llvm/utils/TableGen/FixedLenDecoderEmitter.cpp

1489 lines
50 KiB
C++
Raw Normal View History

//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// It contains the tablegen backend that emits the decoder functions for
// targets with fixed length instruction set.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "decoder-emitter"
#include "FixedLenDecoderEmitter.h"
#include "CodeGenTarget.h"
#include "Record.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
#include <map>
#include <string>
using namespace llvm;
// The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system
// for a bit value.
//
// BIT_UNFILTERED is used as the init value for a filter position. It is used
// only for filter processings.
typedef enum {
BIT_TRUE, // '1'
BIT_FALSE, // '0'
BIT_UNSET, // '?'
BIT_UNFILTERED // unfiltered
} bit_value_t;
static bool ValueSet(bit_value_t V) {
return (V == BIT_TRUE || V == BIT_FALSE);
}
static bool ValueNotSet(bit_value_t V) {
return (V == BIT_UNSET);
}
static int Value(bit_value_t V) {
return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1);
}
static bit_value_t bitFromBits(BitsInit &bits, unsigned index) {
if (BitInit *bit = dynamic_cast<BitInit*>(bits.getBit(index)))
return bit->getValue() ? BIT_TRUE : BIT_FALSE;
// The bit is uninitialized.
return BIT_UNSET;
}
// Prints the bit value for each position.
static void dumpBits(raw_ostream &o, BitsInit &bits) {
unsigned index;
for (index = bits.getNumBits(); index > 0; index--) {
switch (bitFromBits(bits, index - 1)) {
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
case BIT_UNSET:
o << "_";
break;
default:
assert(0 && "unexpected return value from bitFromBits");
}
}
}
static BitsInit &getBitsField(const Record &def, const char *str) {
BitsInit *bits = def.getValueAsBitsInit(str);
return *bits;
}
// Forward declaration.
class FilterChooser;
// Representation of the instruction to work on.
typedef std::vector<bit_value_t> insn_t;
/// Filter - Filter works with FilterChooser to produce the decoding tree for
/// the ISA.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree in a certain level. Each case stmt delegates to an inferior
/// FilterChooser to decide what further decoding logic to employ, or in another
/// words, what other remaining bits to look at. The FilterChooser eventually
/// chooses a best Filter to do its job.
///
/// This recursive scheme ends when the number of Opcodes assigned to the
/// FilterChooser becomes 1 or if there is a conflict. A conflict happens when
/// the Filter/FilterChooser combo does not know how to distinguish among the
/// Opcodes assigned.
///
/// An example of a conflict is
///
/// Conflict:
/// 111101000.00........00010000....
/// 111101000.00........0001........
/// 1111010...00........0001........
/// 1111010...00....................
/// 1111010.........................
/// 1111............................
/// ................................
/// VST4q8a 111101000_00________00010000____
/// VST4q8b 111101000_00________00010000____
///
/// The Debug output shows the path that the decoding tree follows to reach the
/// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced
/// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters.
///
/// The encoding info in the .td files does not specify this meta information,
/// which could have been used by the decoder to resolve the conflict. The
/// decoder could try to decode the even/odd register numbering and assign to
/// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a"
/// version and return the Opcode since the two have the same Asm format string.
class Filter {
protected:
FilterChooser *Owner; // points to the FilterChooser who owns this filter
unsigned StartBit; // the starting bit position
unsigned NumBits; // number of bits to filter
bool Mixed; // a mixed region contains both set and unset bits
// Map of well-known segment value to the set of uid's with that value.
std::map<uint64_t, std::vector<unsigned> > FilteredInstructions;
// Set of uid's with non-constant segment values.
std::vector<unsigned> VariableInstructions;
// Map of well-known segment value to its delegate.
std::map<unsigned, FilterChooser*> FilterChooserMap;
// Number of instructions which fall under FilteredInstructions category.
unsigned NumFiltered;
// Keeps track of the last opcode in the filtered bucket.
unsigned LastOpcFiltered;
// Number of instructions which fall under VariableInstructions category.
unsigned NumVariable;
public:
unsigned getNumFiltered() { return NumFiltered; }
unsigned getNumVariable() { return NumVariable; }
unsigned getSingletonOpc() {
assert(NumFiltered == 1);
return LastOpcFiltered;
}
// Return the filter chooser for the group of instructions without constant
// segment values.
FilterChooser &getVariableFC() {
assert(NumFiltered == 1);
assert(FilterChooserMap.size() == 1);
return *(FilterChooserMap.find((unsigned)-1)->second);
}
Filter(const Filter &f);
Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed);
~Filter();
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void recurse();
// Emit code to decode instructions given a segment or segments of bits.
void emit(raw_ostream &o, unsigned &Indentation);
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
unsigned usefulness() const;
}; // End of class Filter
// These are states of our finite state machines used in FilterChooser's
// filterProcessor() which produces the filter candidates to use.
typedef enum {
ATTR_NONE,
ATTR_FILTERED,
ATTR_ALL_SET,
ATTR_ALL_UNSET,
ATTR_MIXED
} bitAttr_t;
/// FilterChooser - FilterChooser chooses the best filter among a set of Filters
/// in order to perform the decoding of instructions at the current level.
