mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-10 22:46:25 +00:00
198 lines
6.8 KiB
LLVM
198 lines
6.8 KiB
LLVM
|
; RUN: opt < %s -analyze -block-freq | FileCheck %s
|
||
|
|
||
|
; A loop with multiple exits should be handled correctly.
|
||
|
;
|
||
|
; CHECK-LABEL: Printing analysis {{.*}} for function 'multiexit':
|
||
|
; CHECK-NEXT: block-frequency-info: multiexit
|
||
|
define void @multiexit(i32 %a) {
|
||
|
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||
|
entry:
|
||
|
br label %loop.1
|
||
|
|
||
|
; CHECK-NEXT: loop.1: float = 1.333{{3*}},
|
||
|
loop.1:
|
||
|
%i = phi i32 [ 0, %entry ], [ %inc.2, %loop.2 ]
|
||
|
call void @f(i32 %i)
|
||
|
%inc.1 = add i32 %i, 1
|
||
|
%cmp.1 = icmp ugt i32 %inc.1, %a
|
||
|
br i1 %cmp.1, label %exit.1, label %loop.2, !prof !0
|
||
|
|
||
|
; CHECK-NEXT: loop.2: float = 0.666{{6*7}},
|
||
|
loop.2:
|
||
|
call void @g(i32 %inc.1)
|
||
|
%inc.2 = add i32 %inc.1, 1
|
||
|
%cmp.2 = icmp ugt i32 %inc.2, %a
|
||
|
br i1 %cmp.2, label %exit.2, label %loop.1, !prof !1
|
||
|
|
||
|
; CHECK-NEXT: exit.1: float = 0.666{{6*7}},
|
||
|
exit.1:
|
||
|
call void @h(i32 %inc.1)
|
||
|
br label %return
|
||
|
|
||
|
; CHECK-NEXT: exit.2: float = 0.333{{3*}},
|
||
|
exit.2:
|
||
|
call void @i(i32 %inc.2)
|
||
|
br label %return
|
||
|
|
||
|
; CHECK-NEXT: return: float = 1.0, int = [[ENTRY]]
|
||
|
return:
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
declare void @f(i32 %x)
|
||
|
declare void @g(i32 %x)
|
||
|
declare void @h(i32 %x)
|
||
|
declare void @i(i32 %x)
|
||
|
|
||
|
!0 = metadata !{metadata !"branch_weights", i32 3, i32 3}
|
||
|
!1 = metadata !{metadata !"branch_weights", i32 5, i32 5}
|
||
|
|
||
|
; The current BlockFrequencyInfo algorithm doesn't handle multiple entrances
|
||
|
; into a loop very well. The frequencies assigned to blocks in the loop are
|
||
|
; predictable (and not absurd), but also not correct and therefore not worth
|
||
|
; testing.
|
||
|
;
|
||
|
; There are two testcases below.
|
||
|
;
|
||
|
; For each testcase, I use a CHECK-NEXT/NOT combo like an XFAIL with the
|
||
|
; granularity of a single check. If/when this behaviour is fixed, we'll know
|
||
|
; about it, and the test should be updated.
|
||
|
;
|
||
|
; Testcase #1
|
||
|
; ===========
|
||
|
;
|
||
|
; In this case c1 and c2 should have frequencies of 15/7 and 13/7,
|
||
|
; respectively. To calculate this, consider assigning 1.0 to entry, and
|
||
|
; distributing frequency iteratively (to infinity). At the first iteration,
|
||
|
; entry gives 3/4 to c1 and 1/4 to c2. At every step after, c1 and c2 give 3/4
|
||
|
; of what they have to each other. Somehow, all of it comes out to exit.
|
||
|
;
|
||
|
; c1 = 3/4 + 1/4*3/4 + 3/4*3^2/4^2 + 1/4*3^3/4^3 + 3/4*3^3/4^3 + ...
|
||
|
; c2 = 1/4 + 3/4*3/4 + 1/4*3^2/4^2 + 3/4*3^3/4^3 + 1/4*3^3/4^3 + ...
|
||
|
;
|
||
|
; Simplify by splitting up the odd and even terms of the series and taking out
|
||
|
; factors so that the infite series matches:
|
||
|
;
|
||
|
; c1 = 3/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
; + 3/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
; c2 = 1/4 *(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
; + 9/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
;
|
||
|
; c1 = 15/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
; c2 = 13/16*(9^0/16^0 + 9^1/16^1 + 9^2/16^2 + ...)
|
||
|
;
|
||
|
; Since this geometric series sums to 16/7:
|
||
|
;
|
||
|
; c1 = 15/7
|
||
|
; c2 = 13/7
|
||
|
;
|
||
|
; If we treat c1 and c2 as members of the same loop, the exit frequency of the
|
||
|
; loop as a whole is 1/4, so the loop scale should be 4. Summing c1 and c2
|
||
|
; gives 28/7, or 4.0, which is nice confirmation of the math above.
|
||
|
;
|
||
|
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
|
||
|
; returns 3/4 and 13/16, respectively. LoopInfo ignores edges between loops
|
||
|
; (and doesn't see any loops here at all), and -block-freq ignores the
|
||
|
; irreducible edge from c2 to c1.
