Completely rewrite domset, idom, and domtree implementation. Now it is based

on the algorithm for directly computing immediate dominators presented in this
paper:

  A Fast Algorithm for Finding Dominators in a Flowgraph
  T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.

This _substantially_ speeds up construction of all dominator related information.
Post-dominators to follow.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10301 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2003-12-07 00:38:08 +00:00
parent 31b935357d
commit 16addf87bf

View File

@ -21,12 +21,219 @@
#include "Support/SetOperations.h"
using namespace llvm;
//===----------------------------------------------------------------------===//
// ImmediateDominators Implementation
//===----------------------------------------------------------------------===//
//
// Immediate Dominators construction - This pass constructs immediate dominator
// information for a flow-graph based on the algorithm described in this
// document:
//
// A Fast Algorithm for Finding Dominators in a Flowgraph
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
//
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
// LINK, but it turns out that the theoretically slower O(n*log(n))
// implementation is actually faster than the "efficient" algorithm (even for
// large CFGs) because the constant overheads are substantially smaller. The
// lower-complexity version can be enabled with the following #define:
//
#define BALANCE_IDOM_TREE 0
//
//===----------------------------------------------------------------------===//
static RegisterAnalysis<ImmediateDominators>
C("idom", "Immediate Dominators Construction", true);
unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
unsigned N) {
VInfo.Semi = ++N;
VInfo.Label = V;
Vertex.push_back(V); // Vertex[n] = V;
//Info[V].Ancestor = 0; // Ancestor[n] = 0
//Child[V] = 0; // Child[v] = 0
VInfo.Size = 1; // Size[v] = 1
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
InfoRec &SuccVInfo = Info[*SI];
if (SuccVInfo.Semi == 0) {
SuccVInfo.Parent = V;
N = DFSPass(*SI, SuccVInfo, N);
}
}
return N;
}
void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
BasicBlock *VAncestor = VInfo.Ancestor;
InfoRec &VAInfo = Info[VAncestor];
if (VAInfo.Ancestor == 0)
return;
Compress(VAncestor, VAInfo);
BasicBlock *VAncestorLabel = VAInfo.Label;
BasicBlock *VLabel = VInfo.Label;
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
VInfo.Label = VAncestorLabel;
VInfo.Ancestor = VAInfo.Ancestor;
}
BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
InfoRec &VInfo = Info[V];
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
if (VInfo.Ancestor == 0)
return V;
Compress(V, VInfo);
return VInfo.Label;
#else
// Lower-complexity but slower implementation
if (VInfo.Ancestor == 0)
return VInfo.Label;
Compress(V, VInfo);
BasicBlock *VLabel = VInfo.Label;
BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
return VLabel;
else
return VAncestorLabel;
#endif
}
void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
#if !BALANCE_IDOM_TREE
// Higher-complexity but faster implementation
WInfo.Ancestor = V;
#else
// Lower-complexity but slower implementation
BasicBlock *WLabel = WInfo.Label;
unsigned WLabelSemi = Info[WLabel].Semi;
BasicBlock *S = W;
InfoRec *SInfo = &Info[S];
BasicBlock *SChild = SInfo->Child;
InfoRec *SChildInfo = &Info[SChild];
while (WLabelSemi < Info[SChildInfo->Label].Semi) {
BasicBlock *SChildChild = SChildInfo->Child;
if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
SChildInfo->Ancestor = S;
SInfo->Child = SChild = SChildChild;
SChildInfo = &Info[SChild];
} else {
SChildInfo->Size = SInfo->Size;
S = SInfo->Ancestor = SChild;
SInfo = SChildInfo;
SChild = SChildChild;
SChildInfo = &Info[SChild];
}
}
InfoRec &VInfo = Info[V];
SInfo->Label = WLabel;
assert(V != W && "The optimization here will not work in this case!");
unsigned WSize = WInfo.Size;
unsigned VSize = (VInfo.Size += WSize);
if (VSize < 2*WSize)
std::swap(S, VInfo.Child);
while (S) {
SInfo = &Info[S];
SInfo->Ancestor = V;
S = SInfo->Child;
}
#endif
}
bool ImmediateDominators::runOnFunction(Function &F) {
IDoms.clear(); // Reset from the last time we were run...
BasicBlock *Root = &F.getEntryBlock();
Roots.clear();
Roots.push_back(Root);
Vertex.push_back(0);
// Step #1: Number blocks in depth-first order and initialize variables used
// in later stages of the algorithm.
unsigned N = 0;
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
N = DFSPass(Roots[i], Info[Roots[i]], 0);
for (unsigned i = N; i >= 2; --i) {
BasicBlock *W = Vertex[i];
InfoRec &WInfo = Info[W];
// Step #2: Calculate the semidominators of all vertices
