mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-18 17:39:04 +00:00
Completely rewrite domset, idom, and domtree implementation. Now it is based
on the algorithm for directly computing immediate dominators presented in this paper: A Fast Algorithm for Finding Dominators in a Flowgraph T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141. This _substantially_ speeds up construction of all dominator related information. Post-dominators to follow. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@10301 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
31b935357d
commit
16addf87bf
@ -21,12 +21,219 @@
|
||||
#include "Support/SetOperations.h"
|
||||
using namespace llvm;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ImmediateDominators Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
//
|
||||
// Immediate Dominators construction - This pass constructs immediate dominator
|
||||
// information for a flow-graph based on the algorithm described in this
|
||||
// document:
|
||||
//
|
||||
// A Fast Algorithm for Finding Dominators in a Flowgraph
|
||||
// T. Lengauer & R. Tarjan, ACM TOPLAS July 1979, pgs 121-141.
|
||||
//
|
||||
// This implements both the O(n*ack(n)) and the O(n*log(n)) versions of EVAL and
|
||||
// LINK, but it turns out that the theoretically slower O(n*log(n))
|
||||
// implementation is actually faster than the "efficient" algorithm (even for
|
||||
// large CFGs) because the constant overheads are substantially smaller. The
|
||||
// lower-complexity version can be enabled with the following #define:
|
||||
//
|
||||
#define BALANCE_IDOM_TREE 0
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static RegisterAnalysis<ImmediateDominators>
|
||||
C("idom", "Immediate Dominators Construction", true);
|
||||
|
||||
unsigned ImmediateDominators::DFSPass(BasicBlock *V, InfoRec &VInfo,
|
||||
unsigned N) {
|
||||
VInfo.Semi = ++N;
|
||||
VInfo.Label = V;
|
||||
|
||||
Vertex.push_back(V); // Vertex[n] = V;
|
||||
//Info[V].Ancestor = 0; // Ancestor[n] = 0
|
||||
//Child[V] = 0; // Child[v] = 0
|
||||
VInfo.Size = 1; // Size[v] = 1
|
||||
|
||||
for (succ_iterator SI = succ_begin(V), E = succ_end(V); SI != E; ++SI) {
|
||||
InfoRec &SuccVInfo = Info[*SI];
|
||||
if (SuccVInfo.Semi == 0) {
|
||||
SuccVInfo.Parent = V;
|
||||
N = DFSPass(*SI, SuccVInfo, N);
|
||||
}
|
||||
}
|
||||
return N;
|
||||
}
|
||||
|
||||
void ImmediateDominators::Compress(BasicBlock *V, InfoRec &VInfo) {
|
||||
BasicBlock *VAncestor = VInfo.Ancestor;
|
||||
InfoRec &VAInfo = Info[VAncestor];
|
||||
if (VAInfo.Ancestor == 0)
|
||||
return;
|
||||
|
||||
Compress(VAncestor, VAInfo);
|
||||
|
||||
BasicBlock *VAncestorLabel = VAInfo.Label;
|
||||
BasicBlock *VLabel = VInfo.Label;
|
||||
if (Info[VAncestorLabel].Semi < Info[VLabel].Semi)
|
||||
VInfo.Label = VAncestorLabel;
|
||||
|
||||
VInfo.Ancestor = VAInfo.Ancestor;
|
||||
}
|
||||
|
||||
BasicBlock *ImmediateDominators::Eval(BasicBlock *V) {
