llvm/lib/Target/PowerPC/PPCBranchSelector.cpp

175 lines
6.2 KiB
C++
Raw Normal View History

//===-- PPCBranchSelector.cpp - Emit long conditional branches-----*- C++ -*-=//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Nate Baegeman and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that scans a machine function to determine which
// conditional branches need more than 16 bits of displacement to reach their
// target basic block. It does this in two passes; a calculation of basic block
// positions pass, and a branch psuedo op to machine branch opcode pass. This
// pass should be run last, just before the assembly printer.
//
//===----------------------------------------------------------------------===//
#include "PPC.h"
#include "PPCInstrBuilder.h"
#include "PPCInstrInfo.h"
#include "PPCPredicates.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetAsmInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Compiler.h"
using namespace llvm;
static Statistic<> NumExpanded("ppc-branch-select",
"Num branches expanded to long format");
namespace {
struct VISIBILITY_HIDDEN PPCBSel : public MachineFunctionPass {
/// OffsetMap - Mapping between BB # and byte offset from start of function.
std::vector<unsigned> OffsetMap;
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual const char *getPassName() const {
return "PowerPC Branch Selection";
}
};
}
/// createPPCBranchSelectionPass - returns an instance of the Branch Selection
/// Pass
///
FunctionPass *llvm::createPPCBranchSelectionPass() {
return new PPCBSel();
}
/// getNumBytesForInstruction - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
static unsigned getNumBytesForInstruction(MachineInstr *MI) {
switch (MI->getOpcode()) {
case PPC::BCC:
// while this will be 4 most of the time, if we emit 8 it is just a
// minor pessimization that saves us from having to worry about
// keeping the offsets up to date later when we emit long branch glue.
return 8;
case PPC::IMPLICIT_DEF_GPRC: // no asm emitted
case PPC::IMPLICIT_DEF_G8RC: // no asm emitted
case PPC::IMPLICIT_DEF_F4: // no asm emitted
case PPC::IMPLICIT_DEF_F8: // no asm emitted
case PPC::IMPLICIT_DEF_VRRC: // no asm emitted
return 0;
case PPC::INLINEASM: { // Inline Asm: Variable size.
MachineFunction *MF = MI->getParent()->getParent();
const char *AsmStr = MI->getOperand(0).getSymbolName();
return MF->getTarget().getTargetAsmInfo()->getInlineAsmLength(AsmStr);
}
default:
return 4; // PowerPC instructions are all 4 bytes
}
}
bool PPCBSel::runOnMachineFunction(MachineFunction &Fn) {
// Running total of instructions encountered since beginning of function
unsigned ByteCount = 0;
OffsetMap.resize(Fn.getNumBlockIDs());
// For each MBB, add its offset to the offset map, and count up its
// instructions
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock *MBB = MFI;
OffsetMap[MBB->getNumber()] = ByteCount;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
MBBI != EE; ++MBBI)
ByteCount += getNumBytesForInstruction(MBBI);
}
// We're about to run over the MBB's again, so reset the ByteCount
ByteCount = 0;
// For each MBB, find the conditional branch pseudo instructions, and
// calculate the difference between the target MBB and the current ICount
// to decide whether or not to emit a short or long branch.
//
// short branch:
// bCC .L_TARGET_MBB
//
// long branch:
// bInverseCC $PC+8
// b .L_TARGET_MBB
for (MachineFunction::iterator MFI = Fn.begin(), E = Fn.end(); MFI != E;
++MFI) {
MachineBasicBlock *MBB = MFI;
for (MachineBasicBlock::iterator MBBI = MBB->begin(), EE = MBB->end();
MBBI != EE; ++MBBI) {
// We may end up deleting the MachineInstr that MBBI points to, so
// remember its opcode now so we can refer to it after calling erase()
unsigned ByteSize = getNumBytesForInstruction(MBBI);
if (MBBI->getOpcode() != PPC::BCC) {
ByteCount += ByteSize;
continue;
}
// condbranch operands:
// 0. CR register
// 1. PPC branch opcode
// 2. Target MBB
MachineBasicBlock *DestMBB = MBBI->getOperand(2).getMachineBasicBlock();
PPC::Predicate Pred = (PPC::Predicate)MBBI->getOperand(0).getImm();
unsigned CRReg = MBBI->getOperand(1).getReg();
int Displacement = OffsetMap[DestMBB->getNumber()] - ByteCount;
bool ShortBranchOk = Displacement >= -32768 && Displacement <= 32767;
// Branch on opposite condition if a short branch isn't ok.
if (!ShortBranchOk)
Pred = PPC::InvertPredicate(Pred);
unsigned Opcode;
switch (Pred) {
default: assert(0 && "Unknown cond branch predicate!");
case PPC::PRED_LT: Opcode = PPC::BLT; break;
case PPC::PRED_LE: Opcode = PPC::BLE; break;
case PPC::PRED_EQ: Opcode = PPC::BEQ; break;
case PPC::PRED_GE: Opcode = PPC::BGE; break;
case PPC::PRED_GT: Opcode = PPC::BGT; break;
case PPC::PRED_NE: Opcode = PPC::BNE; break;
case PPC::PRED_UN: Opcode = PPC::BUN; break;
case PPC::PRED_NU: Opcode = PPC::BNU; break;
}
MachineBasicBlock::iterator MBBJ;
if (ShortBranchOk) {
MBBJ = BuildMI(*MBB, MBBI, Opcode, 2).addReg(CRReg).addMBB(DestMBB);
} else {
// Long branch, skip next branch instruction (i.e. $PC+8).
++NumExpanded;
BuildMI(*MBB, MBBI, Opcode, 2).addReg(CRReg).addImm(2);
MBBJ = BuildMI(*MBB, MBBI, PPC::B, 1).addMBB(DestMBB);
}
// Erase the psuedo BCC instruction, and then back up the
// iterator so that when the for loop increments it, we end up in
// the correct place rather than iterating off the end.
MBB->erase(MBBI);
MBBI = MBBJ;
ByteCount += ByteSize;
}
}
OffsetMap.clear();
return true;
}