///
/// Decoding proceeds from the top down. Based on the well-known encoding bits
/// of instructions available, FilterChooser builds up the possible Filters that
/// can further the task of decoding by distinguishing among the remaining
/// candidate instructions.
///
/// Once a filter has been chosen, it is called upon to divide the decoding task
/// into sub-tasks and delegates them to its inferior FilterChoosers for further
/// processings.
///
/// It is useful to think of a Filter as governing the switch stmts of the
/// decoding tree. And each case is delegated to an inferior FilterChooser to
/// decide what further remaining bits to look at.
class FilterChooser {
protected:
friend class Filter;
// Vector of codegen instructions to choose our filter.
const std::vector<const CodeGenInstruction*> &AllInstructions;
// Vector of uid's for this filter chooser to work on.
const std::vector<unsigned> Opcodes;
// Lookup table for the operand decoding of instructions.
std::map<unsigned, std::vector<OperandInfo> > &Operands;
// Vector of candidate filters.
std::vector<Filter> Filters;
// Array of bit values passed down from our parent.
// Set to all BIT_UNFILTERED's for Parent == NULL.
std::vector<bit_value_t> FilterBitValues;
// Links to the FilterChooser above us in the decoding tree.
FilterChooser *Parent;
// Index of the best filter from Filters.
int BestIndex;
// Width of instructions
unsigned BitWidth;
// Parent emitter
const FixedLenDecoderEmitter *Emitter;
public:
FilterChooser(const FilterChooser &FC) :
AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes),
Operands(FC.Operands), Filters(FC.Filters),
FilterBitValues(FC.FilterBitValues), Parent(FC.Parent),
BestIndex(FC.BestIndex), BitWidth(FC.BitWidth),
Emitter(FC.Emitter) { }
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs,
std::map<unsigned, std::vector<OperandInfo> > &Ops,
unsigned BW,
const FixedLenDecoderEmitter *E) :
AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(),
Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) {
for (unsigned i = 0; i < BitWidth; ++i)
FilterBitValues.push_back(BIT_UNFILTERED);
doFilter();
}
FilterChooser(const std::vector<const CodeGenInstruction*> &Insts,
const std::vector<unsigned> &IDs,
std::map<unsigned, std::vector<OperandInfo> > &Ops,
std::vector<bit_value_t> &ParentFilterBitValues,
FilterChooser &parent) :
AllInstructions(Insts), Opcodes(IDs), Operands(Ops),
Filters(), FilterBitValues(ParentFilterBitValues),
Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth),
Emitter(parent.Emitter) {
doFilter();
}
// The top level filter chooser has NULL as its parent.
bool isTopLevel() { return Parent == NULL; }
// Emit the top level typedef and decodeInstruction() function.
void emitTop(raw_ostream &o, unsigned Indentation, std::string Namespace);
protected:
// Populates the insn given the uid.
void insnWithID(insn_t &Insn, unsigned Opcode) const {
BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst");
for (unsigned i = 0; i < BitWidth; ++i)
Insn.push_back(bitFromBits(Bits, i));
}
// Returns the record name.
const std::string &nameWithID(unsigned Opcode) const {
return AllInstructions[Opcode]->TheDef->getName();
}
// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if there exists any uninitialized bit value in the range.
// Returns true, otherwise.
bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit,
unsigned NumBits) const;
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void dumpFilterArray(raw_ostream &o, std::vector<bit_value_t> & filter);
/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void dumpStack(raw_ostream &o, const char *prefix);
Filter &bestFilter() {
assert(BestIndex != -1 && "BestIndex not set");
return Filters[BestIndex];
}
// Called from Filter::recurse() when singleton exists. For debug purpose.
void SingletonExists(unsigned Opc);
bool PositionFiltered(unsigned i) {
return ValueSet(FilterBitValues[i]);
}
// Calculates the island(s) needed to decode the instruction.
// This returns a lit of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
insn_t &Insn);
// Emits code to check the Predicates member of an instruction are true.
// Returns true if predicate matches were emitted, false otherwise.
bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation,unsigned Opc);
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
bool emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,unsigned Opc);
// Emits code to decode the singleton, and then to decode the rest.
void emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,Filter &Best);
void emitBinaryParser(raw_ostream &o , unsigned &Indentation,
OperandInfo &OpInfo);
// Assign a single filter and run with it.
void runSingleFilter(FilterChooser &owner, unsigned startBit, unsigned numBit,
bool mixed);
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex,
bool AllowMixed);
// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters. It chooses the best filter and
// recursively descends down the decoding tree.
bool filterProcessor(bool AllowMixed, bool Greedy = true);
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void doFilter();
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
bool emit(raw_ostream &o, unsigned &Indentation);
};
///////////////////////////
// //
// Filter Implmenetation //
// //
///////////////////////////
Filter::Filter(const Filter &f) :
Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed),
FilteredInstructions(f.FilteredInstructions),
VariableInstructions(f.VariableInstructions),
FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered),
LastOpcFiltered(f.LastOpcFiltered), NumVariable(f.NumVariable) {
}
Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits,
bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits),
Mixed(mixed) {
assert(StartBit + NumBits - 1 < Owner->BitWidth);
NumFiltered = 0;
LastOpcFiltered = 0;
NumVariable = 0;
for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) {
insn_t Insn;
// Populates the insn given the uid.