for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
if (Info.count(*PI)) { // Only if this predecessor is reachable!
unsigned SemiU = Info[Eval(*PI)].Semi;
if (SemiU < WInfo.Semi)
WInfo.Semi = SemiU;
}
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
BasicBlock *WParent = WInfo.Parent;
Link(WParent, W, WInfo);
// Step #3: Implicitly define the immediate dominator of vertices
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
while (!WParentBucket.empty()) {
BasicBlock *V = WParentBucket.back();
WParentBucket.pop_back();
BasicBlock *U = Eval(V);
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
}
}
// Step #4: Explicitly define the immediate dominator of each vertex
for (unsigned i = 2; i <= N; ++i) {
BasicBlock *W = Vertex[i];
BasicBlock *&WIDom = IDoms[W];
if (WIDom != Vertex[Info[W].Semi])
WIDom = IDoms[WIDom];
}
// Free temporary memory used to construct idom's
Info.clear();
std::vector<BasicBlock*>().swap(Vertex);
return false;
}
void ImmediateDominatorsBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " Immediate Dominator For Basic Block:";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:";
if (I->second)
WriteAsOperand(o, I->second, false);
else
o << " <<exit node>>";
o << "\n";
}
o << "\n";
}
//===----------------------------------------------------------------------===//
// DominatorSet Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<DominatorSet>
A("domset", "Dominator Set Construction", true);
B("domset", "Dominator Set Construction", true);
// dominates - Return true if A dominates B. This performs the special checks
// necessary if A and B are in the same basic block.
@ -44,53 +251,45 @@ bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
}
void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) {
bool Changed;
Doms[RootBB].insert(RootBB); // Root always dominates itself...
do {
Changed = false;
void DominatorSet::recalculate() {
ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
Doms.clear();
if (Roots.empty()) return;
DomSetType WorkingSet;
df_iterator<BasicBlock*> It = df_begin(RootBB), End = df_end(RootBB);
for ( ; It != End; ++It) {
BasicBlock *BB = *It;
pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
if (PI != PEnd) { // Is there SOME predecessor?
// Loop until we get to a predecessor that has had its dom set filled
// in at least once. We are guaranteed to have this because we are
// traversing the graph in DFO and have handled start nodes specially,
// except when there are unreachable blocks.
//
while (PI != PEnd && Doms[*PI].empty()) ++PI;
if (PI != PEnd) { // Not unreachable code case?
WorkingSet = Doms[*PI];
// Root nodes only dominate themselves.
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
Doms[Roots[i]].insert(Roots[i]);
// Intersect all of the predecessor sets
for (++PI; PI != PEnd; ++PI) {
DomSetType &PredSet = Doms[*PI];
if (PredSet.size())
set_intersect(WorkingSet, PredSet);
}
Function *F = Roots.back()->getParent();
// Loop over all of the blocks in the function, calculating dominator sets for
// each function.
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable
DomSetType &DS = Doms[I];
assert(DS.empty() && "Domset already filled in for this block?");
DS.insert(I); // Blocks always dominate themselves
// Insert all dominators into the set...
while (IDom) {
// If we have already computed the dominator sets for our immediate
// dominator, just use it instead of walking all the way up to the root.
DomSetType &IDS = Doms[IDom];
if (!IDS.empty()) {
DS.insert(IDS.begin(), IDS.end());
break;
} else {
DS.insert(IDom);
IDom = ID[IDom];
}
} else {
assert(Roots.size() == 1 && BB == Roots[0] &&
"We got into unreachable code somehow!");
}
WorkingSet.insert(BB); // A block always dominates itself
DomSetType &BBSet = Doms[BB];
if (BBSet != WorkingSet) {
//assert(WorkingSet.size() > BBSet.size() && "Must only grow sets!");
BBSet.swap(WorkingSet); // Constant time operation!
Changed = true; // The sets changed.
}
WorkingSet.clear(); // Clear out the set for next iteration
} else {
// Ensure that every basic block has at least an empty set of nodes. This
// is important for the case when there is unreachable blocks.
Doms[I];
}
} while (Changed);
}
// runOnFunction - This method calculates the forward dominator sets for the
// specified function.
//
@ -104,21 +303,6 @@ bool DominatorSet::runOnFunction(Function &F) {
return false;
}
void DominatorSet::recalculate() {
assert(Roots.size() == 1 && "DominatorSet should have single root block!");
Doms.clear(); // Reset from the last time we were run...
// Calculate dominator sets for the reachable basic blocks...
calculateDominatorsFromBlock(Roots[0]);
// Loop through the function, ensuring that every basic block has at least an
