mirror of
https://github.com/RPCS3/llvm.git
synced 2025-01-10 06:03:52 +00:00
Revert "[GlobalISel] Support vector-of-pointers in LLT"
This reverts r300535 and r300537. The newly added tests in test/CodeGen/AArch64/GlobalISel/arm64-fallback.ll produces slightly different code between LLVM versions being built with different compilers. E.g., dependent on the compiler LLVM is built with, either one of the following can be produced: remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement) remark: <unknown>:0:0: unable to legalize instruction: %vreg2<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg0; (in function: vector_of_pointers_extractelement) Non-determinism like this is clearly a bad thing, so reverting this until I can find and fix the root cause of the non-determinism. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@300538 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
83bb944fae
commit
0d04c2b2a9
@ -39,123 +39,100 @@ class raw_ostream;
|
||||
|
||||
class LLT {
|
||||
public:
|
||||
enum TypeKind : uint16_t {
|
||||
Invalid,
|
||||
Scalar,
|
||||
Pointer,
|
||||
Vector,
|
||||
};
|
||||
|
||||
/// Get a low-level scalar or aggregate "bag of bits".
|
||||
static LLT scalar(unsigned SizeInBits) {
|
||||
assert(SizeInBits > 0 && "invalid scalar size");
|
||||
return LLT{/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0,
|
||||
SizeInBits, /*AddressSpace=*/0};
|
||||
return LLT{Scalar, 1, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level pointer in the given address space (defaulting to 0).
|
||||
static LLT pointer(uint16_t AddressSpace, unsigned SizeInBits) {
|
||||
assert(SizeInBits > 0 && "invalid pointer size");
|
||||
return LLT{/*isPointer=*/true, /*isVector=*/false, /*NumElements=*/0,
|
||||
SizeInBits, AddressSpace};
|
||||
return LLT{Pointer, AddressSpace, SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element width.
|
||||
/// \p NumElements must be at least 2.
|
||||
static LLT vector(uint16_t NumElements, unsigned ScalarSizeInBits) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
assert(ScalarSizeInBits > 0 && "invalid vector element size");
|
||||
return LLT{/*isPointer=*/false, /*isVector=*/true, NumElements,
|
||||
ScalarSizeInBits, /*AddressSpace=*/0};
|
||||
return LLT{Vector, NumElements, ScalarSizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level vector of some number of elements and element type.
|
||||
static LLT vector(uint16_t NumElements, LLT ScalarTy) {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
assert(!ScalarTy.isVector() && "invalid vector element type");
|
||||
return LLT{ScalarTy.isPointer(), /*isVector=*/true, NumElements,
|
||||
ScalarTy.getSizeInBits(),
|
||||
ScalarTy.isPointer() ? ScalarTy.getAddressSpace() : 0};
|
||||
assert(ScalarTy.isScalar() && "invalid vector element type");
|
||||
return LLT{Vector, NumElements, ScalarTy.getSizeInBits()};
|
||||
}
|
||||
|
||||
explicit LLT(bool isPointer, bool isVector, uint16_t NumElements,
|
||||
unsigned SizeInBits, unsigned AddressSpace) {
|
||||
init(isPointer, isVector, NumElements, SizeInBits, AddressSpace);
|
||||
explicit LLT(TypeKind Kind, uint16_t NumElements, unsigned SizeInBits)
|
||||
: SizeInBits(SizeInBits), ElementsOrAddrSpace(NumElements), Kind(Kind) {
|
||||
assert((Kind != Vector || ElementsOrAddrSpace > 1) &&
|
||||
"invalid number of vector elements");
|
||||
}
|
||||
explicit LLT() : IsPointer(false), IsVector(false), RawData(0) {}
|
||||
|
||||
explicit LLT() : SizeInBits(0), ElementsOrAddrSpace(0), Kind(Invalid) {}
|
||||
|
||||
explicit LLT(MVT VT);
|
||||
|
||||
bool isValid() const { return RawData != 0; }
|
||||
bool isValid() const { return Kind != Invalid; }
|
||||
|
||||
bool isScalar() const { return isValid() && !IsPointer && !IsVector; }
|
||||
bool isScalar() const { return Kind == Scalar; }
|
||||
|
||||
bool isPointer() const { return isValid() && IsPointer && !IsVector; }
|
||||
bool isPointer() const { return Kind == Pointer; }
|
||||
|
||||
bool isVector() const { return isValid() && IsVector; }
|
||||
bool isVector() const { return Kind == Vector; }
|
||||
|
||||
/// Returns the number of elements in a vector LLT. Must only be called on
|
||||
/// vector types.
