Revert "[GlobalISel] Support vector-of-pointers in LLT"

This reverts r300535 and r300537.
The newly added tests in test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll
produces slightly different code between LLVM versions being built with different compilers.
E.g., dependent on the compiler LLVM is built with, either one of the following
can be produced:

remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
remark: <unknown>:0:0: unable to legalize instruction: %vreg2<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg0; (in function: vector_of_pointers_extractelement)

Non-determinism like this is clearly a bad thing, so reverting this until
I can find and fix the root cause of the non-determinism.



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300538 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Kristof Beyls 2017-04-18 09:26:36 +00:00
parent 83bb944fae
commit 0d04c2b2a9
7 changed files with 69 additions and 213 deletions

View File

@ -39,123 +39,100 @@ class raw_ostream;
class LLT {
public:
enum TypeKind : uint16_t {
Invalid,
Scalar,
Pointer,
Vector,
};
/// Get a low-level scalar or aggregate "bag of bits".
static LLT scalar(unsigned SizeInBits) {
assert(SizeInBits > 0 && "invalid scalar size");
return LLT{/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0,
SizeInBits, /*AddressSpace=*/0};
return LLT{Scalar, 1, SizeInBits};
}
/// Get a low-level pointer in the given address space (defaulting to 0).
static LLT pointer(uint16_t AddressSpace, unsigned SizeInBits) {
assert(SizeInBits > 0 && "invalid pointer size");
return LLT{/*isPointer=*/true, /*isVector=*/false, /*NumElements=*/0,
SizeInBits, AddressSpace};
return LLT{Pointer, AddressSpace, SizeInBits};
}
/// Get a low-level vector of some number of elements and element width.
/// \p NumElements must be at least 2.
static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) {
assert(NumElements > 1 && "invalid number of vector elements");
assert(ScalarSizeInBits > 0 && "invalid vector element size");
return LLT{/*isPointer=*/false, /*isVector=*/true, NumElements,
ScalarSizeInBits, /*AddressSpace=*/0};
return LLT{Vector, NumElements, ScalarSizeInBits};
}
/// Get a low-level vector of some number of elements and element type.
static LLT vector(uint16_t NumElements, LLT ScalarTy) {
assert(NumElements > 1 && "invalid number of vector elements");
assert(!ScalarTy.isVector() && "invalid vector element type");
return LLT{ScalarTy.isPointer(), /*isVector=*/true, NumElements,
ScalarTy.getSizeInBits(),
ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
assert(ScalarTy.isScalar() && "invalid vector element type");
return LLT{Vector, NumElements, ScalarTy.getSizeInBits()};
}
explicit LLT(bool isPointer, bool isVector, uint16_t NumElements,
unsigned SizeInBits, unsigned AddressSpace) {
init(isPointer, isVector, NumElements, SizeInBits, AddressSpace);
explicit LLT(TypeKind Kind, uint16_t NumElements, unsigned SizeInBits)
: SizeInBits(SizeInBits), ElementsOrAddrSpace(NumElements), Kind(Kind) {
assert((Kind != Vector || ElementsOrAddrSpace > 1) &&
"invalid number of vector elements");
}
explicit LLT() : IsPointer(false), IsVector(false), RawData(0) {}
explicit LLT() : SizeInBits(0), ElementsOrAddrSpace(0), Kind(Invalid) {}
explicit LLT(MVT VT);
bool isValid() const { return RawData != 0; }
bool isValid() const { return Kind != Invalid; }
bool isScalar() const { return isValid() && !IsPointer && !IsVector; }
bool isScalar() const { return Kind == Scalar; }
bool isPointer() const { return isValid() && IsPointer && !IsVector; }
bool isPointer() const { return Kind == Pointer; }
bool isVector() const { return isValid() && IsVector; }
bool isVector() const { return Kind == Vector; }
/// Returns the number of elements in a vector LLT. Must only be called on
/// vector types.
uint16_t getNumElements() const {
assert(IsVector && "cannot get number of elements on scalar/aggregate");
if (!IsPointer)
return getFieldValue(VectorElementsFieldInfo);
else
return getFieldValue(PointerVectorElementsFieldInfo);
assert(isVector() && "cannot get number of elements on scalar/aggregate");
