mirror of
https://github.com/RPCS3/llvm.git
synced 2025-03-07 10:07:17 +00:00
[ValueTracking] refactor: extract method haveNoCommonBitsSet
Summary: Extract method haveNoCommonBitsSet so that we don't have to duplicate this logic in InstCombine and SeparateConstOffsetFromGEP. This patch also makes SeparateConstOffsetFromGEP more precise by passing DominatorTree to computeKnownBits. Test Plan: value-tracking-domtree.ll that tests ValueTracking indeed leverages dominating conditions Reviewers: broune, meheff, majnemer Reviewed By: majnemer Subscribers: jholewinski, llvm-commits Differential Revision: http://reviews.llvm.org/D9734 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@237407 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
2b5899e7fc
commit
19eda5312a
@ -47,6 +47,11 @@ namespace llvm {
|
|||||||
/// \p KnownZero the set of bits that are known to be zero
|
/// \p KnownZero the set of bits that are known to be zero
|
||||||
void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
|
void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
|
||||||
APInt &KnownZero);
|
APInt &KnownZero);
|
||||||
|
/// Returns true if LHS and RHS have no common bits set.
|
||||||
|
bool haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
|
||||||
|
AssumptionCache *AC = nullptr,
|
||||||
|
const Instruction *CxtI = nullptr,
|
||||||
|
const DominatorTree *DT = nullptr);
|
||||||
|
|
||||||
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
|
/// ComputeSignBit - Determine whether the sign bit is known to be zero or
|
||||||
/// one. Convenience wrapper around computeKnownBits.
|
/// one. Convenience wrapper around computeKnownBits.
|
||||||
|
@ -138,6 +138,21 @@ void llvm::computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
|
|||||||
Query(AC, safeCxtI(V, CxtI), DT));
|
Query(AC, safeCxtI(V, CxtI), DT));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool llvm::haveNoCommonBitsSet(Value *LHS, Value *RHS, const DataLayout &DL,
|
||||||
|
AssumptionCache *AC, const Instruction *CxtI,
|
||||||
|
const DominatorTree *DT) {
|
||||||
|
assert(LHS->getType() == RHS->getType() &&
|
||||||
|
"LHS and RHS should have the same type");
|
||||||
|
assert(LHS->getType()->isIntOrIntVectorTy() &&
|
||||||
|
"LHS and RHS should be integers");
|
||||||
|
IntegerType *IT = cast<IntegerType>(LHS->getType()->getScalarType());
|
||||||
|
APInt LHSKnownZero(IT->getBitWidth(), 0), LHSKnownOne(IT->getBitWidth(), 0);
|
||||||
|
APInt RHSKnownZero(IT->getBitWidth(), 0), RHSKnownOne(IT->getBitWidth(), 0);
|
||||||
|
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, DL, 0, AC, CxtI, DT);
|
||||||
|
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, DL, 0, AC, CxtI, DT);
|
||||||
|
return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
|
||||||
|
}
|
||||||
|
|
||||||
static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
|
static void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
|
||||||
const DataLayout &DL, unsigned Depth,
|
const DataLayout &DL, unsigned Depth,
|
||||||
const Query &Q);
|
const Query &Q);
|
||||||
|
@ -1160,20 +1160,8 @@ Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
|
|||||||
return ReplaceInstUsesWith(I, V);
|
return ReplaceInstUsesWith(I, V);
|
||||||
|
|
||||||
// A+B --> A|B iff A and B have no bits set in common.
|
// A+B --> A|B iff A and B have no bits set in common.
|
||||||
if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
|
if (haveNoCommonBitsSet(LHS, RHS, DL, AC, &I, DT))
|
||||||
APInt LHSKnownOne(IT->getBitWidth(), 0);
|
return BinaryOperator::CreateOr(LHS, RHS);
|
||||||
APInt LHSKnownZero(IT->getBitWidth(), 0);
|
|
||||||
computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I);
|
|
||||||
if (LHSKnownZero != 0) {
|
|
||||||
APInt RHSKnownOne(IT->getBitWidth(), 0);
|
|
||||||
APInt RHSKnownZero(IT->getBitWidth(), 0);
|
|
||||||
computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I);
|
|
||||||
|
|
||||||
// No bits in common -> bitwise or.
