Revert "[AArch64] Improve code generation for logical instructions taking"

This reverts r300913.

This broke bots.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300916 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Akira Hatanaka 2017-04-20 23:03:30 +00:00
parent 7a610e66b2
commit 01c014ca98
8 changed files with 58 additions and 280 deletions

View File

@ -2388,39 +2388,30 @@ public:
New = N; New = N;
return true; return true;
} }
/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return
/// true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded);
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
/// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
const SDLoc &dl);
/// Helper for SimplifyDemandedBits that can simplify an operation with
/// multiple uses. This function uses TLI.SimplifyDemandedBits to
/// simplify Operand \p OpIdx of \p User and then updated \p User with
/// the simplified version. No other uses of \p OpIdx are updated.
/// If \p User is the only user of \p OpIdx, this function behaves exactly
/// like TLI.SimplifyDemandedBits except that it also updates the DAG by
/// calling DCI.CommitTargetLoweringOpt.
bool SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
const APInt &Demanded, DAGCombinerInfo &DCI);
}; };
/// Check to see if the specified operand of the specified instruction is a
/// constant integer. If so, check to see if there are any bits set in the
/// constant that are not demanded. If so, shrink the constant and return
/// true.
bool ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
TargetLoweringOpt &TLO) const;
// Target hook to do target-specific const optimization, which is called by
// ShrinkDemandedConstant. This function should return true if the target
// doesn't want ShrinkDemandedConstant to further optimize the constant.
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
TargetLoweringOpt &TLO) const {
return false;
}
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. This
/// uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &Demanded,
TargetLoweringOpt &TLO) const;
/// Helper for SimplifyDemandedBits that can simplify an operation with
/// multiple uses. This function simplifies operand \p OpIdx of \p User and
/// then updates \p User with the simplified version. No other uses of
/// \p OpIdx are updated. If \p User is the only user of \p OpIdx, this
/// function behaves exactly like function SimplifyDemandedBits declared
/// below except that it also updates the DAG by calling
/// DCI.CommitTargetLoweringOpt.
bool SimplifyDemandedBits(SDNode *User, unsigned OpIdx, const APInt &Demanded,
DAGCombinerInfo &DCI, TargetLoweringOpt &TLO) const;
/// Look at Op. At this point, we know that only the DemandedMask bits of the /// Look at Op. At this point, we know that only the DemandedMask bits of the
/// result of Op are ever used downstream. If we can use this information to /// result of Op are ever used downstream. If we can use this information to
/// simplify Op, create a new simplified DAG node and return true, returning /// simplify Op, create a new simplified DAG node and return true, returning