return ElementsOrAddrSpace;
}
/// Returns the total size of the type. Must only be called on sized types.
unsigned getSizeInBits() const {
if (isPointer() || isScalar())
return getScalarSizeInBits();
return getScalarSizeInBits() * getNumElements();
return SizeInBits;
return SizeInBits * ElementsOrAddrSpace;
}
unsigned getScalarSizeInBits() const {
assert(RawData != 0 && "Invalid Type");
if (!IsVector) {
if (!IsPointer)
return getFieldValue(ScalarSizeFieldInfo);
else
return getFieldValue(PointerSizeFieldInfo);
} else {
if (!IsPointer)
return getFieldValue(VectorSizeFieldInfo);
else
return getFieldValue(PointerVectorSizeFieldInfo);
}
return SizeInBits;
}
unsigned getAddressSpace() const {
assert(RawData != 0 && "Invalid Type");
assert(IsPointer && "cannot get address space of non-pointer type");
if (!IsVector)
return getFieldValue(PointerAddressSpaceFieldInfo);
else
return getFieldValue(PointerVectorAddressSpaceFieldInfo);
assert(isPointer() && "cannot get address space of non-pointer type");
return ElementsOrAddrSpace;
}
/// Returns the vector's element type. Only valid for vector types.
LLT getElementType() const {
assert(isVector() && "cannot get element type of scalar/aggregate");
if (IsPointer)
return pointer(getAddressSpace(), getScalarSizeInBits());
else
return scalar(getScalarSizeInBits());
return scalar(SizeInBits);
}
/// Get a low-level type with half the size of the original, by halving the
/// size of the scalar type involved. For example `s32` will become `s16`,
/// `<2 x s32>` will become `<2 x s16>`.
LLT halfScalarSize() const {
assert(!IsPointer && getScalarSizeInBits() > 1 &&
assert(!isPointer() && getScalarSizeInBits() > 1 &&
getScalarSizeInBits() % 2 == 0 && "cannot half size of this type");
return LLT{/*isPointer=*/false, IsVector ? true : false,
IsVector ? getNumElements() : (uint16_t)0,
getScalarSizeInBits() / 2, /*AddressSpace=*/0};
return LLT{Kind, ElementsOrAddrSpace, SizeInBits / 2};
}
/// Get a low-level type with twice the size of the original, by doubling the
/// size of the scalar type involved. For example `s32` will become `s64`,
/// `<2 x s32>` will become `<2 x s64>`.
LLT doubleScalarSize() const {
assert(!IsPointer && "cannot change size of this type");
return LLT{/*isPointer=*/false, IsVector ? true : false,
IsVector ? getNumElements() : (uint16_t)0,
getScalarSizeInBits() * 2, /*AddressSpace=*/0};
assert(!isPointer() && "cannot change size of this type");
return LLT{Kind, ElementsOrAddrSpace, SizeInBits * 2};
}
/// Get a low-level type with half the size of the original, by halving the
@ -163,13 +140,13 @@ public:
/// a vector type with an even number of elements. For example `<4 x s32>`
/// will become `<2 x s32>`, `<2 x s32>` will become `s32`.
LLT halfElements() const {
assert(isVector() && getNumElements() % 2 == 0 && "cannot half odd vector");
if (getNumElements() == 2)
return scalar(getScalarSizeInBits());
assert(isVector() && ElementsOrAddrSpace % 2 == 0 &&
"cannot half odd vector");
if (ElementsOrAddrSpace == 2)
return scalar(SizeInBits);
return LLT{/*isPointer=*/false, /*isVector=*/true,
(uint16_t)(getNumElements() / 2), getScalarSizeInBits(),
/*AddressSpace=*/0};
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace / 2),
SizeInBits};
}
/// Get a low-level type with twice the size of the original, by doubling the
@ -177,105 +154,25 @@ public:
/// a vector type. For example `<2 x s32>` will become `<4 x s32>`. Doubling
/// the number of elements in sN produces <2 x sN>.
LLT doubleElements() const {
return LLT{IsPointer ? true : false, /*isVector=*/true,
(uint16_t)(getNumElements() * 2), getScalarSizeInBits(),
IsPointer ? getAddressSpace() : 0};
assert(!isPointer() && "cannot double elements in pointer");
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace * 2),
SizeInBits};
}
void print(raw_ostream &OS) const;
bool operator==(const LLT &RHS) const {
return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
RHS.RawData == RawData;
return Kind == RHS.Kind && SizeInBits == RHS.SizeInBits &&
ElementsOrAddrSpace == RHS.ElementsOrAddrSpace;
}
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