|
|
||||||
if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
|
|
||||||
return BinaryOperator::CreateOr(LHS, RHS);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
|
if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
|
||||||
Value *X;
|
Value *X;
|
||||||
|
@ -160,6 +160,7 @@
|
|||||||
#include "llvm/Analysis/ValueTracking.h"
|
#include "llvm/Analysis/ValueTracking.h"
|
||||||
#include "llvm/IR/Constants.h"
|
#include "llvm/IR/Constants.h"
|
||||||
#include "llvm/IR/DataLayout.h"
|
#include "llvm/IR/DataLayout.h"
|
||||||
|
#include "llvm/IR/Dominators.h"
|
||||||
#include "llvm/IR/Instructions.h"
|
#include "llvm/IR/Instructions.h"
|
||||||
#include "llvm/IR/LLVMContext.h"
|
#include "llvm/IR/LLVMContext.h"
|
||||||
#include "llvm/IR/Module.h"
|
#include "llvm/IR/Module.h"
|
||||||
@ -202,7 +203,7 @@ namespace {
|
|||||||
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
|
/// 5); nor can we transform (3 * (a + 5)) to (3 * a + 5), however in this case,
|
||||||
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
|
/// -instcombine probably already optimized (3 * (a + 5)) to (3 * a + 15).
|
||||||
class ConstantOffsetExtractor {
|
class ConstantOffsetExtractor {
|
||||||
public:
|
public:
|
||||||
/// Extracts a constant offset from the given GEP index. It returns the
|
/// Extracts a constant offset from the given GEP index. It returns the
|
||||||
/// new index representing the remainder (equal to the original index minus
|
/// new index representing the remainder (equal to the original index minus
|
||||||
/// the constant offset), or nullptr if we cannot extract a constant offset.
|
/// the constant offset), or nullptr if we cannot extract a constant offset.
|
||||||
@ -210,15 +211,18 @@ class ConstantOffsetExtractor {
|
|||||||
/// \p GEP The given GEP
|
/// \p GEP The given GEP
|
||||||
/// \p UserChainTail Outputs the tail of UserChain so that we can
|
/// \p UserChainTail Outputs the tail of UserChain so that we can
|
||||||
/// garbage-collect unused instructions in UserChain.
|
/// garbage-collect unused instructions in UserChain.
|
||||||
static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
|
static Value *Extract(Value *Idx, GetElementPtrInst *GEP,
|
||||||
User *&UserChainTail);
|
User *&UserChainTail, const DominatorTree *DT);
|
||||||
/// Looks for a constant offset from the given GEP index without extracting
|
/// Looks for a constant offset from the given GEP index without extracting
|
||||||
/// it. It returns the numeric value of the extracted constant offset (0 if
|
/// it. It returns the numeric value of the extracted constant offset (0 if
|
||||||
/// failed). The meaning of the arguments are the same as Extract.
|
/// failed). The meaning of the arguments are the same as Extract.
|
||||||
static int64_t Find(Value *Idx, GetElementPtrInst *GEP);
|
static int64_t Find(Value *Idx, GetElementPtrInst *GEP,
|
||||||
|
const DominatorTree *DT);
|
||||||
|
|
||||||
private:
|
private:
|
||||||
ConstantOffsetExtractor(Instruction *InsertionPt) : IP(InsertionPt) {}
|
ConstantOffsetExtractor(Instruction *InsertionPt, const DominatorTree *DT)
|
||||||
|
: IP(InsertionPt), DL(InsertionPt->getModule()->getDataLayout()), DT(DT) {
|
||||||
|
}
|
||||||
/// Searches the expression that computes V for a non-zero constant C s.t.
|
/// Searches the expression that computes V for a non-zero constant C s.t.
|
||||||
/// V can be reassociated into the form V' + C. If the searching is
|
/// V can be reassociated into the form V' + C. If the searching is
|
||||||
/// successful, returns C and update UserChain as a def-use chain from C to V;
|
/// successful, returns C and update UserChain as a def-use chain from C to V;
|
||||||
@ -276,13 +280,6 @@ class ConstantOffsetExtractor {
|
|||||||
/// returns "sext i32 (zext i16 V to i32) to i64".