Owner->insnWithID(Insn, Owner->Opcodes[i]);
uint64_t Field;
// Scans the segment for possibly well-specified encoding bits.
bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits);
if (ok) {
// The encoding bits are well-known. Lets add the uid of the
// instruction into the bucket keyed off the constant field value.
LastOpcFiltered = Owner->Opcodes[i];
FilteredInstructions[Field].push_back(LastOpcFiltered);
++NumFiltered;
} else {
// Some of the encoding bit(s) are unspecfied. This contributes to
// one additional member of "Variable" instructions.
VariableInstructions.push_back(Owner->Opcodes[i]);
++NumVariable;
}
}
assert((FilteredInstructions.size() + VariableInstructions.size() > 0)
&& "Filter returns no instruction categories");
}
Filter::~Filter() {
std::map<unsigned, FilterChooser*>::iterator filterIterator;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
delete filterIterator->second;
}
}
// Divides the decoding task into sub tasks and delegates them to the
// inferior FilterChooser's.
//
// A special case arises when there's only one entry in the filtered
// instructions. In order to unambiguously decode the singleton, we need to
// match the remaining undecoded encoding bits against the singleton.
void Filter::recurse() {
std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator;
// Starts by inheriting our parent filter chooser's filter bit values.
std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues);
unsigned bitIndex;
if (VariableInstructions.size()) {
// Conservatively marks each segment position as BIT_UNSET.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++)
BitValueArray[StartBit + bitIndex] = BIT_UNSET;
// Delegates to an inferior filter chooser for further processing on this
// group of instructions whose segment values are variable.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
(unsigned)-1,
new FilterChooser(Owner->AllInstructions,
VariableInstructions,
Owner->Operands,
BitValueArray,
*Owner)
));
}
// No need to recurse for a singleton filtered instruction.
// See also Filter::emit().
if (getNumFiltered() == 1) {
//Owner->SingletonExists(LastOpcFiltered);
assert(FilterChooserMap.size() == 1);
return;
}
// Otherwise, create sub choosers.
for (mapIterator = FilteredInstructions.begin();
mapIterator != FilteredInstructions.end();
mapIterator++) {
// Marks all the segment positions with either BIT_TRUE or BIT_FALSE.
for (bitIndex = 0; bitIndex < NumBits; bitIndex++) {
if (mapIterator->first & (1ULL << bitIndex))
BitValueArray[StartBit + bitIndex] = BIT_TRUE;
else
BitValueArray[StartBit + bitIndex] = BIT_FALSE;
}
// Delegates to an inferior filter chooser for further processing on this
// category of instructions.
FilterChooserMap.insert(std::pair<unsigned, FilterChooser*>(
mapIterator->first,
new FilterChooser(Owner->AllInstructions,
mapIterator->second,
Owner->Operands,
BitValueArray,
*Owner)
));
}
}
// Emit code to decode instructions given a segment or segments of bits.
void Filter::emit(raw_ostream &o, unsigned &Indentation) {
o.indent(Indentation) << "// Check Inst{";
if (NumBits > 1)
o << (StartBit + NumBits - 1) << '-';
o << StartBit << "} ...\n";
o.indent(Indentation) << "switch (fieldFromInstruction" << Owner->BitWidth
<< "(insn, " << StartBit << ", "
<< NumBits << ")) {\n";
std::map<unsigned, FilterChooser*>::iterator filterIterator;
bool DefaultCase = false;
for (filterIterator = FilterChooserMap.begin();
filterIterator != FilterChooserMap.end();
filterIterator++) {
// Field value -1 implies a non-empty set of variable instructions.
// See also recurse().
if (filterIterator->first == (unsigned)-1) {
DefaultCase = true;
o.indent(Indentation) << "default:\n";
o.indent(Indentation) << " break; // fallthrough\n";
// Closing curly brace for the switch statement.
// This is unconventional because we want the default processing to be
// performed for the fallthrough cases as well, i.e., when the "cases"
// did not prove a decoded instruction.
o.indent(Indentation) << "}\n";
} else
o.indent(Indentation) << "case " << filterIterator->first << ":\n";
// We arrive at a category of instructions with the same segment value.
// Now delegate to the sub filter chooser for further decodings.
// The case may fallthrough, which happens if the remaining well-known
// encoding bits do not match exactly.
if (!DefaultCase) { ++Indentation; ++Indentation; }
bool finished = filterIterator->second->emit(o, Indentation);
// For top level default case, there's no need for a break statement.
if (Owner->isTopLevel() && DefaultCase)
break;
if (!finished)
o.indent(Indentation) << "break;\n";
if (!DefaultCase) { --Indentation; --Indentation; }
}
// If there is no default case, we still need to supply a closing brace.
if (!DefaultCase) {
// Closing curly brace for the switch statement.
o.indent(Indentation) << "}\n";
}
}
// Returns the number of fanout produced by the filter. More fanout implies
// the filter distinguishes more categories of instructions.
unsigned Filter::usefulness() const {
if (VariableInstructions.size())
return FilteredInstructions.size();
else
return FilteredInstructions.size() + 1;
}
//////////////////////////////////
// //
// Filterchooser Implementation //
// //
//////////////////////////////////
// Emit the top level typedef and decodeInstruction() function.
