
|
||
|
// loop.
|
||
|
--BI;
|
||
|
}
|
||
|
|
||
|
|
||
|
// ExpressionConvertableToType - Return true if it is possible
|
||
|
static bool ExpressionConvertableToType(Value *V, const Type *Ty) {
|
||
|
Instruction *I = dyn_cast<Instruction>(V);
|
||
|
if (I == 0) return false; // Noninstructions can't convert
|
||
|
if (I->getType() == Ty) return false; // Expression already correct type!
|
||
|
|
||
|
switch (I->getOpcode()) {
|
||
|
case Instruction::Cast:
|
||
|
// We can convert the expr if the cast destination type is losslessly
|
||
|
// convertable to the requested type.
|
||
|
return losslessCastableTypes(Ty, I->getType());
|
||
|
|
||
|
case Instruction::Add:
|
||
|
case Instruction::Sub:
|
||
|
return ExpressionConvertableToType(I->getOperand(0), Ty) &&
|
||
|
ExpressionConvertableToType(I->getOperand(1), Ty);
|
||
|
case Instruction::Shl:
|
||
|
case Instruction::Shr:
|
||
|
return ExpressionConvertableToType(I->getOperand(0), Ty);
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
static Instruction *ConvertExpressionToType(Value *V, const Type *Ty) {
|
||
|
Instruction *I = cast<Instruction>(V);
|
||
|
assert(ExpressionConvertableToType(I, Ty) && "Inst is not convertable!");
|
||
|
BasicBlock *BB = I->getParent();
|
||
|
BasicBlock::InstListType &BIL = BB->getInstList();
|
||
|
string Name = I->getName(); if (!Name.empty()) I->setName("");
|
||
|
Instruction *Res; // Result of conversion
|
||
|
|
||
|
//cerr << endl << endl << "Type:\t" << Ty << "\nInst: " << I << "BB Before: " << BB << endl;
|
||
|
|
||
|
switch (I->getOpcode()) {
|
||
|
case Instruction::Cast:
|
||
|
Res = new CastInst(I->getOperand(0), Ty, Name);
|
||
|
break;
|
||
|
|
||
|
case Instruction::Add:
|
||
|
case Instruction::Sub:
|
||
|
Res = BinaryOperator::create(cast<BinaryOperator>(I)->getOpcode(),
|
||
|
ConvertExpressionToType(I->getOperand(0), Ty),
|
||
|
ConvertExpressionToType(I->getOperand(1), Ty),
|
||
|
Name);
|
||
|
break;
|
||
|
|
||
|
case Instruction::Shl:
|
||
|
case Instruction::Shr:
|
||
|
Res = new ShiftInst(cast<ShiftInst>(I)->getOpcode(),
|
||
|
ConvertExpressionToType(I->getOperand(0), Ty),
|
||
|
I->getOperand(1), Name);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
assert(0 && "Expression convertable, but don't know how to convert?");
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
BasicBlock::iterator It = find(BIL.begin(), BIL.end(), I);
|
||
|
assert(It != BIL.end() && "Instruction not in own basic block??");
|
||
|
BIL.insert(It, Res);
|
||
|
|
||
|
//cerr << "RInst: " << Res << "BB After: " << BB << endl << endl;
|
||
|
|
||
|
return Res;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// DoInsertArrayCast - If the argument value has a pointer type, and if the
|
||
|
// argument value is used as an array, insert a cast before the specified
|
||
|
// basic block iterator that casts the value to an array pointer. Return the
|
||
|
// new cast instruction (in the CastResult var), or null if no cast is inserted.
|
||
|
//
|
||
|
static bool DoInsertArrayCast(Method *CurMeth, Value *V, BasicBlock *BB,
|
||
|
BasicBlock::iterator &InsertBefore,
|
||
|
CastInst *&CastResult) {
|
||
|
const PointerType *ThePtrType = dyn_cast<PointerType>(V->getType());
|
||
|
if (!ThePtrType) return false;
|
||
|
bool InsertCast = false;
|
||
|
|
||
|
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
|
||
|
Instruction *Inst = cast<Instruction>(*I);
|
||
|
switch (Inst->getOpcode()) {
|
||
|
default: break; // Not an interesting use...