|
||||
uint16_t getNumElements() const {
|
||||
assert(IsVector && "cannot get number of elements on scalar/aggregate");
|
||||
if (!IsPointer)
|
||||
return getFieldValue(VectorElementsFieldInfo);
|
||||
else
|
||||
return getFieldValue(PointerVectorElementsFieldInfo);
|
||||
assert(isVector() && "cannot get number of elements on scalar/aggregate");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the total size of the type. Must only be called on sized types.
|
||||
unsigned getSizeInBits() const {
|
||||
if (isPointer() || isScalar())
|
||||
return getScalarSizeInBits();
|
||||
return getScalarSizeInBits() * getNumElements();
|
||||
return SizeInBits;
|
||||
return SizeInBits * ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
unsigned getScalarSizeInBits() const {
|
||||
assert(RawData != 0 && "Invalid Type");
|
||||
if (!IsVector) {
|
||||
if (!IsPointer)
|
||||
return getFieldValue(ScalarSizeFieldInfo);
|
||||
else
|
||||
return getFieldValue(PointerSizeFieldInfo);
|
||||
} else {
|
||||
if (!IsPointer)
|
||||
return getFieldValue(VectorSizeFieldInfo);
|
||||
else
|
||||
return getFieldValue(PointerVectorSizeFieldInfo);
|
||||
}
|
||||
return SizeInBits;
|
||||
}
|
||||
|
||||
unsigned getAddressSpace() const {
|
||||
assert(RawData != 0 && "Invalid Type");
|
||||
assert(IsPointer && "cannot get address space of non-pointer type");
|
||||
if (!IsVector)
|
||||
return getFieldValue(PointerAddressSpaceFieldInfo);
|
||||
else
|
||||
return getFieldValue(PointerVectorAddressSpaceFieldInfo);
|
||||
assert(isPointer() && "cannot get address space of non-pointer type");
|
||||
return ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
/// Returns the vector's element type. Only valid for vector types.
|
||||
LLT getElementType() const {
|
||||
assert(isVector() && "cannot get element type of scalar/aggregate");
|
||||
if (IsPointer)
|
||||
return pointer(getAddressSpace(), getScalarSizeInBits());
|
||||
else
|
||||
return scalar(getScalarSizeInBits());
|
||||
return scalar(SizeInBits);
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
/// size of the scalar type involved. For example `s32` will become `s16`,
|
||||
/// `<2 x s32>` will become `<2 x s16>`.
|
||||
LLT halfScalarSize() const {
|
||||
assert(!IsPointer && getScalarSizeInBits() > 1 &&
|
||||
assert(!isPointer() && getScalarSizeInBits() > 1 &&
|
||||
getScalarSizeInBits() % 2 == 0 && "cannot half size of this type");
|
||||
return LLT{/*isPointer=*/false, IsVector ? true : false,
|
||||
IsVector ? getNumElements() : (uint16_t)0,
|
||||
getScalarSizeInBits() / 2, /*AddressSpace=*/0};
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits / 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
/// size of the scalar type involved. For example `s32` will become `s64`,
|
||||
/// `<2 x s32>` will become `<2 x s64>`.