|
||||
InfoRec &VInfo = Info[V];
|
||||
#if !BALANCE_IDOM_TREE
|
||||
// Higher-complexity but faster implementation
|
||||
if (VInfo.Ancestor == 0)
|
||||
return V;
|
||||
Compress(V, VInfo);
|
||||
return VInfo.Label;
|
||||
#else
|
||||
// Lower-complexity but slower implementation
|
||||
if (VInfo.Ancestor == 0)
|
||||
return VInfo.Label;
|
||||
Compress(V, VInfo);
|
||||
BasicBlock *VLabel = VInfo.Label;
|
||||
|
||||
BasicBlock *VAncestorLabel = Info[VInfo.Ancestor].Label;
|
||||
if (Info[VAncestorLabel].Semi >= Info[VLabel].Semi)
|
||||
return VLabel;
|
||||
else
|
||||
return VAncestorLabel;
|
||||
#endif
|
||||
}
|
||||
|
||||
void ImmediateDominators::Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo){
|
||||
#if !BALANCE_IDOM_TREE
|
||||
// Higher-complexity but faster implementation
|
||||
WInfo.Ancestor = V;
|
||||
#else
|
||||
// Lower-complexity but slower implementation
|
||||
BasicBlock *WLabel = WInfo.Label;
|
||||
unsigned WLabelSemi = Info[WLabel].Semi;
|
||||
BasicBlock *S = W;
|
||||
InfoRec *SInfo = &Info[S];
|
||||
|
||||
BasicBlock *SChild = SInfo->Child;
|
||||
InfoRec *SChildInfo = &Info[SChild];
|
||||
|
||||
while (WLabelSemi < Info[SChildInfo->Label].Semi) {
|
||||
BasicBlock *SChildChild = SChildInfo->Child;
|
||||
if (SInfo->Size+Info[SChildChild].Size >= 2*SChildInfo->Size) {
|
||||
SChildInfo->Ancestor = S;
|
||||
SInfo->Child = SChild = SChildChild;
|
||||
SChildInfo = &Info[SChild];
|
||||
} else {
|
||||
SChildInfo->Size = SInfo->Size;
|
||||
S = SInfo->Ancestor = SChild;
|
||||
SInfo = SChildInfo;
|
||||
SChild = SChildChild;
|
||||
SChildInfo = &Info[SChild];
|
||||
}
|
||||
}
|
||||
|
||||
InfoRec &VInfo = Info[V];
|
||||
SInfo->Label = WLabel;
|
||||
|
||||
assert(V != W && "The optimization here will not work in this case!");
|
||||
unsigned WSize = WInfo.Size;
|
||||
unsigned VSize = (VInfo.Size += WSize);
|
||||
|
||||
if (VSize < 2*WSize)
|
||||
std::swap(S, VInfo.Child);
|
||||
|
||||
while (S) {
|
||||
SInfo = &Info[S];
|
||||
SInfo->Ancestor = V;
|
||||
S = SInfo->Child;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool ImmediateDominators::runOnFunction(Function &F) {
|
||||
IDoms.clear(); // Reset from the last time we were run...
|
||||
BasicBlock *Root = &F.getEntryBlock();
|
||||
Roots.clear();
|
||||
Roots.push_back(Root);
|
||||
|
||||
Vertex.push_back(0);
|
||||
|
||||
// Step #1: Number blocks in depth-first order and initialize variables used
|
||||
// in later stages of the algorithm.
|
||||
unsigned N = 0;
|
||||
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||
N = DFSPass(Roots[i], Info[Roots[i]], 0);
|
||||
|
||||
for (unsigned i = N; i >= 2; --i) {
|
||||
BasicBlock *W = Vertex[i];
|
||||
InfoRec &WInfo = Info[W];
|
||||
|
||||
// Step #2: Calculate the semidominators of all vertices
|
||||
for (pred_iterator PI = pred_begin(W), E = pred_end(W); PI != E; ++PI)
|
||||
if (Info.count(*PI)) { // Only if this predecessor is reachable!