void FilterChooser::emitTop(raw_ostream &o, unsigned Indentation,
std::string Namespace) {
o.indent(Indentation) <<
"static MCDisassembler::DecodeStatus decode" << Namespace << "Instruction" << BitWidth
<< "(MCInst &MI, uint" << BitWidth << "_t insn, uint64_t Address, "
<< "const void *Decoder, const MCSubtargetInfo &STI) {\n";
o.indent(Indentation) << " unsigned tmp = 0;\n (void)tmp;\n" << Emitter->Locals << "\n";
o.indent(Indentation) << " unsigned Bits = STI.getFeatureBits();\n";
++Indentation; ++Indentation;
// Emits code to decode the instructions.
emit(o, Indentation);
o << '\n';
o.indent(Indentation) << "return " << Emitter->ReturnFail << ";\n";
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
o << '\n';
}
// Populates the field of the insn given the start position and the number of
// consecutive bits to scan for.
//
// Returns false if and on the first uninitialized bit value encountered.
// Returns true, otherwise.
bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn,
unsigned StartBit, unsigned NumBits) const {
Field = 0;
for (unsigned i = 0; i < NumBits; ++i) {
if (Insn[StartBit + i] == BIT_UNSET)
return false;
if (Insn[StartBit + i] == BIT_TRUE)
Field = Field | (1ULL << i);
}
return true;
}
/// dumpFilterArray - dumpFilterArray prints out debugging info for the given
/// filter array as a series of chars.
void FilterChooser::dumpFilterArray(raw_ostream &o,
std::vector<bit_value_t> &filter) {
unsigned bitIndex;
for (bitIndex = BitWidth; bitIndex > 0; bitIndex--) {
switch (filter[bitIndex - 1]) {
case BIT_UNFILTERED:
o << ".";
break;
case BIT_UNSET:
o << "_";
break;
case BIT_TRUE:
o << "1";
break;
case BIT_FALSE:
o << "0";
break;
}
}
}
/// dumpStack - dumpStack traverses the filter chooser chain and calls
/// dumpFilterArray on each filter chooser up to the top level one.
void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) {
FilterChooser *current = this;
while (current) {
o << prefix;
dumpFilterArray(o, current->FilterBitValues);
o << '\n';
current = current->Parent;
}
}
// Called from Filter::recurse() when singleton exists. For debug purpose.
void FilterChooser::SingletonExists(unsigned Opc) {
insn_t Insn0;
insnWithID(Insn0, Opc);
errs() << "Singleton exists: " << nameWithID(Opc)
<< " with its decoding dominating ";
for (unsigned i = 0; i < Opcodes.size(); ++i) {
if (Opcodes[i] == Opc) continue;
errs() << nameWithID(Opcodes[i]) << ' ';
}
errs() << '\n';
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Opcodes.size(); i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
}
// Calculates the island(s) needed to decode the instruction.
// This returns a list of undecoded bits of an instructions, for example,
// Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be
// decoded bits in order to verify that the instruction matches the Opcode.
unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits,
std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals,
insn_t &Insn) {
unsigned Num, BitNo;
Num = BitNo = 0;
uint64_t FieldVal = 0;
// 0: Init
// 1: Water (the bit value does not affect decoding)
// 2: Island (well-known bit value needed for decoding)
int State = 0;
int Val = -1;
for (unsigned i = 0; i < BitWidth; ++i) {
Val = Value(Insn[i]);
bool Filtered = PositionFiltered(i);
switch (State) {
default:
assert(0 && "Unreachable code!");
break;
case 0:
case 1:
if (Filtered || Val == -1)
State = 1; // Still in Water
else {
State = 2; // Into the Island
BitNo = 0;
StartBits.push_back(i);
FieldVal = Val;
}
break;
case 2:
if (Filtered || Val == -1) {
State = 1; // Into the Water
EndBits.push_back(i - 1);
FieldVals.push_back(FieldVal);
++Num;
} else {
State = 2; // Still in Island
++BitNo;
FieldVal = FieldVal | Val << BitNo;
}
break;
}
}
// If we are still in Island after the loop, do some housekeeping.
if (State == 2) {
EndBits.push_back(BitWidth - 1);
FieldVals.push_back(FieldVal);
++Num;
}
assert(StartBits.size() == Num && EndBits.size() == Num &&
FieldVals.size() == Num);
return Num;
}
void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation,
OperandInfo &OpInfo) {
std::string &Decoder = OpInfo.Decoder;
if (OpInfo.numFields() == 1) {
OperandInfo::iterator OI = OpInfo.begin();
o.indent(Indentation) << " tmp = fieldFromInstruction" << BitWidth
<< "(insn, " << OI->Base << ", " << OI->Width
<< ");\n";
} else {
o.indent(Indentation) << " tmp = 0;\n";
for (OperandInfo::iterator OI = OpInfo.begin(), OE = OpInfo.end();
OI != OE; ++OI) {
o.indent(Indentation) << " tmp |= (fieldFromInstruction" << BitWidth
<< "(insn, " << OI->Base << ", " << OI->Width
<< ") << " << OI->Offset << ");\n";
}
}
if (Decoder != "")
o.indent(Indentation) << " " << Emitter->GuardPrefix << Decoder
<< "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n";
else
o.indent(Indentation) << " MI.addOperand(MCOperand::CreateImm(tmp));\n";
}
static void emitSinglePredicateMatch(raw_ostream &o, StringRef str,
std::string PredicateNamespace) {
const char *X = str.str().c_str();
if (X[0] == '!')