|
||
|
case Instruction::Add: // It's being used as an array index!
|
||
|
//case Instruction::Sub:
|
||
|
InsertCast = true;
|
||
|
break;
|
||
|
case Instruction::Cast: // There is already a cast instruction!
|
||
|
if (const PointerType *PT = dyn_cast<const PointerType>(Inst->getType()))
|
||
|
if (const ArrayType *AT = dyn_cast<const ArrayType>(PT->getValueType()))
|
||
|
if (AT->getElementType() == ThePtrType->getValueType()) {
|
||
|
// Cast already exists! Return the existing one!
|
||
|
CastResult = cast<CastInst>(Inst);
|
||
|
return false; // No changes made to program though...
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (!InsertCast) return false; // There is no reason to insert a cast!
|
||
|
|
||
|
// Insert a cast!
|
||
|
const Type *ElTy = ThePtrType->getValueType();
|
||
|
const PointerType *DestTy = PointerType::get(ArrayType::get(ElTy));
|
||
|
|
||
|
CastResult = new CastInst(V, DestTy);
|
||
|
BB->getInstList().insert(InsertBefore, CastResult);
|
||
|
//cerr << "Inserted cast: " << CastResult;
|
||
|
return true; // Made a change!
|
||
|
}
|
||
|
|
||
|
|
||
|
// DoInsertArrayCasts - Loop over all "incoming" values in the specified method,
|
||
|
// inserting a cast for pointer values that are used as arrays. For our
|
||
|
// purposes, an incoming value is considered to be either a value that is
|
||
|
// either a method parameter, a value created by alloca or malloc, or a value
|
||
|
// returned from a function call. All casts are kept attached to their original
|
||
|
// values through the PtrCasts map.
|
||
|
//
|
||
|
static bool DoInsertArrayCasts(Method *M, map<Value*, CastInst*> &PtrCasts) {
|
||
|
assert(!M->isExternal() && "Can't handle external methods!");
|
||
|
|
||
|
// Insert casts for all arguments to the function...
|
||
|
bool Changed = false;
|
||
|
BasicBlock *CurBB = M->front();
|
||
|
BasicBlock::iterator It = CurBB->begin();
|
||
|
for (Method::ArgumentListType::iterator AI = M->getArgumentList().begin(),
|
||
|
AE = M->getArgumentList().end(); AI != AE; ++AI) {
|
||
|
CastInst *TheCast = 0;
|
||
|
if (DoInsertArrayCast(M, *AI, CurBB, It, TheCast)) {
|
||
|
It = CurBB->begin(); // We might have just invalidated the iterator!
|
||
|
Changed = true; // Yes we made a change
|
||
|
++It; // Insert next cast AFTER this one...
|
||
|
}
|
||
|
|
||
|
if (TheCast) // Is there a cast associated with this value?
|
||
|
PtrCasts[*AI] = TheCast; // Yes, add it to the map...
|
||
|
}
|
||
|
|
||
|
// TODO: insert casts for alloca, malloc, and function call results. Also,
|
||
|
// look for pointers that already have casts, to add to the map.
|
||
|
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
// DoElminatePointerArithmetic - Loop over each incoming pointer variable,
|
||
|
// replacing indexing arithmetic with getelementptr calls.
|
||
|
//
|
||
|
static bool DoEliminatePointerArithmetic(const pair<Value*, CastInst*> &Val) {
|
||
|
Value *V = Val.first; // The original pointer
|
||
|
CastInst *CV = Val.second; // The array casted version of the pointer...
