llvm/lib/Target/R600/R600Packetizer.cpp

447 lines
14 KiB
C++
Raw Normal View History

//===----- R600Packetizer.cpp - VLIW packetizer ---------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass implements instructions packetization for R600. It unsets isLast
/// bit of instructions inside a bundle and substitutes src register with
/// PreviousVector when applicable.
//
//===----------------------------------------------------------------------===//
#ifndef R600PACKETIZER_CPP
#define R600PACKETIZER_CPP
#define DEBUG_TYPE "packets"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/CodeGen/DFAPacketizer.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/ScheduleDAG.h"
#include "AMDGPU.h"
#include "R600InstrInfo.h"
namespace llvm {
class R600Packetizer : public MachineFunctionPass {
public:
static char ID;
R600Packetizer(const TargetMachine &TM) : MachineFunctionPass(ID) {}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
const char *getPassName() const {
return "R600 Packetizer";
}
bool runOnMachineFunction(MachineFunction &Fn);
};
char R600Packetizer::ID = 0;
class R600PacketizerList : public VLIWPacketizerList {
private:
const R600InstrInfo *TII;
const R600RegisterInfo &TRI;
enum BankSwizzle {
ALU_VEC_012 = 0,
ALU_VEC_021,
ALU_VEC_120,
ALU_VEC_102,
ALU_VEC_201,
ALU_VEC_210
};
unsigned getSlot(const MachineInstr *MI) const {
return TRI.getHWRegChan(MI->getOperand(0).getReg());
}
std::vector<unsigned> getPreviousVector(MachineBasicBlock::iterator I) const {
std::vector<unsigned> Result;
I--;
if (!TII->isALUInstr(I->getOpcode()) && !I->isBundle())
return Result;
MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
if (I->isBundle())
BI++;
while (BI->isBundledWithPred() && !TII->isPredicated(BI)) {
int OperandIdx = TII->getOperandIdx(BI->getOpcode(), R600Operands::WRITE);
if (OperandIdx > -1 && BI->getOperand(OperandIdx).getImm())
Result.push_back(BI->getOperand(0).getReg());
BI++;
}
return Result;
}
void substitutePV(MachineInstr *MI, const std::vector<unsigned> &PV) const {
R600Operands::Ops Ops[] = {
R600Operands::SRC0,
R600Operands::SRC1,
R600Operands::SRC2
};
for (unsigned i = 0; i < 3; i++) {
int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
if (OperandIdx < 0)
continue;
unsigned Src = MI->getOperand(OperandIdx).getReg();
for (unsigned j = 0, e = PV.size(); j < e; j++) {
if (Src == PV[j]) {
unsigned Chan = TRI.getHWRegChan(Src);
unsigned PVReg;
switch (Chan) {
case 0:
PVReg = AMDGPU::PV_X;
break;
case 1:
PVReg = AMDGPU::PV_Y;
break;
case 2:
PVReg = AMDGPU::PV_Z;
break;
case 3:
PVReg = AMDGPU::PV_W;
break;
default:
llvm_unreachable("Invalid Chan");
}
MI->getOperand(OperandIdx).setReg(PVReg);
break;
}
}
}
}
public:
// Ctor.
R600PacketizerList(MachineFunction &MF, MachineLoopInfo &MLI,
MachineDominatorTree &MDT)
: VLIWPacketizerList(MF, MLI, MDT, true),
TII (static_cast<const R600InstrInfo *>(MF.getTarget().getInstrInfo())),
TRI(TII->getRegisterInfo()) { }
// initPacketizerState - initialize some internal flags.
void initPacketizerState() { }
// ignorePseudoInstruction - Ignore bundling of pseudo instructions.
bool ignorePseudoInstruction(MachineInstr *MI, MachineBasicBlock *MBB) {
return false;
}
// isSoloInstruction - return true if instruction MI can not be packetized
// with any other instruction, which means that MI itself is a packet.
bool isSoloInstruction(MachineInstr *MI) {
if (TII->isVector(*MI))
return true;
if (!TII->isALUInstr(MI->getOpcode()))
return true;
if (TII->get(MI->getOpcode()).TSFlags & R600_InstFlag::TRANS_ONLY)
return true;
if (TII->isTransOnly(MI))
return true;
return false;
}
// isLegalToPacketizeTogether - Is it legal to packetize SUI and SUJ
// together.
bool isLegalToPacketizeTogether(SUnit *SUI, SUnit *SUJ) {
MachineInstr *MII = SUI->getInstr(), *MIJ = SUJ->getInstr();
if (getSlot(MII) <= getSlot(MIJ))
return false;
// Does MII and MIJ share the same pred_sel ?