|
/// returns "sext i32 (zext i16 V to i32) to i64".
|
||||||
Value *applyExts(Value *V);
|
Value *applyExts(Value *V);
|
||||||
|
|
||||||
/// Returns true if LHS and RHS have no bits in common, i.e., for every n
|
|
||||||
/// the n-th bit of either LHS, or RHS is 0.
|
|
||||||
bool NoCommonBits(Value *LHS, Value *RHS) const;
|
|
||||||
/// Computes which bits are known to be one or zero.
|
|
||||||
/// \p KnownOne Mask of all bits that are known to be one.
|
|
||||||
/// \p KnownZero Mask of all bits that are known to be zero.
|
|
||||||
void ComputeKnownBits(Value *V, APInt &KnownOne, APInt &KnownZero) const;
|
|
||||||
/// A helper function that returns whether we can trace into the operands
|
/// A helper function that returns whether we can trace into the operands
|
||||||
/// of binary operator BO for a constant offset.
|
/// of binary operator BO for a constant offset.
|
||||||
///
|
///
|
||||||
@ -304,28 +301,35 @@ class ConstantOffsetExtractor {
|
|||||||
/// sext/zext instructions along UserChain.
|
/// sext/zext instructions along UserChain.
|
||||||
SmallVector<CastInst *, 16> ExtInsts;
|
SmallVector<CastInst *, 16> ExtInsts;
|
||||||
Instruction *IP; /// Insertion position of cloned instructions.
|
Instruction *IP; /// Insertion position of cloned instructions.
|
||||||
|
const DataLayout &DL;
|
||||||
|
const DominatorTree *DT;
|
||||||
};
|
};
|
||||||
|
|
||||||
/// \brief A pass that tries to split every GEP in the function into a variadic
|
/// \brief A pass that tries to split every GEP in the function into a variadic
|
||||||
/// base and a constant offset. It is a FunctionPass because searching for the
|
/// base and a constant offset. It is a FunctionPass because searching for the
|
||||||
/// constant offset may inspect other basic blocks.
|
/// constant offset may inspect other basic blocks.
|
||||||
class SeparateConstOffsetFromGEP : public FunctionPass {
|
class SeparateConstOffsetFromGEP : public FunctionPass {
|
||||||
public:
|
public:
|
||||||
static char ID;
|
static char ID;
|
||||||
SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
|
SeparateConstOffsetFromGEP(const TargetMachine *TM = nullptr,
|
||||||
bool LowerGEP = false)
|
bool LowerGEP = false)
|
||||||
: FunctionPass(ID), TM(TM), LowerGEP(LowerGEP) {
|
: FunctionPass(ID), DL(nullptr), DT(nullptr), TM(TM), LowerGEP(LowerGEP) {
|
||||||
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
|
initializeSeparateConstOffsetFromGEPPass(*PassRegistry::getPassRegistry());
|
||||||
}
|
}
|
||||||
|
|
||||||
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
||||||
|
AU.addRequired<DominatorTreeWrapperPass>();
|
||||||
AU.addRequired<TargetTransformInfoWrapperPass>();
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
||||||
AU.setPreservesCFG();
|
AU.setPreservesCFG();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool doInitialization(Module &M) override {
|
||||||
|
DL = &M.getDataLayout();
|
||||||
|
return false;
|
||||||
|
}
|
||||||
bool runOnFunction(Function &F) override;
|
bool runOnFunction(Function &F) override;
|
||||||
|
|
||||||
private:
|
private:
|
||||||
/// Tries to split the given GEP into a variadic base and a constant offset,
|
/// Tries to split the given GEP into a variadic base and a constant offset,
|
||||||
/// and returns true if the splitting succeeds.
|
/// and returns true if the splitting succeeds.
|
||||||
bool splitGEP(GetElementPtrInst *GEP);
|
bool splitGEP(GetElementPtrInst *GEP);
|
||||||
@ -372,6 +376,8 @@ class SeparateConstOffsetFromGEP : public FunctionPass {
|
|||||||
/// Verify F is free of dead code.