|
||
|
|
||
|
for (Value::use_iterator I = V->use_begin(), E = V->use_end(); I != E; ++I) {
|
||
|
Instruction *Inst = cast<Instruction>(*I);
|
||
|
if (Inst->getOpcode() != Instruction::Add)
|
||
|
continue; // We only care about add instructions
|
||
|
|
||
|
BinaryOperator *Add = cast<BinaryOperator>(Inst);
|
||
|
|
||
|
// Make sure the array is the first operand of the add expression...
|
||
|
if (Add->getOperand(0) != V)
|
||
|
Add->swapOperands();
|
||
|
|
||
|
// Get the amount added to the pointer value...
|
||
|
Value *AddAmount = Add->getOperand(1);
|
||
|
|
||
|
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Peephole Malloc instructions: we take a look at the use chain of the
|
||
|
// malloc instruction, and try to find out if the following conditions hold:
|
||
|
// 1. The malloc is of the form: 'malloc [sbyte], uint <constant>'
|
||
|
// 2. The only users of the malloc are cast instructions
|
||
|
// 3. Of the cast instructions, there is only one destination pointer type
|
||
|
// [RTy] where the size of the pointed to object is equal to the number
|
||
|
// of bytes allocated.
|
||
|
//
|
||
|
// If these conditions hold, we convert the malloc to allocate an [RTy]
|
||
|
// element. This should be extended in the future to handle arrays. TODO
|
||
|
//
|
||
|
static bool PeepholeMallocInst(BasicBlock *BB, BasicBlock::iterator &BI) {
|
||
|
MallocInst *MI = cast<MallocInst>(*BI);
|
||
|
if (!MI->isArrayAllocation()) return false; // No array allocation?
|
||
|
|
||
|
ConstPoolUInt *Amt = dyn_cast<ConstPoolUInt>(MI->getArraySize());
|
||
|
if (Amt == 0 || MI->getAllocatedType() != ArrayType::get(Type::SByteTy))
|
||
|
return false;
|
||
|
|
||
|
// Get the number of bytes allocated...
|
||
|
unsigned Size = Amt->getValue();
|
||
|
const Type *ResultTy = 0;
|
||
|
|
||
|
// Loop over all of the uses of the malloc instruction, inspecting casts.
|
||
|
for (Value::use_iterator I = MI->use_begin(), E = MI->use_end();
|
||
|
I != E; ++I) {
|
||
|
if (!isa<CastInst>(*I)) {
|
||
|
//cerr << "\tnon" << *I;
|
||
|
return false; // A non cast user?
|
||
|
}
|
||
|
CastInst *CI = cast<CastInst>(*I);
|
||
|
//cerr << "\t" << CI;
|
||
|
|
||
|
// We only work on casts to pointer types for sure, be conservative
|
||
|
if (!isa<PointerType>(CI->getType())) {
|
||
|
cerr << "Found cast of malloc value to non pointer type:\n" << CI;
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
const Type *DestTy = cast<PointerType>(CI->getType())->getValueType();
|
||
|
if (TD.getTypeSize(DestTy) == Size && DestTy != ResultTy) {
|
||
|
// Does the size of the allocated type match the number of bytes
|
||
|
// allocated?
|
||
|
//
|
||
|
if (ResultTy == 0) {
|
||
|
ResultTy = DestTy; // Keep note of this for future uses...
|
||
|
} else {
|
||
|
// It's overdefined! We don't know which type to convert to!
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// If we get this far, we have either found, or not, a type that is cast to
|
||
|
// that is of the same size as the malloc instruction.
|
||
|
if (!ResultTy) return false;
|
||
|
|
||
|
PRINT_PEEPHOLE1("mall-refine:in ", MI);
|
||
|
ReplaceInstWithInst(BB->getInstList(), BI,
|
||
|
MI = new MallocInst(PointerType::get(ResultTy)));
|
||
|
PRINT_PEEPHOLE1("mall-refine:out", MI);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
static bool PeepholeOptimize(BasicBlock *BB, BasicBlock::iterator &BI) {
|
||
|
Instruction *I = *BI;
|
||
|
if (I->use_size() == 0) return false;
|
||
|
|
||
|
if (CastInst *CI = dyn_cast<CastInst>(I)) {
|
||
|
Value *Src = CI->getOperand(0);
|
||
|
Instruction *SrcI = dyn_cast<Instruction>(Src); // Nonnull if instr source
|
||
|
const Type *DestTy = CI->getType();
|
||
|
|
||
|
// Check for a cast of the same type as the destination!