|
||||
LLT doubleScalarSize() const {
|
||||
assert(!IsPointer && "cannot change size of this type");
|
||||
return LLT{/*isPointer=*/false, IsVector ? true : false,
|
||||
IsVector ? getNumElements() : (uint16_t)0,
|
||||
getScalarSizeInBits() * 2, /*AddressSpace=*/0};
|
||||
assert(!isPointer() && "cannot change size of this type");
|
||||
return LLT{Kind, ElementsOrAddrSpace, SizeInBits * 2};
|
||||
}
|
||||
|
||||
/// Get a low-level type with half the size of the original, by halving the
|
||||
@ -163,13 +140,13 @@ public:
|
||||
/// a vector type with an even number of elements. For example `<4 x s32>`
|
||||
/// will become `<2 x s32>`, `<2 x s32>` will become `s32`.
|
||||
LLT halfElements() const {
|
||||
assert(isVector() && getNumElements() % 2 == 0 && "cannot half odd vector");
|
||||
if (getNumElements() == 2)
|
||||
return scalar(getScalarSizeInBits());
|
||||
assert(isVector() && ElementsOrAddrSpace % 2 == 0 &&
|
||||
"cannot half odd vector");
|
||||
if (ElementsOrAddrSpace == 2)
|
||||
return scalar(SizeInBits);
|
||||
|
||||
return LLT{/*isPointer=*/false, /*isVector=*/true,
|
||||
(uint16_t)(getNumElements() / 2), getScalarSizeInBits(),
|
||||
/*AddressSpace=*/0};
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace / 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
/// Get a low-level type with twice the size of the original, by doubling the
|
||||
@ -177,105 +154,25 @@ public:
|
||||
/// a vector type. For example `<2 x s32>` will become `<4 x s32>`. Doubling
|
||||
/// the number of elements in sN produces <2 x sN>.
|
||||
LLT doubleElements() const {
|
||||
return LLT{IsPointer ? true : false, /*isVector=*/true,
|
||||
(uint16_t)(getNumElements() * 2), getScalarSizeInBits(),
|
||||
IsPointer ? getAddressSpace() : 0};
|
||||
assert(!isPointer() && "cannot double elements in pointer");
|
||||
return LLT{Vector, static_cast<uint16_t>(ElementsOrAddrSpace * 2),
|
||||
SizeInBits};
|
||||
}
|
||||
|
||||
void print(raw_ostream &OS) const;
|
||||
|
||||
bool operator==(const LLT &RHS) const {
|
||||
return IsPointer == RHS.IsPointer && IsVector == RHS.IsVector &&
|
||||
RHS.RawData == RawData;
|
||||
return Kind == RHS.Kind && SizeInBits == RHS.SizeInBits &&
|
||||
ElementsOrAddrSpace == RHS.ElementsOrAddrSpace;
|
||||
}
|
||||
|
||||
bool operator!=(const LLT &RHS) const { return !(*this == RHS); }
|
||||
|
||||
friend struct DenseMapInfo<LLT>;
|
||||
|
||||
private:
|
||||
/// LLT is packed into 64 bits as follows:
|
||||
/// isPointer : 1
|
||||
/// isVector : 1
|
||||
/// with 62 bits remaining for Kind-specific data, packed in bitfields
|
||||
/// as described below. As there isn't a simple portable way to pack bits
|
||||
/// into bitfields, here the different fields in the packed structure is
|
||||
/// described in static const *Field variables. Each of these variables
|
||||
/// is a 2-element array, with the first element describing the bitfield size
|
||||
/// and the second element describing the bitfield offset.
|
||||
typedef int BitFieldInfo[2];
|
||||
///
|
||||
/// This is how the bitfields are packed per Kind:
|
||||
/// * Invalid:
|
||||
/// gets encoded as RawData == 0, as that is an invalid encoding, since for
|
||||
/// valid encodings, SizeInBits/SizeOfElement must be larger than 0.