int OpI = TII->getOperandIdx(MII->getOpcode(), R600Operands::PRED_SEL),
OpJ = TII->getOperandIdx(MIJ->getOpcode(), R600Operands::PRED_SEL);
unsigned PredI = (OpI > -1)?MII->getOperand(OpI).getReg():0,
PredJ = (OpJ > -1)?MIJ->getOperand(OpJ).getReg():0;
if (PredI != PredJ)
return false;
if (SUJ->isSucc(SUI)) {
for (unsigned i = 0, e = SUJ->Succs.size(); i < e; ++i) {
const SDep &Dep = SUJ->Succs[i];
if (Dep.getSUnit() != SUI)
continue;
if (Dep.getKind() == SDep::Anti)
continue;
if (Dep.getKind() == SDep::Output)
if (MII->getOperand(0).getReg() != MIJ->getOperand(0).getReg())
continue;
return false;
}
}
return true;
}
// isLegalToPruneDependencies - Is it legal to prune dependece between SUI
// and SUJ.
bool isLegalToPruneDependencies(SUnit *SUI, SUnit *SUJ) {return false;}
void setIsLastBit(MachineInstr *MI, unsigned Bit) const {
unsigned LastOp = TII->getOperandIdx(MI->getOpcode(), R600Operands::LAST);
MI->getOperand(LastOp).setImm(Bit);
}
MachineBasicBlock::iterator addToPacket(MachineInstr *MI) {
CurrentPacketMIs.push_back(MI);
bool FitsConstLimits = TII->canBundle(CurrentPacketMIs);
DEBUG(
if (!FitsConstLimits) {
dbgs() << "Couldn't pack :\n";
MI->dump();
dbgs() << "with the following packets :\n";
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
CurrentPacketMIs[i]->dump();
dbgs() << "\n";
}
dbgs() << "because of Consts read limitations\n";
});
const std::vector<unsigned> &PV = getPreviousVector(MI);
bool FitsReadPortLimits = fitsReadPortLimitation(CurrentPacketMIs, PV);
DEBUG(
if (!FitsReadPortLimits) {
dbgs() << "Couldn't pack :\n";
MI->dump();
dbgs() << "with the following packets :\n";
for (unsigned i = 0, e = CurrentPacketMIs.size() - 1; i < e; i++) {
CurrentPacketMIs[i]->dump();
dbgs() << "\n";
}
dbgs() << "because of Read port limitations\n";
});
bool isBundlable = FitsConstLimits && FitsReadPortLimits;
CurrentPacketMIs.pop_back();
if (!isBundlable) {
endPacket(MI->getParent(), MI);
substitutePV(MI, getPreviousVector(MI));
return VLIWPacketizerList::addToPacket(MI);
}
if (!CurrentPacketMIs.empty())
setIsLastBit(CurrentPacketMIs.back(), 0);
substitutePV(MI, PV);
return VLIWPacketizerList::addToPacket(MI);
}
private:
std::vector<std::pair<int, unsigned> >
ExtractSrcs(const MachineInstr *MI, const std::vector<unsigned> &PV) const {
R600Operands::Ops Ops[] = {
R600Operands::SRC0,
R600Operands::SRC1,
R600Operands::SRC2
};
std::vector<std::pair<int, unsigned> > Result;
for (unsigned i = 0; i < 3; i++) {
int OperandIdx = TII->getOperandIdx(MI->getOpcode(), Ops[i]);
if (OperandIdx < 0){
Result.push_back(std::pair<int, unsigned>(-1,0));
continue;
}
unsigned Src = MI->getOperand(OperandIdx).getReg();
if (std::find(PV.begin(), PV.end(), Src) != PV.end()) {
Result.push_back(std::pair<int, unsigned>(-1,0));
continue;
}
unsigned Reg = TRI.getEncodingValue(Src) & 0xff;
if (Reg > 127) {
Result.push_back(std::pair<int, unsigned>(-1,0));
continue;
}
unsigned Chan = TRI.getHWRegChan(Src);
Result.push_back(std::pair<int, unsigned>(Reg, Chan));
}
return Result;
}
std::vector<std::pair<int, unsigned> >
Swizzle(std::vector<std::pair<int, unsigned> > Src,
BankSwizzle Swz) const {
switch (Swz) {
case ALU_VEC_012:
break;
case ALU_VEC_021:
std::swap(Src[1], Src[2]);
break;
case ALU_VEC_102:
std::swap(Src[0], Src[1]);
break;
case ALU_VEC_120:
std::swap(Src[0], Src[1]);
std::swap(Src[0], Src[2]);
break;
case ALU_VEC_201:
std::swap(Src[0], Src[2]);
std::swap(Src[0], Src[1]);
break;
case ALU_VEC_210:
std::swap(Src[0], Src[2]);
break;
}
return Src;
}
bool isLegal(const std::vector<MachineInstr *> &IG,
const std::vector<BankSwizzle> &Swz,
const std::vector<unsigned> &PV) const {
assert (Swz.size() == IG.size());
int Vector[4][3];
memset(Vector, -1, sizeof(Vector));