|
/// Verify F is free of dead code.
|
||||||
void verifyNoDeadCode(Function &F);
|
void verifyNoDeadCode(Function &F);
|
||||||
|
|
||||||
|
const DataLayout *DL;
|
||||||
|
const DominatorTree *DT;
|
||||||
const TargetMachine *TM;
|
const TargetMachine *TM;
|
||||||
/// Whether to lower a GEP with multiple indices into arithmetic operations or
|
/// Whether to lower a GEP with multiple indices into arithmetic operations or
|
||||||
/// multiple GEPs with a single index.
|
/// multiple GEPs with a single index.
|
||||||
@ -384,6 +390,7 @@ INITIALIZE_PASS_BEGIN(
|
|||||||
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
||||||
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
"Split GEPs to a variadic base and a constant offset for better CSE", false,
|
||||||
false)
|
false)
|
||||||
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
||||||
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
||||||
INITIALIZE_PASS_END(
|
INITIALIZE_PASS_END(
|
||||||
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
SeparateConstOffsetFromGEP, "separate-const-offset-from-gep",
|
||||||
@ -412,7 +419,8 @@ bool ConstantOffsetExtractor::CanTraceInto(bool SignExtended,
|
|||||||
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
|
Value *LHS = BO->getOperand(0), *RHS = BO->getOperand(1);
|
||||||
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
|
// Do not trace into "or" unless it is equivalent to "add". If LHS and RHS
|
||||||
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
|
// don't have common bits, (LHS | RHS) is equivalent to (LHS + RHS).
|
||||||
if (BO->getOpcode() == Instruction::Or && !NoCommonBits(LHS, RHS))
|
if (BO->getOpcode() == Instruction::Or &&
|
||||||
|
!haveNoCommonBitsSet(LHS, RHS, DL, nullptr, BO, DT))
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
// In addition, tracing into BO requires that its surrounding s/zext (if
|
// In addition, tracing into BO requires that its surrounding s/zext (if
|
||||||
@ -497,9 +505,8 @@ APInt ConstantOffsetExtractor::find(Value *V, bool SignExtended,
|
|||||||
ConstantOffset = CI->getValue();
|
ConstantOffset = CI->getValue();
|
||||||
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
|
} else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V)) {
|
||||||
// Trace into subexpressions for more hoisting opportunities.
|
// Trace into subexpressions for more hoisting opportunities.
|
||||||
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative)) {
|
if (CanTraceInto(SignExtended, ZeroExtended, BO, NonNegative))
|
||||||
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
|
ConstantOffset = findInEitherOperand(BO, SignExtended, ZeroExtended);
|
||||||
}
|
|
||||||
} else if (isa<SExtInst>(V)) {
|
} else if (isa<SExtInst>(V)) {
|
||||||
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
|
ConstantOffset = find(U->getOperand(0), /* SignExtended */ true,
|
||||||
ZeroExtended, NonNegative).sext(BitWidth);
|
ZeroExtended, NonNegative).sext(BitWidth);
|
||||||
@ -642,8 +649,9 @@ Value *ConstantOffsetExtractor::removeConstOffset(unsigned ChainIndex) {
|
|||||||
}
|
}
|
||||||
|
|
||||||
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
|
Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
|
||||||
User *&UserChainTail) {
|
User *&UserChainTail,
|
||||||
ConstantOffsetExtractor Extractor(GEP);
|
const DominatorTree *DT) {
|
||||||
|
ConstantOffsetExtractor Extractor(GEP, DT);
|
||||||
// Find a non-zero constant offset first.
|
// Find a non-zero constant offset first.
|
||||||
APInt ConstantOffset =
|
APInt ConstantOffset =
|
||||||
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
Extractor.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
||||||
@ -658,37 +666,19 @@ Value *ConstantOffsetExtractor::Extract(Value *Idx, GetElementPtrInst *GEP,
|
|||||||
return IdxWithoutConstOffset;
|
return IdxWithoutConstOffset;
|
||||||
}
|
}
|
||||||
|
|
||||||
int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP) {
|
int64_t ConstantOffsetExtractor::Find(Value *Idx, GetElementPtrInst *GEP,
|
||||||
|
const DominatorTree *DT) {
|
||||||
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
|
// If Idx is an index of an inbound GEP, Idx is guaranteed to be non-negative.