|
||||
/// * Non-pointer scalar (isPointer == 0 && isVector == 0):
|
||||
/// SizeInBits: 32;
|
||||
static const constexpr BitFieldInfo ScalarSizeFieldInfo{32, 0};
|
||||
/// * Pointer (isPointer == 1 && isVector == 0):
|
||||
/// SizeInBits: 16;
|
||||
/// AddressSpace: 23;
|
||||
static const constexpr BitFieldInfo PointerSizeFieldInfo{16, 0};
|
||||
static const constexpr BitFieldInfo PointerAddressSpaceFieldInfo{
|
||||
23, PointerSizeFieldInfo[0] + PointerSizeFieldInfo[1]};
|
||||
/// * Vector-of-non-pointer (isPointer == 0 && isVector == 1):
|
||||
/// NumElements: 16;
|
||||
/// SizeOfElement: 32;
|
||||
static const constexpr BitFieldInfo VectorElementsFieldInfo{16, 0};
|
||||
static const constexpr BitFieldInfo VectorSizeFieldInfo{
|
||||
32, VectorElementsFieldInfo[0] + VectorElementsFieldInfo[1]};
|
||||
/// * Vector-of-pointer (isPointer == 1 && isVector == 1):
|
||||
/// NumElements: 16;
|
||||
/// SizeOfElement: 16;
|
||||
/// AddressSpace: 23;
|
||||
static const constexpr BitFieldInfo PointerVectorElementsFieldInfo{16, 0};
|
||||
static const constexpr BitFieldInfo PointerVectorSizeFieldInfo{
|
||||
16,
|
||||
PointerVectorElementsFieldInfo[1] + PointerVectorElementsFieldInfo[0]};
|
||||
static const constexpr BitFieldInfo PointerVectorAddressSpaceFieldInfo{
|
||||
23, PointerVectorSizeFieldInfo[1] + PointerVectorSizeFieldInfo[0]};
|
||||
|
||||
uint64_t IsPointer : 1;
|
||||
uint64_t IsVector : 1;
|
||||
uint64_t RawData : 62;
|
||||
|
||||
static uint64_t getMask(const BitFieldInfo FieldInfo) {
|
||||
const int FieldSizeInBits = FieldInfo[0];
|
||||
return (((uint64_t)1) << FieldSizeInBits) - 1;
|
||||
}
|
||||
static uint64_t maskAndShift(uint64_t Val, uint64_t Mask, uint8_t Shift) {
|
||||
assert(Val <= Mask && "Value too large for field");
|
||||
return (Val & Mask) << Shift;
|
||||
}
|
||||
static uint64_t maskAndShift(uint64_t Val, const BitFieldInfo FieldInfo) {
|
||||
return maskAndShift(Val, getMask(FieldInfo), FieldInfo[1]);
|
||||
}
|
||||
uint64_t getFieldValue(const BitFieldInfo FieldInfo) const {
|
||||
return getMask(FieldInfo) & (RawData >> FieldInfo[1]);
|
||||
}
|
||||
|
||||
void init(bool IsPointer, bool IsVector, uint16_t NumElements,
|
||||
unsigned SizeInBits, unsigned AddressSpace) {
|
||||
this->IsPointer = IsPointer;
|
||||
this->IsVector = IsVector;
|
||||
if (!IsVector) {
|
||||
if (!IsPointer)
|
||||
RawData = maskAndShift(SizeInBits, ScalarSizeFieldInfo);
|
||||
else
|
||||
RawData = maskAndShift(SizeInBits, PointerSizeFieldInfo) |
|
||||
maskAndShift(AddressSpace, PointerAddressSpaceFieldInfo);
|
||||
} else {
|
||||
assert(NumElements > 1 && "invalid number of vector elements");
|
||||
if (!IsPointer)
|
||||
RawData = maskAndShift(NumElements, VectorElementsFieldInfo) |
|
||||
maskAndShift(SizeInBits, VectorSizeFieldInfo);
|
||||
else
|
||||
RawData =
|
||||