friend struct DenseMapInfo<LLT>;
private:
/// LLT is packed into 64 bits as follows:
/// isPointer : 1
/// isVector : 1
/// with 62 bits remaining for Kind-specific data, packed in bitfields
/// as described below. As there isn't a simple portable way to pack bits
/// into bitfields, here the different fields in the packed structure is
/// described in static const *Field variables. Each of these variables
/// is a 2-element array, with the first element describing the bitfield size
/// and the second element describing the bitfield offset.
typedef int BitFieldInfo[2];
///
/// This is how the bitfields are packed per Kind:
/// * Invalid:
/// gets encoded as RawData == 0, as that is an invalid encoding, since for
/// valid encodings, SizeInBits/SizeOfElement must be larger than 0.
/// * Non-pointer scalar (isPointer == 0 && isVector == 0):
/// SizeInBits: 32;
static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0};
/// * Pointer (isPointer == 1 && isVector == 0):
/// SizeInBits: 16;
/// AddressSpace: 23;
static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0};
static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
23, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
/// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
/// NumElements: 16;
/// SizeOfElement: 32;
static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0};
static const constexpr BitFieldInfo VectorSizeFieldInfo{
32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
/// * Vector-of-pointer (isPointer == 1 && isVector == 1):
/// NumElements: 16;
/// SizeOfElement: 16;
/// AddressSpace: 23;
static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0};
static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{
16,
PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]};
static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{
23, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]};
uint64_t IsPointer : 1;
uint64_t IsVector : 1;
uint64_t RawData : 62;
static uint64_t getMask(const BitFieldInfo FieldInfo) {
const int FieldSizeInBits = FieldInfo[0];
return (((uint64_t)1) << FieldSizeInBits) - 1;
}
static uint64_t maskAndShift(uint64_t Val, uint64_t Mask, uint8_t Shift) {
assert(Val <= Mask && "Value too large for field");
return (Val & Mask) << Shift;
}
static uint64_t maskAndShift(uint64_t Val, const BitFieldInfo FieldInfo) {
return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]);
}
uint64_t getFieldValue(const BitFieldInfo FieldInfo) const {
return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
}
void init(bool IsPointer, bool IsVector, uint16_t NumElements,
unsigned SizeInBits, unsigned AddressSpace) {
this->IsPointer = IsPointer;
this->IsVector = IsVector;
if (!IsVector) {
if (!IsPointer)
RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
else
RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
} else {
assert(NumElements > 1 && "invalid number of vector elements");
if (!IsPointer)
RawData = maskAndShift(NumElements, VectorElementsFieldInfo) |
maskAndShift(SizeInBits, VectorSizeFieldInfo);
else
RawData =
maskAndShift(NumElements, PointerVectorElementsFieldInfo) |
maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) |
maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo);
}
}
unsigned SizeInBits;
uint16_t ElementsOrAddrSpace;
TypeKind Kind;
};
inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
@ -285,18 +182,14 @@ inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
template<> struct DenseMapInfo<LLT> {
static inline LLT getEmptyKey() {
LLT Invalid;
Invalid.IsPointer = true;
return Invalid;
return LLT{LLT::Invalid, 0, -1u};
}
static inline LLT getTombstoneKey() {
LLT Invalid;
Invalid.IsVector = true;
return Invalid;
return LLT{LLT::Invalid, 0, -2u};
}
static inline unsigned getHashValue(const LLT &Ty) {
uint64_t Val = ((uint64_t)Ty.RawData) << 2 | ((uint64_t)Ty.IsPointer) << 1 |
((uint64_t)Ty.IsVector);
uint64_t Val = ((uint64_t)Ty.SizeInBits << 32) |
((uint64_t)Ty.ElementsOrAddrSpace << 16) | (uint64_t)Ty.Kind;
return DenseMapInfo<uint64_t>::getHashValue(Val);
}
static bool isEqual(const LLT &LHS, const LLT &RHS) {