// empty set of nodes. This is important for the case when there is
// unreachable blocks.
Function *F = Roots[0]->getParent();
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Doms[I];
}
namespace llvm {
static std::ostream &operator<<(std::ostream &o,
const std::set<BasicBlock*> &BBs) {
@ -143,67 +327,6 @@ void DominatorSetBase::print(std::ostream &o) const {
}
}
//===----------------------------------------------------------------------===//
// ImmediateDominators Implementation
//===----------------------------------------------------------------------===//
static RegisterAnalysis<ImmediateDominators>
C("idom", "Immediate Dominators Construction", true);
// calcIDoms - Calculate the immediate dominator mapping, given a set of
// dominators for every basic block.
void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
// Loop over all of the nodes that have dominators... figuring out the IDOM
// for each node...
//
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
DI != DEnd; ++DI) {
BasicBlock *BB = DI->first;
const DominatorSet::DomSetType &Dominators = DI->second;
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom!
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of elements
// in the dominator set indicates what level the node is at in the chain.
// We want the node immediately above us, so it will have an identical
// dominator set, except that BB will not dominate it... therefore it's
// dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
IDoms[BB] = *I;
break;
}
}
}
}
void ImmediateDominatorsBase::print(std::ostream &o) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
o << " Immediate Dominator For Basic Block:";
if (I->first)
WriteAsOperand(o, I->first, false);
else
o << " <<exit node>>";
o << " is:";
if (I->second)
WriteAsOperand(o, I->second, false);
else
o << " <<exit node>>";
o << "\n";
}
o << "\n";
}
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
@ -236,56 +359,40 @@ void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
}
}
DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
Node *&BBNode = Nodes[BB];
if (BBNode) return BBNode;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
Node *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
}
void DominatorTree::calculate(const DominatorSet &DS) {
void DominatorTree::calculate(const ImmediateDominators &ID) {
assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
BasicBlock *Root = Roots[0];
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
// Iterate over all nodes in depth first order...
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
// Loop over all of the reachable blocks in the function...
for (ImmediateDominators::const_iterator I = ID.begin(), E = ID.end();
I != E; ++I) {
BasicBlock *BB = *I;
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
unsigned DomSetSize = Dominators.size();
if (DomSetSize == 1) continue; // Root node... IDom = null
// Loop over all dominators of this node. This corresponds to looping over
// nodes in the dominator chain, looking for a node whose dominator set is
// equal to the current nodes, except that the current node does not exist
// in it. This means that it is one level higher in the dom chain than the
// current node, and it is our idom! We know that we have already added
// a DominatorTree node for our idom, because the idom must be a
// predecessor in the depth first order that we are iterating through the
// function.
//
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
DominatorSet::DomSetType::const_iterator End = Dominators.end();
for (; I != End; ++I) { // Iterate over dominators...
// All of our dominators should form a chain, where the number of
// elements in the dominator set indicates what level the node is at in
// the chain. We want the node immediately above us, so it will have
// an identical dominator set, except that BB will not dominate it...
// therefore it's dominator set size will be one less than BB's...
//
if (DS.getDominators(*I).size() == DomSetSize - 1) {
// We know that the immediate dominator should already have a node,
// because we are traversing the CFG in depth first order!
//
Node *IDomNode = Nodes[*I];
assert(IDomNode && "No node for IDOM?");
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
break;
}
Node *&BBNode = Nodes[I->first];
if (!BBNode) { // Haven't calculated this node yet?
// Get or calculate the node for the immediate dominator
Node *IDomNode = getNodeForBlock(I->second);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
BBNode = IDomNode->addChild(new Node(I->first, IDomNode));
}
}
}
static std::ostream &operator<<(std::ostream &o,
const DominatorTreeBase::Node *Node) {
if (Node->getBlock())