|
||||||
return ConstantOffsetExtractor(GEP)
|
return ConstantOffsetExtractor(GEP, DT)
|
||||||
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
.find(Idx, /* SignExtended */ false, /* ZeroExtended */ false,
|
||||||
GEP->isInBounds())
|
GEP->isInBounds())
|
||||||
.getSExtValue();
|
.getSExtValue();
|
||||||
}
|
}
|
||||||
|
|
||||||
void ConstantOffsetExtractor::ComputeKnownBits(Value *V, APInt &KnownOne,
|
|
||||||
APInt &KnownZero) const {
|
|
||||||
IntegerType *IT = cast<IntegerType>(V->getType());
|
|
||||||
KnownOne = APInt(IT->getBitWidth(), 0);
|
|
||||||
KnownZero = APInt(IT->getBitWidth(), 0);
|
|
||||||
const DataLayout &DL = IP->getModule()->getDataLayout();
|
|
||||||
llvm::computeKnownBits(V, KnownZero, KnownOne, DL, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
bool ConstantOffsetExtractor::NoCommonBits(Value *LHS, Value *RHS) const {
|
|
||||||
assert(LHS->getType() == RHS->getType() &&
|
|
||||||
"LHS and RHS should have the same type");
|
|
||||||
APInt LHSKnownOne, LHSKnownZero, RHSKnownOne, RHSKnownZero;
|
|
||||||
ComputeKnownBits(LHS, LHSKnownOne, LHSKnownZero);
|
|
||||||
ComputeKnownBits(RHS, RHSKnownOne, RHSKnownZero);
|
|
||||||
return (LHSKnownZero | RHSKnownZero).isAllOnesValue();
|
|
||||||
}
|
|
||||||
|
|
||||||
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
|
bool SeparateConstOffsetFromGEP::canonicalizeArrayIndicesToPointerSize(
|
||||||
GetElementPtrInst *GEP) {
|
GetElementPtrInst *GEP) {
|
||||||
bool Changed = false;
|
bool Changed = false;
|
||||||
const DataLayout &DL = GEP->getModule()->getDataLayout();
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
||||||
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
|
|
||||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||||
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
|
for (User::op_iterator I = GEP->op_begin() + 1, E = GEP->op_end();
|
||||||
I != E; ++I, ++GTI) {
|
I != E; ++I, ++GTI) {
|
||||||
@ -709,19 +699,18 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
|
|||||||
NeedsExtraction = false;
|
NeedsExtraction = false;
|
||||||
int64_t AccumulativeByteOffset = 0;
|
int64_t AccumulativeByteOffset = 0;
|
||||||
gep_type_iterator GTI = gep_type_begin(*GEP);
|
gep_type_iterator GTI = gep_type_begin(*GEP);
|
||||||
const DataLayout &DL = GEP->getModule()->getDataLayout();
|
|
||||||
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) {
|
||||||
if (isa<SequentialType>(*GTI)) {
|
if (isa<SequentialType>(*GTI)) {
|
||||||
// Tries to extract a constant offset from this GEP index.
|
// Tries to extract a constant offset from this GEP index.
|
||||||
int64_t ConstantOffset =
|
int64_t ConstantOffset =
|
||||||
ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP);
|
ConstantOffsetExtractor::Find(GEP->getOperand(I), GEP, DT);
|
||||||
if (ConstantOffset != 0) {
|
if (ConstantOffset != 0) {
|
||||||
NeedsExtraction = true;
|
NeedsExtraction = true;
|
||||||
// A GEP may have multiple indices. We accumulate the extracted
|
// A GEP may have multiple indices. We accumulate the extracted
|
||||||
// constant offset to a byte offset, and later offset the remainder of
|
// constant offset to a byte offset, and later offset the remainder of
|
||||||
// the original GEP with this byte offset.
|
// the original GEP with this byte offset.