View File

@ -592,7 +592,7 @@ MachineInstrBuilder MachineIRBuilder::buildInsertVectorElement(unsigned Res,
LLT EltTy = MRI->getType(Elt);
LLT IdxTy = MRI->getType(Idx);
assert(ResTy.isVector() && ValTy.isVector() && "invalid operand type");
assert(IdxTy.isScalar() && "invalid operand type");
assert(EltTy.isScalar() && IdxTy.isScalar() && "invalid operand type");
assert(ResTy.getNumElements() == ValTy.getNumElements() && "type mismatch");
assert(ResTy.getElementType() == EltTy && "type mismatch");
#endif
@ -612,8 +612,7 @@ MachineInstrBuilder MachineIRBuilder::buildExtractVectorElement(unsigned Res,
LLT ValTy = MRI->getType(Val);
LLT IdxTy = MRI->getType(Idx);
assert(ValTy.isVector() && "invalid operand type");
assert((ResTy.isScalar() || ResTy.isPointer()) && "invalid operand type");
assert(IdxTy.isScalar() && "invalid operand type");
assert(ResTy.isScalar() && IdxTy.isScalar() && "invalid operand type");
assert(ValTy.getElementType() == ResTy && "type mismatch");
#endif

View File

@ -21,10 +21,10 @@ using namespace llvm;
LLT llvm::getLLTForType(Type &Ty, const DataLayout &DL) {
if (auto VTy = dyn_cast<VectorType>(&Ty)) {
auto NumElements = VTy->getNumElements();
LLT ScalarTy = getLLTForType(*VTy->getElementType(), DL);
auto ScalarSizeInBits = VTy->getElementType()->getPrimitiveSizeInBits();
if (NumElements == 1)
return ScalarTy;
return LLT::vector(NumElements, ScalarTy);
return LLT::scalar(ScalarSizeInBits);
return LLT::vector(NumElements, ScalarSizeInBits);
} else if (auto PTy = dyn_cast<PointerType>(&Ty)) {
return LLT::pointer(PTy->getAddressSpace(), DL.getTypeSizeInBits(&Ty));
} else if (Ty.isSized()) {