View File

@ -342,16 +342,11 @@ TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
/// If the specified instruction has a constant integer operand and there are /// If the specified instruction has a constant integer operand and there are
/// bits set in that constant that are not demanded, then clear those bits and /// bits set in that constant that are not demanded, then clear those bits and
/// return true. /// return true.
bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded, bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(
TargetLoweringOpt &TLO) const { SDValue Op, const APInt &Demanded) {
SelectionDAG &DAG = TLO.DAG;
SDLoc DL(Op); SDLoc DL(Op);
unsigned Opcode = Op.getOpcode(); unsigned Opcode = Op.getOpcode();
// Do target-specific constant optimization.
if (targetShrinkDemandedConstant(Op, Demanded, TLO))
return TLO.New.getNode();
// FIXME: ISD::SELECT, ISD::SELECT_CC // FIXME: ISD::SELECT, ISD::SELECT_CC
switch (Opcode) { switch (Opcode) {
default: default:
@ -372,7 +367,7 @@ bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
EVT VT = Op.getValueType(); EVT VT = Op.getValueType();
SDValue NewC = DAG.getConstant(Demanded & C, DL, VT); SDValue NewC = DAG.getConstant(Demanded & C, DL, VT);
SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC); SDValue NewOp = DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
return TLO.CombineTo(Op, NewOp); return CombineTo(Op, NewOp);
} }
break; break;
@ -385,17 +380,15 @@ bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
/// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
/// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
/// generalized for targets with other types of implicit widening casts. /// generalized for targets with other types of implicit widening casts.
bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth, bool TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
const APInt &Demanded, unsigned BitWidth,
TargetLoweringOpt &TLO) const { const APInt &Demanded,
const SDLoc &dl) {
assert(Op.getNumOperands() == 2 && assert(Op.getNumOperands() == 2 &&
"ShrinkDemandedOp only supports binary operators!"); "ShrinkDemandedOp only supports binary operators!");
assert(Op.getNode()->getNumValues() == 1 && assert(Op.getNode()->getNumValues() == 1 &&
"ShrinkDemandedOp only supports nodes with one result!"); "ShrinkDemandedOp only supports nodes with one result!");
SelectionDAG &DAG = TLO.DAG;
SDLoc dl(Op);
// Early return, as this function cannot handle vector types. // Early return, as this function cannot handle vector types.
if (Op.getValueType().isVector()) if (Op.getValueType().isVector())
return false; return false;
@ -425,22 +418,23 @@ bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
bool NeedZext = DemandedSize > SmallVTBits; bool NeedZext = DemandedSize > SmallVTBits;
SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND, SDValue Z = DAG.getNode(NeedZext ? ISD::ZERO_EXTEND : ISD::ANY_EXTEND,
dl, Op.getValueType(), X); dl, Op.getValueType(), X);
return TLO.CombineTo(Op, Z); return CombineTo(Op, Z);
} }
} }
return false; return false;
} }
bool bool
TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx, TargetLowering::TargetLoweringOpt::SimplifyDemandedBits(SDNode *User,
const APInt &Demanded, unsigned OpIdx,
DAGCombinerInfo &DCI, const APInt &Demanded,
TargetLoweringOpt &TLO) const { DAGCombinerInfo &DCI) {
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
SDValue Op = User->getOperand(OpIdx); SDValue Op = User->getOperand(OpIdx);
APInt KnownZero, KnownOne; APInt KnownZero, KnownOne;
if (!SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, if (!TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne,
TLO, 0, true)) *this, 0, true))
return false; return false;
@ -452,9 +446,9 @@ TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
// with the value 'x', which will give us: // with the value 'x', which will give us:
// Old = i32 and x, 0xffffff // Old = i32 and x, 0xffffff
// New = x // New = x
if (TLO.Old.hasOneUse()) { if (Old.hasOneUse()) {
// For the one use case, we just commit the change. // For the one use case, we just commit the change.
DCI.CommitTargetLoweringOpt(TLO); DCI.CommitTargetLoweringOpt(*this);
return true; return true;
} }
@ -462,17 +456,17 @@ TargetLowering::SimplifyDemandedBits(SDNode *User, unsigned OpIdx,
// AssumeSingleUse flag is not propogated to recursive calls of // AssumeSingleUse flag is not propogated to recursive calls of
// SimplifyDemanded bits, so the only node with multiple use that // SimplifyDemanded bits, so the only node with multiple use that
// it will attempt to combine will be opt. // it will attempt to combine will be opt.
assert(TLO.Old == Op); assert(Old == Op);
SmallVector <SDValue, 4> NewOps; SmallVector <SDValue, 4> NewOps;
for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) { for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
if (i == OpIdx) { if (i == OpIdx) {
NewOps.push_back(TLO.New); NewOps.push_back(New);
continue; continue;