|
||||
unsigned SemiU = Info[Eval(*PI)].Semi;
|
||||
if (SemiU < WInfo.Semi)
|
||||
WInfo.Semi = SemiU;
|
||||
}
|
||||
|
||||
Info[Vertex[WInfo.Semi]].Bucket.push_back(W);
|
||||
|
||||
BasicBlock *WParent = WInfo.Parent;
|
||||
Link(WParent, W, WInfo);
|
||||
|
||||
// Step #3: Implicitly define the immediate dominator of vertices
|
||||
std::vector<BasicBlock*> &WParentBucket = Info[WParent].Bucket;
|
||||
while (!WParentBucket.empty()) {
|
||||
BasicBlock *V = WParentBucket.back();
|
||||
WParentBucket.pop_back();
|
||||
BasicBlock *U = Eval(V);
|
||||
IDoms[V] = Info[U].Semi < Info[V].Semi ? U : WParent;
|
||||
}
|
||||
}
|
||||
|
||||
// Step #4: Explicitly define the immediate dominator of each vertex
|
||||
for (unsigned i = 2; i <= N; ++i) {
|
||||
BasicBlock *W = Vertex[i];
|
||||
BasicBlock *&WIDom = IDoms[W];
|
||||
if (WIDom != Vertex[Info[W].Semi])
|
||||
WIDom = IDoms[WIDom];
|
||||
}
|
||||
|
||||
// Free temporary memory used to construct idom's
|
||||
Info.clear();
|
||||
std::vector<BasicBlock*>().swap(Vertex);
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
void ImmediateDominatorsBase::print(std::ostream &o) const {
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
o << " Immediate Dominator For Basic Block:";
|
||||
if (I->first)
|
||||
WriteAsOperand(o, I->first, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
o << " is:";
|
||||
if (I->second)
|
||||
WriteAsOperand(o, I->second, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
o << "\n";
|
||||
}
|
||||
o << "\n";
|
||||
}
|
||||
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorSet Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static RegisterAnalysis<DominatorSet>
|
||||
A("domset", "Dominator Set Construction", true);
|
||||
B("domset", "Dominator Set Construction", true);
|
||||
|
||||
// dominates - Return true if A dominates B. This performs the special checks
|
||||
// necessary if A and B are in the same basic block.
|
||||
@ -44,53 +251,45 @@ bool DominatorSetBase::dominates(Instruction *A, Instruction *B) const {
|
||||
}
|
||||
|
||||
|
||||
void DominatorSet::calculateDominatorsFromBlock(BasicBlock *RootBB) {
|
||||
bool Changed;
|
||||
Doms[RootBB].insert(RootBB); // Root always dominates itself...
|
||||
do {
|
||||
Changed = false;
|
||||
void DominatorSet::recalculate() {
|
||||
ImmediateDominators &ID = getAnalysis<ImmediateDominators>();
|
||||
Doms.clear();
|
||||
if (Roots.empty()) return;
|
||||
|
||||
DomSetType WorkingSet;
|
||||
df_iterator<BasicBlock*> It = df_begin(RootBB), End = df_end(RootBB);
|
||||
for ( ; It != End; ++It) {
|
||||
BasicBlock *BB = *It;
|
||||
pred_iterator PI = pred_begin(BB), PEnd = pred_end(BB);
|
||||
if (PI != PEnd) { // Is there SOME predecessor?
|
||||
// Loop until we get to a predecessor that has had its dom set filled
|
||||
// in at least once. We are guaranteed to have this because we are
|
||||
// traversing the graph in DFO and have handled start nodes specially,
|
||||
// except when there are unreachable blocks.
|
||||
//
|
||||
while (PI != PEnd && Doms[*PI].empty()) ++PI;
|
||||
if (PI != PEnd) { // Not unreachable code case?
|
||||
WorkingSet = Doms[*PI];
|
||||
// Root nodes only dominate themselves.
|
||||
for (unsigned i = 0, e = Roots.size(); i != e; ++i)
|
||||
Doms[Roots[i]].insert(Roots[i]);
|
||||
|
||||
// Intersect all of the predecessor sets
|
||||
for (++PI; PI != PEnd; ++PI) {
|
||||
DomSetType &PredSet = Doms[*PI];
|
||||
if (PredSet.size())
|
||||
set_intersect(WorkingSet, PredSet);
|
||||
}
|
||||
Function *F = Roots.back()->getParent();
|
||||
|
||||
// Loop over all of the blocks in the function, calculating dominator sets for
|
||||
// each function.