o << "!(Bits & " << PredicateNamespace << "::" << &X[1] << ")";
else
o << "(Bits & " << PredicateNamespace << "::" << X << ")";
}
bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation,
unsigned Opc) {
ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates");
for (unsigned i = 0; i < Predicates->getSize(); ++i) {
Record *Pred = Predicates->getElementAsRecord(i);
if (!Pred->getValue("AssemblerMatcherPredicate"))
continue;
std::string P = Pred->getValueAsString("AssemblerCondString");
if (!P.length())
continue;
if (i != 0)
o << " && ";
StringRef SR(P);
std::pair<StringRef, StringRef> pairs = SR.split(',');
while (pairs.second.size()) {
emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
o << " && ";
pairs = pairs.second.split(',');
}
emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace);
}
return Predicates->getSize() > 0;
}
// Emits code to decode the singleton. Return true if we have matched all the
// well-known bits.
bool FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
unsigned Opc) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opc);
// Look for islands of undecoded bits of the singleton.
getIslands(StartBits, EndBits, FieldVals, Insn);
unsigned Size = StartBits.size();
unsigned I, NumBits;
// If we have matched all the well-known bits, just issue a return.
if (Size == 0) {
o.indent(Indentation) << "if (";
emitPredicateMatch(o, Indentation, Opc);
o << ") {\n";
o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
std::vector<OperandInfo>& InsnOperands = Operands[Opc];
for (std::vector<OperandInfo>::iterator
I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
// If a custom instruction decoder was specified, use that.
if (I->numFields() == 0 && I->Decoder.size()) {
o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
<< "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
break;
}
emitBinaryParser(o, Indentation, *I);
}
o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
<< '\n';
o.indent(Indentation) << "}\n"; // Closing predicate block.
return true;
}
// Otherwise, there are more decodings to be done!
// Emit code to match the island(s) for the singleton.
o.indent(Indentation) << "// Check ";
for (I = Size; I != 0; --I) {
o << "Inst{" << EndBits[I-1] << '-' << StartBits[I-1] << "} ";
if (I > 1)
o << " && ";
else
o << "for singleton decoding...\n";
}
o.indent(Indentation) << "if (";
if (emitPredicateMatch(o, Indentation, Opc) > 0) {
o << " &&\n";
o.indent(Indentation+4);
}
for (I = Size; I != 0; --I) {
NumBits = EndBits[I-1] - StartBits[I-1] + 1;
o << "fieldFromInstruction" << BitWidth << "(insn, "
<< StartBits[I-1] << ", " << NumBits
<< ") == " << FieldVals[I-1];
if (I > 1)
o << " && ";
else
o << ") {\n";
}
o.indent(Indentation) << " MI.setOpcode(" << Opc << ");\n";
std::vector<OperandInfo>& InsnOperands = Operands[Opc];
for (std::vector<OperandInfo>::iterator
I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) {
// If a custom instruction decoder was specified, use that.
if (I->numFields() == 0 && I->Decoder.size()) {
o.indent(Indentation) << " " << Emitter->GuardPrefix << I->Decoder
<< "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n";
break;
}
emitBinaryParser(o, Indentation, *I);
}
o.indent(Indentation) << " return " << Emitter->ReturnOK << "; // " << nameWithID(Opc)
<< '\n';
o.indent(Indentation) << "}\n";
return false;
}
// Emits code to decode the singleton, and then to decode the rest.
void FilterChooser::emitSingletonDecoder(raw_ostream &o, unsigned &Indentation,
Filter &Best) {
unsigned Opc = Best.getSingletonOpc();
emitSingletonDecoder(o, Indentation, Opc);
// Emit code for the rest.
o.indent(Indentation) << "else\n";
Indentation += 2;
Best.getVariableFC().emit(o, Indentation);
Indentation -= 2;
}
// Assign a single filter and run with it. Top level API client can initialize
// with a single filter to start the filtering process.
void FilterChooser::runSingleFilter(FilterChooser &owner, unsigned startBit,
unsigned numBit, bool mixed) {
Filters.clear();
Filter F(*this, startBit, numBit, true);
Filters.push_back(F);
BestIndex = 0; // Sole Filter instance to choose from.
bestFilter().recurse();
}
// reportRegion is a helper function for filterProcessor to mark a region as
// eligible for use as a filter region.
void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit,
unsigned BitIndex, bool AllowMixed) {
if (RA == ATTR_MIXED && AllowMixed)
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true));
else if (RA == ATTR_ALL_SET && !AllowMixed)
Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false));
}
// FilterProcessor scans the well-known encoding bits of the instructions and
// builds up a list of candidate filters. It chooses the best filter and
// recursively descends down the decoding tree.
bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) {
Filters.clear();
BestIndex = -1;
unsigned numInstructions = Opcodes.size();
assert(numInstructions && "Filter created with no instructions");
// No further filtering is necessary.
if (numInstructions == 1)
return true;
// Heuristics. See also doFilter()'s "Heuristics" comment when num of
// instructions is 3.
if (AllowMixed && !Greedy) {
assert(numInstructions == 3);
for (unsigned i = 0; i < Opcodes.size(); ++i) {
std::vector<unsigned> StartBits;
std::vector<unsigned> EndBits;
std::vector<uint64_t> FieldVals;
insn_t Insn;
insnWithID(Insn, Opcodes[i]);
// Look for islands of undecoded bits of any instruction.
if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) {
// Found an instruction with island(s). Now just assign a filter.
runSingleFilter(*this, StartBits[0], EndBits[0] - StartBits[0] + 1,
true);
return true;
}
}
}
unsigned BitIndex, InsnIndex;
// We maintain BIT_WIDTH copies of the bitAttrs automaton.