} }
NewOps.push_back(User->getOperand(i)); NewOps.push_back(User->getOperand(i));
} }
TLO.DAG.UpdateNodeOperands(User, NewOps); DAG.UpdateNodeOperands(User, NewOps);
// Op has less users now, so we may be able to perform additional combines // Op has less users now, so we may be able to perform additional combines
// with it. // with it.
DCI.AddToWorklist(Op.getNode()); DCI.AddToWorklist(Op.getNode());
@ -591,7 +585,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
// If any of the set bits in the RHS are known zero on the LHS, shrink // If any of the set bits in the RHS are known zero on the LHS, shrink
// the constant. // the constant.
if (ShrinkDemandedConstant(Op, ~LHSZero & NewMask, TLO)) if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
return true; return true;
// Bitwise-not (xor X, -1) is a special case: we don't usually shrink its // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
@ -626,10 +620,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if ((NewMask & (KnownZero|KnownZero2)) == NewMask) if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType())); return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, Op.getValueType()));
// If the RHS is a constant, see if we can simplify it. // If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask, TLO)) if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
return true; return true;
// If the operation can be done in a smaller type, do so. // If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true; return true;
// Output known-1 bits are only known if set in both the LHS & RHS. // Output known-1 bits are only known if set in both the LHS & RHS.
@ -660,10 +654,10 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask)) if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
return TLO.CombineTo(Op, Op.getOperand(1)); return TLO.CombineTo(Op, Op.getOperand(1));
// If the RHS is a constant, see if we can simplify it. // If the RHS is a constant, see if we can simplify it.
if (ShrinkDemandedConstant(Op, NewMask, TLO)) if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true; return true;
// If the operation can be done in a smaller type, do so. // If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true; return true;
// Output known-0 bits are only known if clear in both the LHS & RHS. // Output known-0 bits are only known if clear in both the LHS & RHS.
@ -688,7 +682,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
if ((KnownZero2 & NewMask) == NewMask) if ((KnownZero2 & NewMask) == NewMask)
return TLO.CombineTo(Op, Op.getOperand(1)); return TLO.CombineTo(Op, Op.getOperand(1));
// If the operation can be done in a smaller type, do so. // If the operation can be done in a smaller type, do so.
if (ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
return true; return true;
// If all of the unknown bits are known to be zero on one side or the other // If all of the unknown bits are known to be zero on one side or the other
@ -733,7 +727,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
} }
// If it already has all the bits set, nothing to change // If it already has all the bits set, nothing to change
// but don't shrink either! // but don't shrink either!
} else if (ShrinkDemandedConstant(Op, NewMask, TLO)) { } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
return true; return true;
} }
} }
@ -752,7 +746,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them. // If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(Op, NewMask, TLO)) if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true; return true;
// Only known if known in both the LHS and RHS. // Only known if known in both the LHS and RHS.
@ -770,7 +764,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?"); assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If the operands are constants, see if we can simplify them. // If the operands are constants, see if we can simplify them.
if (ShrinkDemandedConstant(Op, NewMask, TLO)) if (TLO.ShrinkDemandedConstant(Op, NewMask))
return true; return true;
// Only known if known in both the LHS and RHS. // Only known if known in both the LHS and RHS.
@ -1290,7 +1284,7 @@ bool TargetLowering::SimplifyDemandedBits(SDValue Op,
SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2, SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
KnownOne2, TLO, Depth+1) || KnownOne2, TLO, Depth+1) ||
// See if the operation should be performed at a smaller bit width. // See if the operation should be performed at a smaller bit width.
ShrinkDemandedOp(Op, BitWidth, NewMask, TLO)) { TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl)) {
const SDNodeFlags *Flags = Op.getNode()->getFlags(); const SDNodeFlags *Flags = Op.getNode()->getFlags();
if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) { if (Flags->hasNoSignedWrap() || Flags->hasNoUnsignedWrap()) {
// Disable the nsw and nuw flags. We can no longer guarantee that we // Disable the nsw and nuw flags. We can no longer guarantee that we