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I)
|
||||
if (BasicBlock *IDom = ID[I]) { // Get idom if block is reachable
|
||||
DomSetType &DS = Doms[I];
|
||||
assert(DS.empty() && "Domset already filled in for this block?");
|
||||
DS.insert(I); // Blocks always dominate themselves
|
||||
|
||||
// Insert all dominators into the set...
|
||||
while (IDom) {
|
||||
// If we have already computed the dominator sets for our immediate
|
||||
// dominator, just use it instead of walking all the way up to the root.
|
||||
DomSetType &IDS = Doms[IDom];
|
||||
if (!IDS.empty()) {
|
||||
DS.insert(IDS.begin(), IDS.end());
|
||||
break;
|
||||
} else {
|
||||
DS.insert(IDom);
|
||||
IDom = ID[IDom];
|
||||
}
|
||||
} else {
|
||||
assert(Roots.size() == 1 && BB == Roots[0] &&
|
||||
"We got into unreachable code somehow!");
|
||||
}
|
||||
|
||||
WorkingSet.insert(BB); // A block always dominates itself
|
||||
DomSetType &BBSet = Doms[BB];
|
||||
if (BBSet != WorkingSet) {
|
||||
//assert(WorkingSet.size() > BBSet.size() && "Must only grow sets!");
|
||||
BBSet.swap(WorkingSet); // Constant time operation!
|
||||
Changed = true; // The sets changed.
|
||||
}
|
||||
WorkingSet.clear(); // Clear out the set for next iteration
|
||||
} else {
|
||||
// Ensure that every basic block has at least an empty set of nodes. This
|
||||
// is important for the case when there is unreachable blocks.
|
||||
Doms[I];
|
||||
}
|
||||
} while (Changed);
|
||||
}
|
||||
|
||||
|
||||
|
||||
// runOnFunction - This method calculates the forward dominator sets for the
|
||||
// specified function.
|
||||
//
|
||||
@ -104,21 +303,6 @@ bool DominatorSet::runOnFunction(Function &F) {
|
||||
return false;
|
||||
}
|
||||
|
||||
void DominatorSet::recalculate() {
|
||||
assert(Roots.size() == 1 && "DominatorSet should have single root block!");
|
||||
Doms.clear(); // Reset from the last time we were run...
|
||||
|
||||
// Calculate dominator sets for the reachable basic blocks...
|
||||
calculateDominatorsFromBlock(Roots[0]);
|
||||
|
||||
|
||||
// Loop through the function, ensuring that every basic block has at least an
|
||||
// empty set of nodes. This is important for the case when there is
|
||||
// unreachable blocks.
|
||||
Function *F = Roots[0]->getParent();
|
||||
for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) Doms[I];
|
||||
}
|
||||
|
||||
namespace llvm {
|
||||
static std::ostream &operator<<(std::ostream &o,
|
||||
const std::set<BasicBlock*> &BBs) {
|
||||
@ -143,67 +327,6 @@ void DominatorSetBase::print(std::ostream &o) const {
|
||||
}
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ImmediateDominators Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
static RegisterAnalysis<ImmediateDominators>
|
||||
C("idom", "Immediate Dominators Construction", true);
|
||||
|
||||
// calcIDoms - Calculate the immediate dominator mapping, given a set of
|
||||
// dominators for every basic block.
|
||||
void ImmediateDominatorsBase::calcIDoms(const DominatorSetBase &DS) {
|
||||
// Loop over all of the nodes that have dominators... figuring out the IDOM
|
||||
// for each node...
|
||||
//
|
||||
for (DominatorSet::const_iterator DI = DS.begin(), DEnd = DS.end();
|
||||
DI != DEnd; ++DI) {
|
||||
BasicBlock *BB = DI->first;
|
||||
const DominatorSet::DomSetType &Dominators = DI->second;
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom!
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of elements
|
||||
// in the dominator set indicates what level the node is at in the chain.
|
||||
// We want the node immediately above us, so it will have an identical
|
||||
// dominator set, except that BB will not dominate it... therefore it's
|
||||
// dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
IDoms[BB] = *I;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void ImmediateDominatorsBase::print(std::ostream &o) const {
|
||||
for (const_iterator I = begin(), E = end(); I != E; ++I) {
|
||||
o << " Immediate Dominator For Basic Block:";
|
||||
if (I->first)
|
||||
WriteAsOperand(o, I->first, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
o << " is:";
|
||||
if (I->second)
|
||||
WriteAsOperand(o, I->second, false);
|
||||
else
|
||||
o << " <<exit node>>";
|
||||
o << "\n";
|
||||
}
|
||||
o << "\n";
|
||||
}
|
||||
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// DominatorTree Implementation
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -236,56 +359,40 @@ void DominatorTreeBase::Node::setIDom(Node *NewIDom) {
|
||||
}
|
||||
}
|
||||
|
||||
DominatorTreeBase::Node *DominatorTree::getNodeForBlock(BasicBlock *BB) {
|
||||
Node *&BBNode = Nodes[BB];
|
||||
if (BBNode) return BBNode;
|
||||
|
||||
// Haven't calculated this node yet? Get or calculate the node for the
|
||||
// immediate dominator.