// The automaton consumes the corresponding bit from each
// instruction.
//
// Input symbols: 0, 1, and _ (unset).
// States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED.
// Initial state: NONE.
//
// (NONE) ------- [01] -> (ALL_SET)
// (NONE) ------- _ ----> (ALL_UNSET)
// (ALL_SET) ---- [01] -> (ALL_SET)
// (ALL_SET) ---- _ ----> (MIXED)
// (ALL_UNSET) -- [01] -> (MIXED)
// (ALL_UNSET) -- _ ----> (ALL_UNSET)
// (MIXED) ------ . ----> (MIXED)
// (FILTERED)---- . ----> (FILTERED)
std::vector<bitAttr_t> bitAttrs;
// FILTERED bit positions provide no entropy and are not worthy of pursuing.
// Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position.
for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex)
if (FilterBitValues[BitIndex] == BIT_TRUE ||
FilterBitValues[BitIndex] == BIT_FALSE)
bitAttrs.push_back(ATTR_FILTERED);
else
bitAttrs.push_back(ATTR_NONE);
for (InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) {
insn_t insn;
insnWithID(insn, Opcodes[InsnIndex]);
for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) {
switch (bitAttrs[BitIndex]) {
case ATTR_NONE:
if (insn[BitIndex] == BIT_UNSET)
bitAttrs[BitIndex] = ATTR_ALL_UNSET;
else
bitAttrs[BitIndex] = ATTR_ALL_SET;
break;
case ATTR_ALL_SET:
if (insn[BitIndex] == BIT_UNSET)
bitAttrs[BitIndex] = ATTR_MIXED;
break;
case ATTR_ALL_UNSET:
if (insn[BitIndex] != BIT_UNSET)
bitAttrs[BitIndex] = ATTR_MIXED;
break;
case ATTR_MIXED:
case ATTR_FILTERED:
break;
}
}
}
// The regionAttr automaton consumes the bitAttrs automatons' state,
// lowest-to-highest.
//
// Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed)
// States: NONE, ALL_SET, MIXED
// Initial state: NONE
//
// (NONE) ----- F --> (NONE)
// (NONE) ----- S --> (ALL_SET) ; and set region start
// (NONE) ----- U --> (NONE)
// (NONE) ----- M --> (MIXED) ; and set region start
// (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- S --> (ALL_SET)
// (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region
// (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region
// (MIXED) ---- F --> (NONE) ; and report a MIXED region
// (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region
// (MIXED) ---- U --> (NONE) ; and report a MIXED region
// (MIXED) ---- M --> (MIXED)
bitAttr_t RA = ATTR_NONE;
unsigned StartBit = 0;
for (BitIndex = 0; BitIndex < BitWidth; BitIndex++) {
bitAttr_t bitAttr = bitAttrs[BitIndex];
assert(bitAttr != ATTR_NONE && "Bit without attributes");
switch (RA) {
case ATTR_NONE:
switch (bitAttr) {
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
StartBit = BitIndex;
RA = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
StartBit = BitIndex;
RA = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_SET:
switch (bitAttr) {
case ATTR_FILTERED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_ALL_SET:
break;
case ATTR_ALL_UNSET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_MIXED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_MIXED;
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_MIXED:
switch (bitAttr) {
case ATTR_FILTERED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_NONE;
break;
case ATTR_ALL_SET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
StartBit = BitIndex;
RA = ATTR_ALL_SET;
break;
case ATTR_ALL_UNSET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
RA = ATTR_NONE;
break;
case ATTR_MIXED:
break;
default:
assert(0 && "Unexpected bitAttr!");
}
break;
case ATTR_ALL_UNSET:
assert(0 && "regionAttr state machine has no ATTR_UNSET state");
case ATTR_FILTERED:
assert(0 && "regionAttr state machine has no ATTR_FILTERED state");
}
}
// At the end, if we're still in ALL_SET or MIXED states, report a region
switch (RA) {
case ATTR_NONE:
break;
case ATTR_FILTERED:
break;
case ATTR_ALL_SET:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
break;
case ATTR_ALL_UNSET:
break;
case ATTR_MIXED:
reportRegion(RA, StartBit, BitIndex, AllowMixed);
break;
}
// We have finished with the filter processings. Now it's time to choose
// the best performing filter.