View File

@ -91,7 +91,6 @@ using namespace llvm;
STATISTIC(NumTailCalls, "Number of tail calls"); STATISTIC(NumTailCalls, "Number of tail calls");
STATISTIC(NumShiftInserts, "Number of vector shift inserts"); STATISTIC(NumShiftInserts, "Number of vector shift inserts");
STATISTIC(NumOptimizedImms, "Number of times immediates were optimized");
static cl::opt<bool> static cl::opt<bool>
EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden, EnableAArch64SlrGeneration("aarch64-shift-insert-generation", cl::Hidden,
@ -106,12 +105,6 @@ cl::opt<bool> EnableAArch64ELFLocalDynamicTLSGeneration(
cl::desc("Allow AArch64 Local Dynamic TLS code generation"), cl::desc("Allow AArch64 Local Dynamic TLS code generation"),
cl::init(false)); cl::init(false));
static cl::opt<bool>
EnableOptimizeLogicalImm("aarch64-enable-logical-imm", cl::Hidden,
cl::desc("Enable AArch64 logical imm instruction "
"optimization"),
cl::init(true));
/// Value type used for condition codes. /// Value type used for condition codes.
static const MVT MVT_CC = MVT::i32; static const MVT MVT_CC = MVT::i32;
@ -794,138 +787,6 @@ EVT AArch64TargetLowering::getSetCCResultType(const DataLayout &, LLVMContext &,
return VT.changeVectorElementTypeToInteger(); return VT.changeVectorElementTypeToInteger();
} }
static bool optimizeLogicalImm(SDValue Op, unsigned Size, uint64_t Imm,
const APInt &Demanded,
TargetLowering::TargetLoweringOpt &TLO,
unsigned NewOpc) {
uint64_t OldImm = Imm, NewImm, Enc;
uint64_t Mask = ((uint64_t)(-1LL) >> (64 - Size));
// Return if the immediate is already a bimm32 or bimm64.
if (AArch64_AM::isLogicalImmediate(Imm & Mask, Size))
return false;
unsigned EltSize = Size;
uint64_t DemandedBits = Demanded.getZExtValue();
// Clear bits that are not demanded.
Imm &= DemandedBits;
while (true) {
// The goal here is to set the non-demanded bits in a way that minimizes
// the number of switching between 0 and 1. In order to achieve this goal,
// we set the non-demanded bits to the value of the preceding demanded bits.
// For example, if we have an immediate 0bx10xx0x1 ('x' indicates a
// non-demanded bit), we copy bit0 (1) to the least significant 'x',
// bit2 (0) to 'xx', and bit6 (1) to the most significant 'x'.
// The final result is 0b11000011.
uint64_t NonDemandedBits = ~DemandedBits;
uint64_t InvertedImm = ~Imm & DemandedBits;
uint64_t RotatedImm =
((InvertedImm << 1) | (InvertedImm >> (EltSize - 1) & 1)) &
NonDemandedBits;
uint64_t Sum = RotatedImm + NonDemandedBits;
bool Carry = NonDemandedBits & ~Sum & (1 << (EltSize - 1));
uint64_t Ones = (Sum + Carry) & NonDemandedBits;
NewImm = (Imm | Ones) & Mask;
// If NewImm or its bitwise NOT is a shifted mask, it is a bitmask immediate
// or all-ones or all-zeros, in which case we can stop searching. Otherwise,
// we halve the element size and continue the search.
if (isShiftedMask_64(NewImm) || isShiftedMask_64(~(NewImm | ~Mask)))
break;
// We cannot shrink the element size any further if it is 2-bits.
if (EltSize == 2)
return false;
EltSize /= 2;
Mask >>= EltSize;
uint64_t Hi = Imm >> EltSize, DemandedBitsHi = DemandedBits >> EltSize;
// Return if there is mismatch in any of the demanded bits of Imm and Hi.
if (((Imm ^ Hi) & (DemandedBits & DemandedBitsHi) & Mask) != 0)
return false;
// Merge the upper and lower halves of Imm and DemandedBits.
Imm |= Hi;
DemandedBits |= DemandedBitsHi;
}
++NumOptimizedImms;
// Replicate the element across the register width.
while (EltSize < Size) {
NewImm |= NewImm << EltSize;
EltSize *= 2;
}
(void)OldImm;
assert(((OldImm ^ NewImm) & Demanded.getZExtValue()) == 0 &&
"demanded bits should never be altered");
// Create the new constant immediate node.
EVT VT = Op.getValueType();
unsigned Population = countPopulation(NewImm);
SDLoc DL(Op);
// If the new constant immediate is all-zeros or all-ones, let the target
// independent DAG combine optimize this node.
if (Population == 0 || Population == Size)
return TLO.CombineTo(Op.getOperand(1), TLO.DAG.getConstant(NewImm, DL, VT));
// Otherwise, create a machine node so that target independent DAG combine
// doesn't undo this optimization.
Enc = AArch64_AM::encodeLogicalImmediate(NewImm, Size);
SDValue EncConst = TLO.DAG.getTargetConstant(Enc, DL, VT);
SDValue New(
TLO.DAG.getMachineNode(NewOpc, DL, VT, Op.getOperand(0), EncConst), 0);
return TLO.CombineTo(Op, New);
}
bool AArch64TargetLowering::targetShrinkDemandedConstant(
SDValue Op, const APInt &Demanded, TargetLoweringOpt &TLO) const {
// Delay this optimization to as late as possible.
if (!TLO.LegalOps)
return false;
if (!EnableOptimizeLogicalImm)
return false;
EVT VT = Op.getValueType();
if (VT.isVector())
return false;
unsigned Size = VT.getSizeInBits();
assert((Size == 32 || Size == 64) &&
"i32 or i64 is expected after legalization.");
// Exit early if we demand all bits.
if (Demanded.countPopulation() == Size)
return false;
unsigned NewOpc;
switch (Op.getOpcode()) {
default:
return false;
case ISD::AND:
NewOpc = Size == 32 ? AArch64::ANDWri : AArch64::ANDXri;
break;
case ISD::OR:
NewOpc = Size == 32 ? AArch64::ORRWri : AArch64::ORRXri;
break;
case ISD::XOR:
NewOpc = Size == 32 ? AArch64::EORWri : AArch64::EORXri;
break;
}
ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!C)
return false;
uint64_t Imm = C->getZExtValue();
return optimizeLogicalImm(Op, Size, Imm, Demanded, TLO, NewOpc);
}
/// computeKnownBitsForTargetNode - Determine which of the bits specified in /// computeKnownBitsForTargetNode - Determine which of the bits specified in
/// Mask are known to be either zero or one and return them in the /// Mask are known to be either zero or one and return them in the
/// KnownZero/KnownOne bitsets. /// KnownZero/KnownOne bitsets.