|
||
|
if (DestTy == Src->getType()) {
|
||
|
PRINT_PEEPHOLE1("cast-of-self-ty", CI);
|
||
|
CI->replaceAllUsesWith(Src);
|
||
|
if (!Src->hasName() && CI->hasName()) {
|
||
|
string Name = CI->getName();
|
||
|
CI->setName(""); Src->setName(Name);
|
||
|
}
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Check for a cast of cast, where no size information is lost...
|
||
|
if (SrcI)
|
||
|
if (CastInst *CSrc = dyn_cast<CastInst>(SrcI))
|
||
|
if (isReinterpretingCast(CI) + isReinterpretingCast(CSrc) < 2) {
|
||
|
// We can only do c-c elimination if, at most, one cast does a
|
||
|
// reinterpretation of the input data.
|
||
|
//
|
||
|
// If legal, make this cast refer the the original casts argument!
|
||
|
//
|
||
|
PRINT_PEEPHOLE2("cast-cast:in ", CI, CSrc);
|
||
|
CI->setOperand(0, CSrc->getOperand(0));
|
||
|
PRINT_PEEPHOLE1("cast-cast:out", CI);
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
// Check to see if it's a cast of an instruction that does not depend on the
|
||
|
// specific type of the operands to do it's job.
|
||
|
if (SrcI && !isReinterpretingCast(CI) &&
|
||
|
ExpressionConvertableToType(SrcI, DestTy)) {
|
||
|
PRINT_PEEPHOLE2("EXPR-CONV:in ", CI, SrcI);
|
||
|
CI->setOperand(0, ConvertExpressionToType(SrcI, DestTy));
|
||
|
BI = BB->begin(); // Rescan basic block. BI might be invalidated.
|
||
|
PRINT_PEEPHOLE2("EXPR-CONV:out", CI, CI->getOperand(0));
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
} else if (MallocInst *MI = dyn_cast<MallocInst>(I)) {
|
||
|
if (PeepholeMallocInst(BB, BI)) return true;
|
||
|
} else if (I->getOpcode() == Instruction::Add &&
|
||
|
isa<CastInst>(I->getOperand(1))) {
|
||
|
|
||
|
// Peephole optimize the following instructions:
|
||
|
// %t1 = cast ulong <const int> to {<...>} *
|
||
|
// %t2 = add {<...>} * %SP, %t1 ;; Constant must be 2nd operand
|
||
|
//
|
||
|
// or
|
||
|
// %t1 = cast {<...>}* %SP to int*
|
||
|
// %t5 = cast ulong <const int> to int*
|
||
|
// %t2 = add int* %t1, %t5 ;; int is same size as field
|
||
|
//
|
||
|
// Into: %t3 = getelementptr {<...>} * %SP, <element indices>
|
||
|
// %t2 = cast <eltype> * %t3 to {<...>}*
|
||
|
//
|
||
|
Value *AddOp1 = I->getOperand(0);
|
||
|
CastInst *AddOp2 = cast<CastInst>(I->getOperand(1));
|
||
|
ConstPoolUInt *OffsetV = dyn_cast<ConstPoolUInt>(AddOp2->getOperand(0));
|
||
|
unsigned Offset = OffsetV ? OffsetV->getValue() : 0;
|
||
|
Value *SrcPtr; // Of type pointer to struct...
|
||
|
const StructType *StructTy;
|
||
|
|
||
|
if ((StructTy = getPointedToStruct(AddOp1->getType()))) {
|
||
|
SrcPtr = AddOp1; // Handle the first case...