|
||||
BasicBlock *IDom = getAnalysis<ImmediateDominators>()[BB];
|
||||
Node *IDomNode = getNodeForBlock(IDom);
|
||||
|
||||
void DominatorTree::calculate(const DominatorSet &DS) {
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
return BBNode = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
}
|
||||
|
||||
void DominatorTree::calculate(const ImmediateDominators &ID) {
|
||||
assert(Roots.size() == 1 && "DominatorTree should have 1 root block!");
|
||||
BasicBlock *Root = Roots[0];
|
||||
Nodes[Root] = RootNode = new Node(Root, 0); // Add a node for the root...
|
||||
|
||||
// Iterate over all nodes in depth first order...
|
||||
for (df_iterator<BasicBlock*> I = df_begin(Root), E = df_end(Root);
|
||||
// Loop over all of the reachable blocks in the function...
|
||||
for (ImmediateDominators::const_iterator I = ID.begin(), E = ID.end();
|
||||
I != E; ++I) {
|
||||
BasicBlock *BB = *I;
|
||||
const DominatorSet::DomSetType &Dominators = DS.getDominators(BB);
|
||||
unsigned DomSetSize = Dominators.size();
|
||||
if (DomSetSize == 1) continue; // Root node... IDom = null
|
||||
Node *&BBNode = Nodes[I->first];
|
||||
if (!BBNode) { // Haven't calculated this node yet?
|
||||
// Get or calculate the node for the immediate dominator
|
||||
Node *IDomNode = getNodeForBlock(I->second);
|
||||
|
||||
// Loop over all dominators of this node. This corresponds to looping over
|
||||
// nodes in the dominator chain, looking for a node whose dominator set is
|
||||
// equal to the current nodes, except that the current node does not exist
|
||||
// in it. This means that it is one level higher in the dom chain than the
|
||||
// current node, and it is our idom! We know that we have already added
|
||||
// a DominatorTree node for our idom, because the idom must be a
|
||||
// predecessor in the depth first order that we are iterating through the
|
||||
// function.
|
||||
//
|
||||
DominatorSet::DomSetType::const_iterator I = Dominators.begin();
|
||||
DominatorSet::DomSetType::const_iterator End = Dominators.end();
|
||||
for (; I != End; ++I) { // Iterate over dominators...
|
||||
// All of our dominators should form a chain, where the number of
|
||||
// elements in the dominator set indicates what level the node is at in
|
||||
// the chain. We want the node immediately above us, so it will have
|
||||
// an identical dominator set, except that BB will not dominate it...
|
||||
// therefore it's dominator set size will be one less than BB's...
|
||||
//
|
||||
if (DS.getDominators(*I).size() == DomSetSize - 1) {
|
||||
// We know that the immediate dominator should already have a node,
|
||||
// because we are traversing the CFG in depth first order!
|
||||
//
|
||||
Node *IDomNode = Nodes[*I];
|
||||
assert(IDomNode && "No node for IDOM?");
|
||||
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
Nodes[BB] = IDomNode->addChild(new Node(BB, IDomNode));
|
||||
break;
|
||||
}
|
||||
// Add a new tree node for this BasicBlock, and link it as a child of
|
||||
// IDomNode
|
||||
BBNode = IDomNode->addChild(new Node(I->first, IDomNode));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static std::ostream &operator<<(std::ostream &o,
|
||||
const DominatorTreeBase::Node *Node) {
|
||||
if (Node->getBlock())
|
||||
|
Loading…
Reference in New Issue
Block a user