|
||
|
;
|
||
|
; CHECK-LABEL: Printing analysis {{.*}} for function 'multientry':
|
||
|
; CHECK-NEXT: block-frequency-info: multientry
|
||
|
define void @multientry(i32 %a) {
|
||
|
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||
|
entry:
|
||
|
%choose = call i32 @choose(i32 %a)
|
||
|
%compare = icmp ugt i32 %choose, %a
|
||
|
br i1 %compare, label %c1, label %c2, !prof !2
|
||
|
|
||
|
; This is like a single-line XFAIL (see above).
|
||
|
; CHECK-NEXT: c1:
|
||
|
; CHECK-NOT: float = 2.142857{{[0-9]*}},
|
||
|
c1:
|
||
|
%i1 = phi i32 [ %a, %entry ], [ %i2.inc, %c2 ]
|
||
|
%i1.inc = add i32 %i1, 1
|
||
|
%choose1 = call i32 @choose(i32 %i1)
|
||
|
%compare1 = icmp ugt i32 %choose1, %a
|
||
|
br i1 %compare1, label %c2, label %exit, !prof !2
|
||
|
|
||
|
; This is like a single-line XFAIL (see above).
|
||
|
; CHECK-NEXT: c2:
|
||
|
; CHECK-NOT: float = 1.857142{{[0-9]*}},
|
||
|
c2:
|
||
|
%i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ]
|
||
|
%i2.inc = add i32 %i2, 1
|
||
|
%choose2 = call i32 @choose(i32 %i2)
|
||
|
%compare2 = icmp ugt i32 %choose2, %a
|
||
|
br i1 %compare2, label %c1, label %exit, !prof !2
|
||
|
|
||
|
; We still shouldn't lose any frequency.
|
||
|
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||
|
exit:
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
; Testcase #2
|
||
|
; ===========
|
||
|
;
|
||
|
; In this case c1 and c2 should be treated as equals in a single loop. The
|
||
|
; exit frequency is 1/3, so the scaling factor for the loop should be 3.0. The
|
||
|
; loop is entered 2/3 of the time, and c1 and c2 split the total loop frequency
|
||
|
; evenly (1/2), so they should each have frequencies of 1.0 (3.0*2/3*1/2).
|
||
|
; Another way of computing this result is by assigning 1.0 to entry and showing
|
||
|
; that c1 and c2 should accumulate frequencies of:
|
||
|
;
|
||
|
; 1/3 + 2/9 + 4/27 + 8/81 + ...
|
||
|
; 2^0/3^1 + 2^1/3^2 + 2^2/3^3 + 2^3/3^4 + ...
|
||
|
;
|
||
|
; At the first step, c1 and c2 each get 1/3 of the entry. At each subsequent
|
||
|
; step, c1 and c2 each get 1/3 of what's left in c1 and c2 combined. This
|
||
|
; infinite series sums to 1.
|
||
|
;
|
||
|
; However, assuming c1 precedes c2 in reverse post-order, the current algorithm
|
||
|
; returns 1/2 and 3/4, respectively. LoopInfo ignores edges between loops (and
|
||
|
; treats c1 and c2 as self-loops only), and -block-freq ignores the irreducible
|
||
|
; edge from c2 to c1.
|
||
|
;
|
||
|
; Below I use a CHECK-NEXT/NOT combo like an XFAIL with the granularity of a
|
||
|
; single check. If/when this behaviour is fixed, we'll know about it, and the
|
||
|
; test should be updated.
|
||
|
;
|
||
|
; CHECK-LABEL: Printing analysis {{.*}} for function 'crossloops':
|
||
|
; CHECK-NEXT: block-frequency-info: crossloops
|
||
|
define void @crossloops(i32 %a) {
|
||
|
; CHECK-NEXT: entry: float = 1.0, int = [[ENTRY:[0-9]+]]
|
||
|
entry:
|
||
|
%choose = call i32 @choose(i32 %a)
|
||
|
switch i32 %choose, label %exit [ i32 1, label %c1
|
||
|
i32 2, label %c2 ], !prof !3
|
||
|
|
||
|
; This is like a single-line XFAIL (see above).
|
||
|
; CHECK-NEXT: c1:
|
||
|
; CHECK-NOT: float = 1.0,
|
||
|
c1:
|
||
|
%i1 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
|
||
|
%i1.inc = add i32 %i1, 1
|
||
|
%choose1 = call i32 @choose(i32 %i1)
|
||
|
switch i32 %choose1, label %exit [ i32 1, label %c1
|
||
|
i32 2, label %c2 ], !prof !3
|
||
|
|
||
|
; This is like a single-line XFAIL (see above).
|
||
|
; CHECK-NEXT: c2:
|
||
|
; CHECK-NOT: float = 1.0,
|
||
|
c2:
|
||
|
%i2 = phi i32 [ %a, %entry ], [ %i1.inc, %c1 ], [ %i2.inc, %c2 ]
|
||
|
%i2.inc = add i32 %i2, 1
|
||
|
%choose2 = call i32 @choose(i32 %i2)
|
||
|
switch i32 %choose2, label %exit [ i32 1, label %c1
|
||
|
i32 2, label %c2 ], !prof !3
|
||
|
|
||
|
; We still shouldn't lose any frequency.
|
||
|
; CHECK-NEXT: exit: float = 1.0, int = [[ENTRY]]
|
||
|
exit:
|
||
|
ret void
|
||
|
}
|
||
|
|
||
|
declare i32 @choose(i32)
|
||
|
|
||
|
!2 = metadata !{metadata !"branch_weights", i32 3, i32 1}
|
||
|
!3 = metadata !{metadata !"branch_weights", i32 2, i32 2, i32 2}
|