|
||
|
} else if (CastInst *AddOp1c = dyn_cast<CastInst>(AddOp1)) {
|
||
|
SrcPtr = AddOp1c->getOperand(0); // Handle the second case...
|
||
|
StructTy = getPointedToStruct(SrcPtr->getType());
|
||
|
}
|
||
|
|
||
|
// Only proceed if we have detected all of our conditions successfully...
|
||
|
if (Offset && StructTy && SrcPtr && Offset < TD.getTypeSize(StructTy)) {
|
||
|
const StructLayout *SL = TD.getStructLayout(StructTy);
|
||
|
vector<ConstPoolVal*> Offsets;
|
||
|
unsigned ActualOffset = Offset;
|
||
|
const Type *ElTy = getStructOffsetType(StructTy, ActualOffset, Offsets);
|
||
|
|
||
|
if (getPointedToStruct(AddOp1->getType())) { // case 1
|
||
|
PRINT_PEEPHOLE2("add-to-gep1:in", AddOp2, I);
|
||
|
} else {
|
||
|
PRINT_PEEPHOLE3("add-to-gep2:in", AddOp1, AddOp2, I);
|
||
|
}
|
||
|
|
||
|
GetElementPtrInst *GEP = new GetElementPtrInst(SrcPtr, Offsets);
|
||
|
BI = BB->getInstList().insert(BI, GEP)+1;
|
||
|
|
||
|
assert(Offset-ActualOffset == 0 &&
|
||
|
"GEP to middle of element not implemented yet!");
|
||
|
|
||
|
ReplaceInstWithInst(BB->getInstList(), BI,
|
||
|
I = new CastInst(GEP, I->getType()));
|
||
|
PRINT_PEEPHOLE2("add-to-gep:out", GEP, I);
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
static bool DoRaisePass(Method *M) {
|
||
|
bool Changed = false;
|
||
|
for (Method::iterator MI = M->begin(), ME = M->end(); MI != ME; ++MI) {
|
||
|
BasicBlock *BB = *MI;
|
||
|
BasicBlock::InstListType &BIL = BB->getInstList();
|
||
|
|
||
|
for (BasicBlock::iterator BI = BB->begin(); BI != BB->end();) {
|
||
|
if (PeepholeOptimize(BB, BI))
|
||
|
Changed = true;
|
||
|
else
|
||
|
++BI;
|
||
|
}
|
||
|
}
|
||
|
return Changed;
|
||
|
}
|
||
|
|
||
|
|
||
|
// RaisePointerReferences::doit - Raise a method representation to a higher
|
||
|
// level.
|
||
|
//
|
||
|
bool RaisePointerReferences::doit(Method *M) {
|
||
|
if (M->isExternal()) return false;
|
||
|
bool Changed = false;
|
||
|
|
||
|
while (DoRaisePass(M)) Changed = true;
|
||
|
|
||
|
// PtrCasts - Keep a mapping between the pointer values (the key of the
|
||
|
// map), and the cast to array pointer (the value) in this map. This is
|
||
|
// used when converting pointer math into array addressing.
|
||
|
//
|
||
|
map<Value*, CastInst*> PtrCasts;
|
||
|
|
||
|
// Insert casts for all incoming pointer values. Keep track of those casts
|
||
|
// and the identified incoming values in the PtrCasts map.
|
||
|
//
|
||
|
Changed |= DoInsertArrayCasts(M, PtrCasts);
|
||
|
|
||
|
// Loop over each incoming pointer variable, replacing indexing arithmetic
|
||
|
// with getelementptr calls.
|
||
|
//
|
||
|
Changed |= reduce_apply_bool(PtrCasts.begin(), PtrCasts.end(),
|
||
|
ptr_fun(DoEliminatePointerArithmetic));
|
||
|
|
||
|
return Changed;
|
||
|
}
|