maskAndShift(NumElements, PointerVectorElementsFieldInfo) |
|
||||
maskAndShift(SizeInBits, PointerVectorSizeFieldInfo) |
|
||||
maskAndShift(AddressSpace, PointerVectorAddressSpaceFieldInfo);
|
||||
}
|
||||
}
|
||||
unsigned SizeInBits;
|
||||
uint16_t ElementsOrAddrSpace;
|
||||
TypeKind Kind;
|
||||
};
|
||||
|
||||
inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
|
||||
@ -285,18 +182,14 @@ inline raw_ostream& operator<<(raw_ostream &OS, const LLT &Ty) {
|
||||
|
||||
template<> struct DenseMapInfo<LLT> {
|
||||
static inline LLT getEmptyKey() {
|
||||
LLT Invalid;
|
||||
Invalid.IsPointer = true;
|
||||
return Invalid;
|
||||
return LLT{LLT::Invalid, 0, -1u};
|
||||
}
|
||||
static inline LLT getTombstoneKey() {
|
||||
LLT Invalid;
|
||||
Invalid.IsVector = true;
|
||||
return Invalid;
|
||||
return LLT{LLT::Invalid, 0, -2u};
|
||||
}
|
||||
static inline unsigned getHashValue(const LLT &Ty) {
|
||||
uint64_t Val = ((uint64_t)Ty.RawData) << 2 | ((uint64_t)Ty.IsPointer) << 1 |
|
||||
((uint64_t)Ty.IsVector);
|
||||
uint64_t Val = ((uint64_t)Ty.SizeInBits << 32) |
|
||||
((uint64_t)Ty.ElementsOrAddrSpace << 16) | (uint64_t)Ty.Kind;
|
||||
return DenseMapInfo<uint64_t>::getHashValue(Val);
|
||||
}
|
||||
static bool isEqual(const LLT &LHS, const LLT &RHS) {
|
||||
|
@ -592,7 +592,7 @@ MachineInstrBuilder MachineIRBuilder::buildInsertVectorElement(unsigned Res,
|
||||
LLT EltTy = MRI->getType(Elt);
|
||||
LLT IdxTy = MRI->getType(Idx);
|
||||
assert(ResTy.isVector() && ValTy.isVector() && "invalid operand type");
|
||||
assert(IdxTy.isScalar() && "invalid operand type");
|
||||
assert(EltTy.isScalar() && IdxTy.isScalar() && "invalid operand type");
|
||||
assert(ResTy.getNumElements() == ValTy.getNumElements() && "type mismatch");
|
||||
assert(ResTy.getElementType() == EltTy && "type mismatch");
|
||||
#endif
|
||||
@ -612,8 +612,7 @@ MachineInstrBuilder MachineIRBuilder::buildExtractVectorElement(unsigned Res,
|
||||
LLT ValTy = MRI->getType(Val);
|
||||
LLT IdxTy = MRI->getType(Idx);
|
||||
assert(ValTy.isVector() && "invalid operand type");
|
||||
assert((ResTy.isScalar() || ResTy.isPointer()) && "invalid operand type");
|
||||
assert(IdxTy.isScalar() && "invalid operand type");
|
||||
assert(ResTy.isScalar() && IdxTy.isScalar() && "invalid operand type");
|
||||
assert(ValTy.getElementType() == ResTy && "type mismatch");
|
||||
#endif
|
||||
|
||||
|
@ -21,10 +21,10 @@ using namespace llvm;
|
||||
LLT llvm::getLLTForType(Type &Ty, const DataLayout &DL) {
|
||||
if (auto VTy = dyn_cast<VectorType>(&Ty)) {
|
||||
auto NumElements = VTy->getNumElements();
|
||||
LLT ScalarTy = getLLTForType(*VTy->getElementType(), DL);
|
||||
auto ScalarSizeInBits = VTy->getElementType()->getPrimitiveSizeInBits();
|
||||
if (NumElements == 1)
|
||||
return ScalarTy;
|
||||
return LLT::vector(NumElements, ScalarTy);
|
||||