BestIndex = 0;
bool AllUseless = true;
unsigned BestScore = 0;
for (unsigned i = 0, e = Filters.size(); i != e; ++i) {
unsigned Usefulness = Filters[i].usefulness();
if (Usefulness)
AllUseless = false;
if (Usefulness > BestScore) {
BestIndex = i;
BestScore = Usefulness;
}
}
if (!AllUseless)
bestFilter().recurse();
return !AllUseless;
} // end of FilterChooser::filterProcessor(bool)
// Decides on the best configuration of filter(s) to use in order to decode
// the instructions. A conflict of instructions may occur, in which case we
// dump the conflict set to the standard error.
void FilterChooser::doFilter() {
unsigned Num = Opcodes.size();
assert(Num && "FilterChooser created with no instructions");
// Try regions of consecutive known bit values first.
if (filterProcessor(false))
return;
// Then regions of mixed bits (both known and unitialized bit values allowed).
if (filterProcessor(true))
return;
// Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where
// no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a
// well-known encoding pattern. In such case, we backtrack and scan for the
// the very first consecutive ATTR_ALL_SET region and assign a filter to it.
if (Num == 3 && filterProcessor(true, false))
return;
// If we come to here, the instruction decoding has failed.
// Set the BestIndex to -1 to indicate so.
BestIndex = -1;
}
// Emits code to decode our share of instructions. Returns true if the
// emitted code causes a return, which occurs if we know how to decode
// the instruction at this level or the instruction is not decodeable.
bool FilterChooser::emit(raw_ostream &o, unsigned &Indentation) {
if (Opcodes.size() == 1)
// There is only one instruction in the set, which is great!
// Call emitSingletonDecoder() to see whether there are any remaining
// encodings bits.
return emitSingletonDecoder(o, Indentation, Opcodes[0]);
// Choose the best filter to do the decodings!
if (BestIndex != -1) {
Filter &Best = bestFilter();
if (Best.getNumFiltered() == 1)
emitSingletonDecoder(o, Indentation, Best);
else
bestFilter().emit(o, Indentation);
return false;
}
// We don't know how to decode these instructions! Return 0 and dump the
// conflict set!
o.indent(Indentation) << "return 0;" << " // Conflict set: ";
for (int i = 0, N = Opcodes.size(); i < N; ++i) {
o << nameWithID(Opcodes[i]);
if (i < (N - 1))
o << ", ";
else
o << '\n';
}
// Print out useful conflict information for postmortem analysis.
errs() << "Decoding Conflict:\n";
dumpStack(errs(), "\t\t");
for (unsigned i = 0; i < Opcodes.size(); i++) {
const std::string &Name = nameWithID(Opcodes[i]);
errs() << '\t' << Name << " ";
dumpBits(errs(),
getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst"));
errs() << '\n';
}
return true;
}
static bool populateInstruction(const CodeGenInstruction &CGI,
unsigned Opc,
std::map<unsigned, std::vector<OperandInfo> >& Operands){
const Record &Def = *CGI.TheDef;
// If all the bit positions are not specified; do not decode this instruction.
// We are bound to fail! For proper disassembly, the well-known encoding bits
// of the instruction must be fully specified.
//
// This also removes pseudo instructions from considerations of disassembly,
// which is a better design and less fragile than the name matchings.
// Ignore "asm parser only" instructions.
if (Def.getValueAsBit("isAsmParserOnly") ||
Def.getValueAsBit("isCodeGenOnly"))
return false;
BitsInit &Bits = getBitsField(Def, "Inst");
if (Bits.allInComplete()) return false;
std::vector<OperandInfo> InsnOperands;
// If the instruction has specified a custom decoding hook, use that instead
// of trying to auto-generate the decoder.
std::string InstDecoder = Def.getValueAsString("DecoderMethod");
if (InstDecoder != "") {
InsnOperands.push_back(OperandInfo(InstDecoder));
Operands[Opc] = InsnOperands;
return true;
}
// Generate a description of the operand of the instruction that we know
// how to decode automatically.
// FIXME: We'll need to have a way to manually override this as needed.
// Gather the outputs/inputs of the instruction, so we can find their
// positions in the encoding. This assumes for now that they appear in the
// MCInst in the order that they're listed.
std::vector<std::pair<Init*, std::string> > InOutOperands;
DagInit *Out = Def.getValueAsDag("OutOperandList");
DagInit *In = Def.getValueAsDag("InOperandList");
for (unsigned i = 0; i < Out->getNumArgs(); ++i)
InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i)));
for (unsigned i = 0; i < In->getNumArgs(); ++i)
InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i)));
// Search for tied operands, so that we can correctly instantiate
// operands that are not explicitly represented in the encoding.
std::map<std::string, std::string> TiedNames;
for (unsigned i = 0; i < CGI.Operands.size(); ++i) {
int tiedTo = CGI.Operands[i].getTiedRegister();
if (tiedTo != -1) {
TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second;
TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second;
}
}
// For each operand, see if we can figure out where it is encoded.
for (std::vector<std::pair<Init*, std::string> >::iterator
NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) {
std::string Decoder = "";
// At this point, we can locate the field, but we need to know how to
// interpret it. As a first step, require the target to provide callbacks
// for decoding register classes.
// FIXME: This need to be extended to handle instructions with custom
// decoder methods, and operands with (simple) MIOperandInfo's.