View File

@ -255,9 +255,6 @@ public:
const SelectionDAG &DAG, const SelectionDAG &DAG,
unsigned Depth = 0) const override; unsigned Depth = 0) const override;
bool targetShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
TargetLoweringOpt &TLO) const override;
MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override; MVT getScalarShiftAmountTy(const DataLayout &DL, EVT) const override;
/// Returns true if the target allows unaligned memory accesses of the /// Returns true if the target allows unaligned memory accesses of the

View File

@ -2315,13 +2315,12 @@ static bool simplifyI24(SDNode *Node24, unsigned OpIdx,
SelectionDAG &DAG = DCI.DAG; SelectionDAG &DAG = DCI.DAG;
SDValue Op = Node24->getOperand(OpIdx); SDValue Op = Node24->getOperand(OpIdx);
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = Op.getValueType(); EVT VT = Op.getValueType();
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
APInt KnownZero, KnownOne; APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, true, true); TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
if (TLI.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI, TLO)) if (TLO.SimplifyDemandedBits(Node24, OpIdx, Demanded, DCI))
return true; return true;
return false; return false;
@ -3362,7 +3361,7 @@ SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps()); !DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(BitsFrom, Demanded, TLO) || if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
TLI.SimplifyDemandedBits(BitsFrom, Demanded, TLI.SimplifyDemandedBits(BitsFrom, Demanded,
KnownZero, KnownOne, TLO)) { KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO); DCI.CommitTargetLoweringOpt(TLO);