|
||||||
AccumulativeByteOffset +=
|
AccumulativeByteOffset +=
|
||||||
ConstantOffset * DL.getTypeAllocSize(GTI.getIndexedType());
|
ConstantOffset * DL->getTypeAllocSize(GTI.getIndexedType());
|
||||||
}
|
}
|
||||||
} else if (LowerGEP) {
|
} else if (LowerGEP) {
|
||||||
StructType *StTy = cast<StructType>(*GTI);
|
StructType *StTy = cast<StructType>(*GTI);
|
||||||
@ -730,7 +719,7 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
|
|||||||
if (Field != 0) {
|
if (Field != 0) {
|
||||||
NeedsExtraction = true;
|
NeedsExtraction = true;
|
||||||
AccumulativeByteOffset +=
|
AccumulativeByteOffset +=
|
||||||
DL.getStructLayout(StTy)->getElementOffset(Field);
|
DL->getStructLayout(StTy)->getElementOffset(Field);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -740,8 +729,7 @@ SeparateConstOffsetFromGEP::accumulateByteOffset(GetElementPtrInst *GEP,
|
|||||||
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
|
void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
|
||||||
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
|
GetElementPtrInst *Variadic, int64_t AccumulativeByteOffset) {
|
||||||
IRBuilder<> Builder(Variadic);
|
IRBuilder<> Builder(Variadic);
|
||||||
const DataLayout &DL = Variadic->getModule()->getDataLayout();
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
||||||
Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
|
|
||||||
|
|
||||||
Type *I8PtrTy =
|
Type *I8PtrTy =
|
||||||
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
|
Builder.getInt8PtrTy(Variadic->getType()->getPointerAddressSpace());
|
||||||
@ -761,7 +749,7 @@ void SeparateConstOffsetFromGEP::lowerToSingleIndexGEPs(
|
|||||||
continue;
|
continue;
|
||||||
|
|
||||||
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
||||||
DL.getTypeAllocSize(GTI.getIndexedType()));
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
||||||
// Scale the index by element size.
|
// Scale the index by element size.
|
||||||
if (ElementSize != 1) {
|
if (ElementSize != 1) {
|
||||||
if (ElementSize.isPowerOf2()) {
|
if (ElementSize.isPowerOf2()) {
|
||||||
@ -794,8 +782,7 @@ void
|
|||||||
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
|
SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
|
||||||
int64_t AccumulativeByteOffset) {
|
int64_t AccumulativeByteOffset) {
|
||||||
IRBuilder<> Builder(Variadic);
|
IRBuilder<> Builder(Variadic);
|
||||||
const DataLayout &DL = Variadic->getModule()->getDataLayout();
|
Type *IntPtrTy = DL->getIntPtrType(Variadic->getType());
|
||||||
Type *IntPtrTy = DL.getIntPtrType(Variadic->getType());
|
|
||||||
|
|
||||||
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
|
Value *ResultPtr = Builder.CreatePtrToInt(Variadic->getOperand(0), IntPtrTy);
|
||||||
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
gep_type_iterator GTI = gep_type_begin(*Variadic);
|
||||||
@ -811,7 +798,7 @@ SeparateConstOffsetFromGEP::lowerToArithmetics(GetElementPtrInst *Variadic,
|
|||||||
continue;
|
continue;
|
||||||
|
|
||||||
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
APInt ElementSize = APInt(IntPtrTy->getIntegerBitWidth(),
|
||||||
DL.getTypeAllocSize(GTI.getIndexedType()));
|
DL->getTypeAllocSize(GTI.getIndexedType()));
|
||||||
// Scale the index by element size.
|
// Scale the index by element size.
|
||||||
if (ElementSize != 1) {
|
if (ElementSize != 1) {
|
||||||
if (ElementSize.isPowerOf2()) {
|
if (ElementSize.isPowerOf2()) {
|
||||||
@ -887,7 +874,7 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
|||||||
Value *OldIdx = GEP->getOperand(I);
|
Value *OldIdx = GEP->getOperand(I);
|
||||||
User *UserChainTail;
|
User *UserChainTail;
|
||||||
Value *NewIdx =
|
Value *NewIdx =
|
||||||
ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail);
|
ConstantOffsetExtractor::Extract(OldIdx, GEP, UserChainTail, DT);
|
||||||
if (NewIdx != nullptr) {
|
if (NewIdx != nullptr) {
|
||||||
// Switches to the index with the constant offset removed.