TypedInit *TI = dynamic_cast<TypedInit*>(NI->first);
RecordRecTy *Type = dynamic_cast<RecordRecTy*>(TI->getType());
Record *TypeRecord = Type->getRecord();
bool isReg = false;
if (TypeRecord->isSubClassOf("RegisterOperand"))
TypeRecord = TypeRecord->getValueAsDef("RegClass");
if (TypeRecord->isSubClassOf("RegisterClass")) {
Decoder = "Decode" + TypeRecord->getName() + "RegisterClass";
isReg = true;
}
RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod");
StringInit *String = DecoderString ?
dynamic_cast<StringInit*>(DecoderString->getValue()) : 0;
if (!isReg && String && String->getValue() != "")
Decoder = String->getValue();
OperandInfo OpInfo(Decoder);
unsigned Base = ~0U;
unsigned Width = 0;
unsigned Offset = 0;
for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) {
VarInit *Var = 0;
VarBitInit *BI = dynamic_cast<VarBitInit*>(Bits.getBit(bi));
if (BI)
Var = dynamic_cast<VarInit*>(BI->getVariable());
else
Var = dynamic_cast<VarInit*>(Bits.getBit(bi));
if (!Var) {
if (Base != ~0U) {
OpInfo.addField(Base, Width, Offset);
Base = ~0U;
Width = 0;
Offset = 0;
}
continue;
}
if (Var->getName() != NI->second &&
Var->getName() != TiedNames[NI->second]) {
if (Base != ~0U) {
OpInfo.addField(Base, Width, Offset);
Base = ~0U;
Width = 0;
Offset = 0;
}
continue;
}
if (Base == ~0U) {
Base = bi;
Width = 1;
Offset = BI ? BI->getBitNum() : 0;
} else if (BI && BI->getBitNum() != Offset + Width) {
OpInfo.addField(Base, Width, Offset);
Base = bi;
Width = 1;
Offset = BI->getBitNum();
} else {
++Width;
}
}
if (Base != ~0U)
OpInfo.addField(Base, Width, Offset);
if (OpInfo.numFields() > 0)
InsnOperands.push_back(OpInfo);
}
Operands[Opc] = InsnOperands;
#if 0
DEBUG({
// Dumps the instruction encoding bits.
dumpBits(errs(), Bits);
errs() << '\n';
// Dumps the list of operand info.
for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) {
const CGIOperandList::OperandInfo &Info = CGI.Operands[i];
const std::string &OperandName = Info.Name;
const Record &OperandDef = *Info.Rec;
errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n";
}
});
#endif
return true;
}
static void emitHelper(llvm::raw_ostream &o, unsigned BitWidth) {
unsigned Indentation = 0;
std::string WidthStr = "uint" + utostr(BitWidth) + "_t";
o << '\n';
o.indent(Indentation) << "static " << WidthStr <<
" fieldFromInstruction" << BitWidth <<
"(" << WidthStr <<" insn, unsigned startBit, unsigned numBits)\n";
o.indent(Indentation) << "{\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "assert(startBit + numBits <= " << BitWidth
<< " && \"Instruction field out of bounds!\");\n";
o << '\n';
o.indent(Indentation) << WidthStr << " fieldMask;\n";
o << '\n';
o.indent(Indentation) << "if (numBits == " << BitWidth << ")\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "fieldMask = (" << WidthStr << ")-1;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "else\n";
++Indentation; ++Indentation;
o.indent(Indentation) << "fieldMask = ((1 << numBits) - 1) << startBit;\n";
--Indentation; --Indentation;
o << '\n';
o.indent(Indentation) << "return (insn & fieldMask) >> startBit;\n";
--Indentation; --Indentation;
o.indent(Indentation) << "}\n";
o << '\n';
}
// Emits disassembler code for instruction decoding.
void FixedLenDecoderEmitter::run(raw_ostream &o)
{
o << "#include \"llvm/MC/MCInst.h\"\n";
o << "#include \"llvm/Support/DataTypes.h\"\n";
o << "#include <assert.h>\n";
o << '\n';
o << "namespace llvm {\n\n";
// Parameterize the decoders based on namespace and instruction width.
NumberedInstructions = Target.getInstructionsByEnumValue();
std::map<std::pair<std::string, unsigned>,
std::vector<unsigned> > OpcMap;
std::map<unsigned, std::vector<OperandInfo> > Operands;
for (unsigned i = 0; i < NumberedInstructions.size(); ++i) {
const CodeGenInstruction *Inst = NumberedInstructions[i];
Record *Def = Inst->TheDef;
unsigned Size = Def->getValueAsInt("Size");
if (Def->getValueAsString("Namespace") == "TargetOpcode" ||
Def->getValueAsBit("isPseudo") ||
Def->getValueAsBit("isAsmParserOnly") ||
Def->getValueAsBit("isCodeGenOnly"))
continue;
std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace");
if (Size) {
if (populateInstruction(*Inst, i, Operands)) {
OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i);
}
}
}
std::set<unsigned> Sizes;
for (std::map<std::pair<std::string, unsigned>,
std::vector<unsigned> >::iterator
I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) {
// If we haven't visited this instruction width before, emit the
// helper method to extract fields.
if (!Sizes.count(I->first.second)) {
emitHelper(o, 8*I->first.second);
Sizes.insert(I->first.second);
}
// Emit the decoder for this namespace+width combination.
FilterChooser FC(NumberedInstructions, I->second, Operands,
8*I->first.second, this);
FC.emitTop(o, 0, I->first.first);
}
o << "\n} // End llvm namespace \n";
}