View File

@ -30207,7 +30207,7 @@ static SDValue combineSelect(SDNode *N, SelectionDAG &DAG,
APInt KnownZero, KnownOne; APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(), TargetLowering::TargetLoweringOpt TLO(DAG, DCI.isBeforeLegalize(),
DCI.isBeforeLegalizeOps()); DCI.isBeforeLegalizeOps());
if (TLI.ShrinkDemandedConstant(Cond, DemandedMask, TLO) || if (TLO.ShrinkDemandedConstant(Cond, DemandedMask) ||
TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne, TLI.SimplifyDemandedBits(Cond, DemandedMask, KnownZero, KnownOne,
TLO)) { TLO)) {
// If we changed the computation somewhere in the DAG, this change will // If we changed the computation somewhere in the DAG, this change will
@ -33777,7 +33777,7 @@ static SDValue combineBT(SDNode *N, SelectionDAG &DAG,
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps()); !DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(Op1, DemandedMask, TLO) || if (TLO.ShrinkDemandedConstant(Op1, DemandedMask) ||
TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO)) TLI.SimplifyDemandedBits(Op1, DemandedMask, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO); DCI.CommitTargetLoweringOpt(TLO);
} }

View File

@ -1605,7 +1605,7 @@ SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps()); !DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(OutVal, DemandedMask, TLO) || if (TLO.ShrinkDemandedConstant(OutVal, DemandedMask) ||
TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne, TLI.SimplifyDemandedBits(OutVal, DemandedMask, KnownZero, KnownOne,
TLO)) TLO))
DCI.CommitTargetLoweringOpt(TLO); DCI.CommitTargetLoweringOpt(TLO);
@ -1622,7 +1622,7 @@ SDValue XCoreTargetLowering::PerformDAGCombine(SDNode *N,
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps()); !DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo(); const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLI.ShrinkDemandedConstant(Time, DemandedMask, TLO) || if (TLO.ShrinkDemandedConstant(Time, DemandedMask) ||
TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne, TLI.SimplifyDemandedBits(Time, DemandedMask, KnownZero, KnownOne,
TLO)) TLO))
DCI.CommitTargetLoweringOpt(TLO); DCI.CommitTargetLoweringOpt(TLO);

View File

@ -1,64 +0,0 @@
; RUN: llc -o - %s -mtriple=aarch64-- | FileCheck %s
; CHECK-LABEL: and1:
; CHECK: and {{w[0-9]+}}, w0, #0xfffffffd
define void @and1(i32 %a, i8* nocapture %p) {
entry:
%and = and i32 %a, 253
%conv = trunc i32 %and to i8
store i8 %conv, i8* %p, align 1
ret void
}
; (a & 0x3dfd) | 0xffffc000
;
; CHECK-LABEL: and2:
; CHECK: and {{w[0-9]+}}, w0, #0xfdfdfdfd
define i32 @and2(i32 %a) {
entry:
%and = and i32 %a, 15869
%or = or i32 %and, -16384
ret i32 %or
}
; (a & 0x19) | 0xffffffc0
;
; CHECK-LABEL: and3:
; CHECK: and {{w[0-9]+}}, w0, #0x99999999
define i32 @and3(i32 %a) {
entry:
%and = and i32 %a, 25
%or = or i32 %and, -64
ret i32 %or
}
; (a & 0xc5600) | 0xfff1f1ff
;
; CHECK-LABEL: and4:
; CHECK: and {{w[0-9]+}}, w0, #0xfffc07ff
define i32 @and4(i32 %a) {
entry:
%and = and i32 %a, 787968
%or = or i32 %and, -921089
ret i32 %or
}
; Make sure we don't shrink or optimize an XOR's immediate operand if the
; immediate is -1. Instruction selection turns (and ((xor $mask, -1), $v0)) into
; a BIC.
; CHECK-LABEL: xor1:
; CHECK: orr [[R0:w[0-9]+]], wzr, #0x38
; CHECK: bic {{w[0-9]+}}, [[R0]], w0, lsl #3
define i32 @xor1(i32 %a) {
entry:
%shl = shl i32 %a, 3
%xor = and i32 %shl, 56
%and = xor i32 %xor, 56
ret i32 %and
}