return LLT::scalar(ScalarSizeInBits);
|
||||
return LLT::vector(NumElements, ScalarSizeInBits);
|
||||
} else if (auto PTy = dyn_cast<PointerType>(&Ty)) {
|
||||
return LLT::pointer(PTy->getAddressSpace(), DL.getTypeSizeInBits(&Ty));
|
||||
} else if (Ty.isSized()) {
|
||||
|
@ -18,25 +18,25 @@ using namespace llvm;
|
||||
|
||||
LLT::LLT(MVT VT) {
|
||||
if (VT.isVector()) {
|
||||
init(/*isPointer=*/false, VT.getVectorNumElements() > 1,
|
||||
VT.getVectorNumElements(), VT.getVectorElementType().getSizeInBits(),
|
||||
/*AddressSpace=*/0);
|
||||
SizeInBits = VT.getVectorElementType().getSizeInBits();
|
||||
ElementsOrAddrSpace = VT.getVectorNumElements();
|
||||
Kind = ElementsOrAddrSpace == 1 ? Scalar : Vector;
|
||||
} else if (VT.isValid()) {
|
||||
// Aggregates are no different from real scalars as far as GlobalISel is
|
||||
// concerned.
|
||||
assert(VT.getSizeInBits() != 0 && "invalid zero-sized type");
|
||||
init(/*isPointer=*/false, /*isVector=*/false, /*NumElements=*/0,
|
||||
VT.getSizeInBits(), /*AddressSpace=*/0);
|
||||
Kind = Scalar;
|
||||
SizeInBits = VT.getSizeInBits();
|
||||
ElementsOrAddrSpace = 1;
|
||||
assert(SizeInBits != 0 && "invalid zero-sized type");
|
||||
} else {
|
||||
IsPointer = false;
|
||||
IsVector = false;
|
||||
RawData = 0;
|
||||
Kind = Invalid;
|
||||
SizeInBits = ElementsOrAddrSpace = 0;
|
||||
}
|
||||
}
|
||||
|
||||
void LLT::print(raw_ostream &OS) const {
|
||||
if (isVector())
|
||||
OS << "<" << getNumElements() << " x " << getElementType() << ">";
|
||||
OS << "<" << ElementsOrAddrSpace << " x s" << SizeInBits << ">";
|
||||
else if (isPointer())
|
||||
OS << "p" << getAddressSpace();
|
||||
else if (isValid()) {
|
||||
@ -45,12 +45,3 @@ void LLT::print(raw_ostream &OS) const {
|
||||
} else
|
||||
llvm_unreachable("trying to print an invalid type");
|
||||
}
|
||||
|
||||
const constexpr LLT::BitFieldInfo LLT::ScalarSizeFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::PointerSizeFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::PointerAddressSpaceFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::VectorElementsFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::VectorSizeFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::PointerVectorElementsFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::PointerVectorSizeFieldInfo;
|
||||
const constexpr LLT::BitFieldInfo LLT::PointerVectorAddressSpaceFieldInfo;
|
||||
|
@ -482,7 +482,7 @@ AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
|
||||
SmallVector<PartialMappingIdx, 4> OpRegBankIdx(NumOperands);
|
||||
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
|
||||
auto &MO = MI.getOperand(Idx);
|
||||
if (!MO.isReg() || !MO.getReg())
|
||||
if (!MO.isReg())
|
||||
continue;
|
||||
|
||||
LLT Ty = MRI.getType(MO.getReg());
|
||||
@ -537,7 +537,7 @@ AArch64RegisterBankInfo::getInstrMapping(const MachineInstr &MI) const {
