llvm/lib/Transforms/Scalar/InstructionCombining.cpp

236 lines
7.5 KiB
C++
Raw Normal View History

//===- InstructionCombining.cpp - Combine multiple instructions -------------=//
//
// InstructionCombining - Combine instructions to form fewer, simple
// instructions. This pass does not modify the CFG, and has a tendancy to
// make instructions dead, so a subsequent DCE pass is useful.
//
// This pass combines things like:
// %Y = add int 1, %X
// %Z = add int 1, %Y
// into:
// %Z = add int 2, %X
//
// This is a simple worklist driven algorithm.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Scalar/InstructionCombining.h"
#include "llvm/ConstantHandling.h"
#include "llvm/Function.h"
#include "llvm/iMemory.h"
#include "llvm/iOther.h"
#include "llvm/iOperators.h"
#include "llvm/Pass.h"
#include "llvm/Support/InstIterator.h"
#include "llvm/Support/InstVisitor.h"
#include "../TransformInternals.h"
namespace {
class InstCombiner : public MethodPass,
public InstVisitor<InstCombiner, Instruction*> {
// Worklist of all of the instructions that need to be simplified.
std::vector<Instruction*> WorkList;
void AddUsesToWorkList(Instruction *I) {
// The instruction was simplified, add all users of the instruction to
// the work lists because they might get more simplified now...
//
for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
UI != UE; ++UI)
WorkList.push_back(cast<Instruction>(*UI));
}
public:
virtual bool runOnMethod(Function *F);
// Visitation implementation - Implement instruction combining for different
// instruction types. The semantics are as follows:
// Return Value:
// null - No change was made
// I - Change was made, I is still valid
// otherwise - Change was made, replace I with returned instruction
//
Instruction *visitAdd(BinaryOperator *I);
Instruction *visitSub(BinaryOperator *I);
Instruction *visitMul(BinaryOperator *I);
Instruction *visitCastInst(CastInst *CI);
Instruction *visitMemAccessInst(MemAccessInst *MAI);
// visitInstruction - Specify what to return for unhandled instructions...
Instruction *visitInstruction(Instruction *I) { return 0; }
};
}
// Make sure that this instruction has a constant on the right hand side if it
// has any constant arguments. If not, fix it an return true.
//
static bool SimplifyBinOp(BinaryOperator *I) {
if (isa<Constant>(I->getOperand(0)) && !isa<Constant>(I->getOperand(1)))
if (!I->swapOperands())
return true;
return false;
}
Instruction *InstCombiner::visitAdd(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
Value *Op1 = I->getOperand(0);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
// Eliminate 'add int %X, 0'
if (I->getType()->isIntegral() && Op2->isNullValue()) {
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
}
if (BinaryOperator *IOp1 = dyn_cast<BinaryOperator>(Op1)) {
Changed |= SimplifyBinOp(IOp1);
if (IOp1->getOpcode() == Instruction::Add &&
isa<Constant>(IOp1->getOperand(1))) {
// Fold:
// %Y = add int %X, 1
// %Z = add int %Y, 1
// into:
// %Z = add int %X, 2
//
if (Constant *Val = *Op2 + *cast<Constant>(IOp1->getOperand(1))) {
I->setOperand(0, IOp1->getOperand(0));
I->setOperand(1, Val);
return I;
}
}
}
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitSub(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
// If this is a subtract instruction with a constant RHS, convert it to an add
// instruction of a negative constant
//
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1)))
// Calculate 0 - RHS
if (Constant *RHS = *Constant::getNullValue(I->getType()) - *Op2) {
return BinaryOperator::create(Instruction::Add, I->getOperand(0), RHS,
I->getName());
}
return Changed ? I : 0;
}
Instruction *InstCombiner::visitMul(BinaryOperator *I) {
if (I->use_empty()) return 0; // Don't fix dead add instructions...
bool Changed = SimplifyBinOp(I);
Value *Op1 = I->getOperand(0);
// Simplify add instructions with a constant RHS...
if (Constant *Op2 = dyn_cast<Constant>(I->getOperand(1))) {
if (I->getType()->isIntegral() && cast<ConstantInt>(Op2)->equalsInt(1)){
// Eliminate 'mul int %X, 1'
AddUsesToWorkList(I); // Add all modified instrs to worklist
I->replaceAllUsesWith(Op1);
return I;
}
}
return Changed ? I : 0;
}
// CastInst simplification - If the user is casting a value to the same type,
// eliminate this cast instruction...
//
Instruction *InstCombiner::visitCastInst(CastInst *CI) {
if (CI->getType() == CI->getOperand(0)->getType() && !CI->use_empty()) {
AddUsesToWorkList(CI); // Add all modified instrs to worklist
CI->replaceAllUsesWith(CI->getOperand(0));
return CI;
}
return 0;
}
// Combine Indices - If the source pointer to this mem access instruction is a
// getelementptr instruction, combine the indices of the GEP into this
// instruction
//
Instruction *InstCombiner::visitMemAccessInst(MemAccessInst *MAI) {
GetElementPtrInst *Src =
dyn_cast<GetElementPtrInst>(MAI->getPointerOperand());
if (!Src) return 0;
std::vector<Value *> Indices;
// Only special case we have to watch out for is pointer arithmetic on the
// 0th index of MAI.
unsigned FirstIdx = MAI->getFirstIndexOperandNumber();
if (FirstIdx == MAI->getNumOperands() ||
(FirstIdx == MAI->getNumOperands()-1 &&
MAI->getOperand(FirstIdx) == ConstantUInt::get(Type::UIntTy, 0))) {
// Replace the index list on this MAI with the index on the getelementptr
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
} else if (*MAI->idx_begin() == ConstantUInt::get(Type::UIntTy, 0)) {
// Otherwise we can do the fold if the first index of the GEP is a zero
Indices.insert(Indices.end(), Src->idx_begin(), Src->idx_end());
Indices.insert(Indices.end(), MAI->idx_begin()+1, MAI->idx_end());
}
if (Indices.empty()) return 0; // Can't do the fold?
switch (MAI->getOpcode()) {
case Instruction::GetElementPtr:
return new GetElementPtrInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Load:
return new LoadInst(Src->getOperand(0), Indices, MAI->getName());
case Instruction::Store:
return new StoreInst(MAI->getOperand(0), Src->getOperand(0), Indices);
default:
assert(0 && "Unknown memaccessinst!");
break;
}
abort();
return 0;
}
bool InstCombiner::runOnMethod(Function *F) {
bool Changed = false;
WorkList.insert(WorkList.end(), inst_begin(F), inst_end(F));
while (!WorkList.empty()) {
Instruction *I = WorkList.back(); // Get an instruction from the worklist
WorkList.pop_back();
// Now that we have an instruction, try combining it to simplify it...
Instruction *Result = visit(I);
if (Result) {
// Should we replace the old instruction with a new one?
if (Result != I)
ReplaceInstWithInst(I, Result);
WorkList.push_back(Result);
AddUsesToWorkList(Result);
Changed = true;
}
}
return Changed;
}
Pass *createInstructionCombiningPass() {
return new InstCombiner();
}