for (unsigned i = 0, e = IG.size(); i < e; i++) {
const std::vector<std::pair<int, unsigned> > &Srcs =
Swizzle(ExtractSrcs(IG[i], PV), Swz[i]);
for (unsigned j = 0; j < 3; j++) {
const std::pair<int, unsigned> &Src = Srcs[j];
if (Src.first < 0)
continue;
if (Vector[Src.second][j] < 0)
Vector[Src.second][j] = Src.first;
if (Vector[Src.second][j] != Src.first)
return false;
}
}
return true;
}
bool recursiveFitsFPLimitation(
std::vector<MachineInstr *> IG,
const std::vector<unsigned> &PV,
std::vector<BankSwizzle> &SwzCandidate,
std::vector<MachineInstr *> CurrentlyChecked)
const {
if (!isLegal(CurrentlyChecked, SwzCandidate, PV))
return false;
if (IG.size() == CurrentlyChecked.size()) {
return true;
}
BankSwizzle AvailableSwizzle[] = {
ALU_VEC_012,
ALU_VEC_021,
ALU_VEC_120,
ALU_VEC_102,
ALU_VEC_201,
ALU_VEC_210
};
CurrentlyChecked.push_back(IG[CurrentlyChecked.size()]);
for (unsigned i = 0; i < 6; i++) {
SwzCandidate.push_back(AvailableSwizzle[i]);
if (recursiveFitsFPLimitation(IG, PV, SwzCandidate, CurrentlyChecked))
return true;
SwzCandidate.pop_back();
}
return false;
}
bool fitsReadPortLimitation(
std::vector<MachineInstr *> IG,
const std::vector<unsigned> &PV)
const {
//Todo : support shared src0 - src1 operand
std::vector<BankSwizzle> SwzCandidate;
bool Result = recursiveFitsFPLimitation(IG, PV, SwzCandidate,
std::vector<MachineInstr *>());
if (!Result)
return false;
for (unsigned i = 0, e = IG.size(); i < e; i++) {
MachineInstr *MI = IG[i];
unsigned Op = TII->getOperandIdx(MI->getOpcode(),
R600Operands::BANK_SWIZZLE);
MI->getOperand(Op).setImm(SwzCandidate[i]);
}
return true;
}
};
bool R600Packetizer::runOnMachineFunction(MachineFunction &Fn) {
const TargetInstrInfo *TII = Fn.getTarget().getInstrInfo();
MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>();
// Instantiate the packetizer.
R600PacketizerList Packetizer(Fn, MLI, MDT);
// DFA state table should not be empty.
assert(Packetizer.getResourceTracker() && "Empty DFA table!");
//
// Loop over all basic blocks and remove KILL pseudo-instructions
// These instructions confuse the dependence analysis. Consider:
// D0 = ... (Insn 0)
// R0 = KILL R0, D0 (Insn 1)
// R0 = ... (Insn 2)
// Here, Insn 1 will result in the dependence graph not emitting an output
// dependence between Insn 0 and Insn 2. This can lead to incorrect
// packetization
//
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
MachineBasicBlock::iterator End = MBB->end();
MachineBasicBlock::iterator MI = MBB->begin();
while (MI != End) {
if (MI->isKill()) {
MachineBasicBlock::iterator DeleteMI = MI;
++MI;
MBB->erase(DeleteMI);
End = MBB->end();
continue;
}
++MI;
}
}
// Loop over all of the basic blocks.
for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
MBB != MBBe; ++MBB) {
// Find scheduling regions and schedule / packetize each region.
unsigned RemainingCount = MBB->size();
for(MachineBasicBlock::iterator RegionEnd = MBB->end();
RegionEnd != MBB->begin();) {
// The next region starts above the previous region. Look backward in the
// instruction stream until we find the nearest boundary.
MachineBasicBlock::iterator I = RegionEnd;
for(;I != MBB->begin(); --I, --RemainingCount) {
if (TII->isSchedulingBoundary(llvm::prior(I), MBB, Fn))
break;
}
I = MBB->begin();
// Skip empty scheduling regions.
if (I == RegionEnd) {
RegionEnd = llvm::prior(RegionEnd);
--RemainingCount;
continue;
}
// Skip regions with one instruction.
if (I == llvm::prior(RegionEnd)) {
RegionEnd = llvm::prior(RegionEnd);
continue;
}
Packetizer.PacketizeMIs(MBB, I, RegionEnd);
RegionEnd = I;
}
}
return true;
}
}
llvm::FunctionPass *llvm::createR600Packetizer(TargetMachine &tm) {
return new R600Packetizer(tm);
}
#endif // R600PACKETIZER_CPP