|
// Switches to the index with the constant offset removed.
|
||||||
GEP->setOperand(I, NewIdx);
|
GEP->setOperand(I, NewIdx);
|
||||||
@ -969,10 +956,9 @@ bool SeparateConstOffsetFromGEP::splitGEP(GetElementPtrInst *GEP) {
|
|||||||
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
|
// Per ANSI C standard, signed / unsigned = unsigned and signed % unsigned =
|
||||||
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
|
// unsigned.. Therefore, we cast ElementTypeSizeOfGEP to signed because it is
|
||||||
// used with unsigned integers later.
|
// used with unsigned integers later.
|
||||||
const DataLayout &DL = GEP->getModule()->getDataLayout();
|
|
||||||
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
|
int64_t ElementTypeSizeOfGEP = static_cast<int64_t>(
|
||||||
DL.getTypeAllocSize(GEP->getType()->getElementType()));
|
DL->getTypeAllocSize(GEP->getType()->getElementType()));
|
||||||
Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
|
Type *IntPtrTy = DL->getIntPtrType(GEP->getType());
|
||||||
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
if (AccumulativeByteOffset % ElementTypeSizeOfGEP == 0) {
|
||||||
// Very likely. As long as %gep is natually aligned, the byte offset we
|
// Very likely. As long as %gep is natually aligned, the byte offset we
|
||||||
// extracted should be a multiple of sizeof(*%gep).
|
// extracted should be a multiple of sizeof(*%gep).
|
||||||
@ -1019,6 +1005,8 @@ bool SeparateConstOffsetFromGEP::runOnFunction(Function &F) {
|
|||||||
if (DisableSeparateConstOffsetFromGEP)
|
if (DisableSeparateConstOffsetFromGEP)
|
||||||
return false;
|
return false;
|
||||||
|
|
||||||
|
DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
|
||||||
|
|
||||||
bool Changed = false;
|
bool Changed = false;
|
||||||
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
|
for (Function::iterator B = F.begin(), BE = F.end(); B != BE; ++B) {
|
||||||
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
|
for (BasicBlock::iterator I = B->begin(), IE = B->end(); I != IE; ) {
|
||||||
|
@ -0,0 +1,33 @@
|
|||||||
|
; RUN: opt < %s -separate-const-offset-from-gep -value-tracking-dom-conditions -reassociate-geps-verify-no-dead-code -S | FileCheck %s
|
||||||
|
|
||||||
|
target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
|
||||||
|
target triple = "nvptx64-unknown-unknown"
|
||||||
|
|
||||||
|
; if (i == 4)
|
||||||
|
; p = &input[i | 3];
|
||||||
|
;
|
||||||
|
; =>
|
||||||
|
;
|
||||||
|
; if (i == 4) {
|
||||||
|
; base = &input[i];
|
||||||
|
; p = &base[3];
|
||||||
|
; }
|
||||||
|
;
|
||||||
|
; We should treat (i | 3) as (i + 3) because i is guaranteed to be 4, which
|
||||||
|
; does not share any set bits with 3.
|
||||||
|
define float* @guarded_or(float* %input, i64 %i) {
|
||||||
|
; CHECK-LABEL: @guarded_or(
|
||||||
|
entry:
|
||||||
|
%is4 = icmp eq i64 %i, 4
|
||||||
|
br i1 %is4, label %then, label %exit
|
||||||
|
|
||||||
|
then:
|
||||||
|
%or = or i64 %i, 3
|
||||||
|
%p = getelementptr inbounds float, float* %input, i64 %or
|
||||||
|
; CHECK: [[base:[^ ]+]] = getelementptr float, float* %input, i64 %i
|
||||||
|
; CHECK: getelementptr float, float* [[base]], i64 3
|
||||||
|
ret float* %p
|
||||||
|
|
||||||
|
exit:
|
||||||
|
ret float* null
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user