|
||||
InstructionMapping{DefaultMappingID, Cost, nullptr, NumOperands};
|
||||
SmallVector<const ValueMapping *, 8> OpdsMapping(NumOperands);
|
||||
for (unsigned Idx = 0; Idx < NumOperands; ++Idx) {
|
||||
if (MI.getOperand(Idx).isReg() && MI.getOperand(Idx).getReg()) {
|
||||
if (MI.getOperand(Idx).isReg()) {
|
||||
auto Mapping = getValueMapping(OpRegBankIdx[Idx], OpSize[Idx]);
|
||||
if (!Mapping->isValid())
|
||||
return InstructionMapping();
|
||||
|
@ -154,19 +154,3 @@ continue:
|
||||
define fp128 @test_quad_dump() {
|
||||
ret fp128 0xL00000000000000004000000000000000
|
||||
}
|
||||
|
||||
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(p0) = G_EXTRACT_VECTOR_ELT %vreg1, %vreg2; (in function: vector_of_pointers_extractelement)
|
||||
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_extractelement
|
||||
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_extractelement:
|
||||
define void @vector_of_pointers_extractelement() {
|
||||
%dummy = extractelement <2 x i16*> undef, i32 0
|
||||
ret void
|
||||
}
|
||||
|
||||
; FALLBACK-WITH-REPORT-ERR: remark: <unknown>:0:0: unable to legalize instruction: %vreg0<def>(<2 x p0>) = G_INSERT_VECTOR_ELT %vreg1, %vreg2, %vreg3; (in function: vector_of_pointers_insertelement
|
||||
; FALLBACK-WITH-REPORT-ERR: warning: Instruction selection used fallback path for vector_of_pointers_insertelement
|
||||
; FALLBACK-WITH-REPORT-OUT-LABEL: vector_of_pointers_insertelement:
|
||||
define void @vector_of_pointers_insertelement() {
|
||||
%dummy = insertelement <2 x i16*> undef, i16* null, i32 0
|
||||
ret void
|
||||
}
|
||||
|
@ -171,7 +171,6 @@ TEST(LowLevelTypeTest, Pointer) {
|
||||
|
||||
for (unsigned AS : {0U, 1U, 127U, 0xffffU}) {
|
||||
const LLT Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
|
||||
const LLT VTy = LLT::vector(4, Ty);
|
||||
|
||||
// Test kind.
|
||||
ASSERT_TRUE(Ty.isValid());
|
||||
@ -180,26 +179,16 @@ TEST(LowLevelTypeTest, Pointer) {
|
||||
ASSERT_FALSE(Ty.isScalar());
|
||||
ASSERT_FALSE(Ty.isVector());
|
||||
|
||||
ASSERT_TRUE(VTy.isValid());
|
||||
ASSERT_TRUE(VTy.isVector());
|
||||
ASSERT_TRUE(VTy.getElementType().isPointer());
|
||||
|
||||
// Test addressspace.
|
||||
EXPECT_EQ(AS, Ty.getAddressSpace());
|
||||
EXPECT_EQ(AS, VTy.getElementType().getAddressSpace());
|
||||
|
||||
// Test equality operators.
|
||||
EXPECT_TRUE(Ty == Ty);
|
||||
EXPECT_FALSE(Ty != Ty);
|
||||
EXPECT_TRUE(VTy == VTy);
|
||||
EXPECT_FALSE(VTy != VTy);
|
||||
|
||||
// Test Type->LLT conversion.
|
||||
Type *IRTy = PointerType::get(IntegerType::get(C, 8), AS);
|
||||
EXPECT_EQ(Ty, getLLTForType(*IRTy, DL));
|
||||
Type *IRVTy =
|
||||
VectorType::get(PointerType::get(IntegerType::get(C, 8), AS), 4);
|
||||
EXPECT_EQ(VTy, getLLTForType(*IRVTy, DL));
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user