View File

@ -18,25 +18,25 @@ using namespace llvm;
LLT::LLT(MVT VT) {
if (VT.isVector()) {
init(/*isPointer=*/false, VT.getVectorNumElements() > 1,
VT.getVectorNumElements(), VT.getVectorElementType().getSizeInBits(),
/*AddressSpace=*/0);
SizeInBits = VT.getVectorElementType().getSizeInBits();
ElementsOrAddrSpace = VT.getVectorNumElements();
Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
} else if (VT.isValid()) {
// Aggregates are no different from real scalars as far as GlobalISel is
// concerned.
assert(VT.getSizeInBits() != 0 && "invalid zero-sized type");
init(/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0,
VT.getSizeInBits(), /*AddressSpace=*/0);
Kind = Scalar;
SizeInBits = VT.getSizeInBits();
ElementsOrAddrSpace = 1;
assert(SizeInBits != 0 && "invalid zero-sized type");
} else {
IsPointer = false;
IsVector = false;
RawData = 0;
Kind = Invalid;
SizeInBits = ElementsOrAddrSpace = 0;
}
}
void LLT::print(raw_ostream &OS) const {
if (isVector())
OS << "<" << getNumElements() << " x " << getElementType() << ">";
OS << "<" << ElementsOrAddrSpace << " x s" << SizeInBits << ">";
else if (isPointer())
OS << "p" << getAddressSpace();
else if (isValid()) {
@ -45,12 +45,3 @@ void LLT::print(raw_ostream &OS) const {
} else
llvm_unreachable("trying to print an invalid type");
}
const constexpr LLT::BitFieldInfo LLT::ScalarSizeFieldInfo;
const constexpr LLT::BitFieldInfo LLT::PointerSizeFieldInfo;
const constexpr LLT::BitFieldInfo LLT::PointerAddressSpaceFieldInfo;
const constexpr LLT::BitFieldInfo LLT::VectorElementsFieldInfo;
const constexpr LLT::BitFieldInfo LLT::VectorSizeFieldInfo;
const constexpr LLT::BitFieldInfo LLT::PointerVectorElementsFieldInfo;
const constexpr LLT::BitFieldInfo LLT::PointerVectorSizeFieldInfo;
const constexpr LLT::BitFieldInfo LLT::PointerVectorAddressSpaceFieldInfo;

View File

@ -482,7 +482,7 @@ AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
auto &MO = MI.getOperand(Idx);
if (!MO.isReg() || !MO.getReg())
if (!MO.isReg())
continue;
LLT Ty = MRI.getType(MO.getReg());
@ -537,7 +537,7 @@ AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
InstructionMapping{DefaultMappingID, Cost, nullptr, NumOperands};
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
if (MI.getOperand(Idx).isReg()) {
auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
if (!Mapping->isValid())
return InstructionMapping();

View File

@ -154,19 +154,3 @@ continue:
define fp128 @test_quad_dump() {
ret fp128 0xL00000000000000004000000000000000
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_extractelement
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_extractelement:
define void @vector_of_pointers_extractelement() {
%dummy = extractelement <2 x i16*> undef, i32 0
ret void
}
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(<2 x p0>) = G_INSERT_VECTOR_ELT %vreg1, %vreg2, %vreg3; (in function: vector_of_pointers_insertelement
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_insertelement
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_insertelement:
define void @vector_of_pointers_insertelement() {
%dummy = insertelement <2 x i16*> undef, i16* null, i32 0
ret void
}

View File

@ -171,7 +171,6 @@ TEST(LowLevelTypeTest, Pointer) {
for (unsigned AS : {0U, 1U, 127U, 0xffffU}) {
const LLT Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
const LLT VTy = LLT::vector(4, Ty);
// Test kind.
ASSERT_TRUE(Ty.isValid());
@ -180,26 +179,16 @@ TEST(LowLevelTypeTest, Pointer) {
ASSERT_FALSE(Ty.isScalar());
ASSERT_FALSE(Ty.isVector());
ASSERT_TRUE(VTy.isValid());
ASSERT_TRUE(VTy.isVector());
ASSERT_TRUE(VTy.getElementType().isPointer());
// Test addressspace.
EXPECT_EQ(AS, Ty.getAddressSpace());
EXPECT_EQ(AS, VTy.getElementType().getAddressSpace());
// Test equality operators.
EXPECT_TRUE(Ty == Ty);
EXPECT_FALSE(Ty != Ty);
EXPECT_TRUE(VTy == VTy);
EXPECT_FALSE(VTy != VTy);
// Test Type->LLT conversion.
Type *IRTy = PointerType::get(IntegerType::get(C, 8), AS);
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
Type *IRVTy =
VectorType::get(PointerType::get(IntegerType::get(C, 8), AS), 4);
EXPECT_EQ(VTy, getLLTForType(*IRVTy, DL));
}
}