[SimplifyLibCalls] Factor out common unsafe-math checks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@251595 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Davide Italiano 2015-10-29 02:58:44 +00:00
parent 348dec3280
commit 12c4ab6c83

View File

@ -117,6 +117,23 @@ static bool hasUnaryFloatFn(const TargetLibraryInfo *TLI, Type *Ty,
}
}
/// \brief Check whether we can use unsafe floating point math for
/// the function passed as input.
static bool canUseUnsafeFPMath(Function *F) {
// FIXME: For finer-grain optimization, we need intrinsics to have the same
// fast-math flag decorations that are applied to FP instructions. For now,
// we have to rely on the function-level unsafe-fp-math attribute to do this
// optimization because there's no other way to express that the sqrt can be
// reassociated.
if (F->hasFnAttribute("unsafe-fp-math")) {
Attribute Attr = F->getFnAttribute("unsafe-fp-math");
if (Attr.getValueAsString() == "true")
return true;
}
return false;
}
/// \brief Returns whether \p F matches the signature expected for the
/// string/memory copying library function \p Func.
/// Acceptable functions are st[rp][n]?cpy, memove, memcpy, and memset.
@ -1224,20 +1241,15 @@ Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
!FT->getParamType(0)->isFloatingPointTy())
return nullptr;
// FIXME: For finer-grain optimization, we need intrinsics to have the same
// fast-math flag decorations that are applied to FP instructions. For now,
// we have to rely on the function-level attributes to do this optimization
// because there's no other way to express that the calls can be relaxed.
IRBuilder<>::FastMathFlagGuard Guard(B);
FastMathFlags FMF;
Function *F = CI->getParent()->getParent();
Attribute Attr = F->getFnAttribute("unsafe-fp-math");
if (Attr.getValueAsString() == "true") {
if (canUseUnsafeFPMath(F)) {
// Unsafe algebra sets all fast-math-flags to true.
FMF.setUnsafeAlgebra();
} else {
// At a minimum, no-nans-fp-math must be true.
Attr = F->getFnAttribute("no-nans-fp-math");
Attribute Attr = F->getFnAttribute("no-nans-fp-math");
if (Attr.getValueAsString() != "true")
return nullptr;
// No-signed-zeros is implied by the definitions of fmax/fmin themselves:
@ -1266,19 +1278,9 @@ Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
if (TLI->has(LibFunc::sqrtf) && (Callee->getName() == "sqrt" ||
Callee->getIntrinsicID() == Intrinsic::sqrt))
Ret = optimizeUnaryDoubleFP(CI, B, true);
if (!canUseUnsafeFPMath(CI->getParent()->getParent()))
return Ret;
// FIXME: For finer-grain optimization, we need intrinsics to have the same
// fast-math flag decorations that are applied to FP instructions. For now,
// we have to rely on the function-level unsafe-fp-math attribute to do this
// optimization because there's no other way to express that the sqrt can be
// reassociated.
Function *F = CI->getParent()->getParent();
if (F->hasFnAttribute("unsafe-fp-math")) {
// Check for unsafe-fp-math = true.
Attribute Attr = F->getFnAttribute("unsafe-fp-math");
if (Attr.getValueAsString() != "true")
return Ret;
}
Value *Op = CI->getArgOperand(0);
if (Instruction *I = dyn_cast<Instruction>(Op)) {
if (I->getOpcode() == Instruction::FMul && I->hasUnsafeAlgebra()) {
@ -2039,16 +2041,8 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
// Command-line parameter overrides function attribute.
if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
UnsafeFPShrink = EnableUnsafeFPShrink;
else if (Callee->hasFnAttribute("unsafe-fp-math")) {
// FIXME: This is the same problem as described in optimizeSqrt().
// If calls gain access to IR-level FMF, then use that instead of a
// function attribute.
// Check for unsafe-fp-math = true.
Attribute Attr = Callee->getFnAttribute("unsafe-fp-math");
if (Attr.getValueAsString() == "true")
UnsafeFPShrink = true;
}
else if (canUseUnsafeFPMath(Callee))
UnsafeFPShrink = true;
// First, check for intrinsics.
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {