[SafepointIRVerifier] Add verifier pass for finding GC relocation bugs

Original Patch and summary by Philip Reames.

RewriteStatepointsForGC tries to rewrite a function in a manner where
the optimizer can't end up using a pointer value after it might have
been relocated by a safepoint. This pass checks the invariant that
RSForGC is supposed to establish and that (if we constructed semantics
correctly) later passes must preserve.

This has been a really useful diagnostic tool when initially developing
the rewriting scheme and has found numerous bugs.

Differential Revision: https://reviews.llvm.org/D15940

Reviewed by: swaroop.sridhar, mjacob

Subscribers: llvm-commits

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@307112 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Anna Thomas 2017-07-05 01:16:29 +00:00
parent 3a8bab032e
commit 3087bcdef2
9 changed files with 638 additions and 0 deletions

View File

@ -0,0 +1,35 @@
//===- SafepointIRVerifier.h - Checks for GC relocation problems *- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines a verifier which is useful for enforcing the relocation
// properties required by a relocating GC. Specifically, it looks for uses of
// the unrelocated value of pointer SSA values after a possible safepoint. It
// attempts to report no false negatives, but may end up reporting false
// positives in rare cases (see the note at the top of the corresponding cpp
// file.)
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_SAFEPOINT_IR_VERIFIER
#define LLVM_IR_SAFEPOINT_IR_VERIFIER
namespace llvm {
class Function;
class FunctionPass;
/// Run the safepoint verifier over a single function. Crashes on failure.
void verifySafepointIR(Function &F);
/// Create an instance of the safepoint verifier pass which can be added to
/// a pass pipeline to check for relocation bugs.
FunctionPass *createSafepointIRVerifierPass();
}
#endif // LLVM_IR_SAFEPOINT_IR_VERIFIER

View File

@ -318,6 +318,7 @@ void initializeResetMachineFunctionPass(PassRegistry&);
void initializeReversePostOrderFunctionAttrsLegacyPassPass(PassRegistry&);
void initializeRewriteStatepointsForGCPass(PassRegistry&);
void initializeRewriteSymbolsLegacyPassPass(PassRegistry&);
void initializeSafepointIRVerifierPass(PassRegistry&);
void initializeSCCPLegacyPassPass(PassRegistry&);
void initializeSCEVAAWrapperPassPass(PassRegistry&);
void initializeSLPVectorizerPass(PassRegistry&);

View File

@ -43,6 +43,7 @@ add_llvm_library(LLVMCore
Pass.cpp
PassManager.cpp
PassRegistry.cpp
SafepointIRVerifier.cpp
ProfileSummary.cpp
Statepoint.cpp
Type.cpp

View File

@ -50,6 +50,7 @@ void llvm::initializeCore(PassRegistry &Registry) {
initializePrintModulePassWrapperPass(Registry);
initializePrintFunctionPassWrapperPass(Registry);
initializePrintBasicBlockPassPass(Registry);
initializeSafepointIRVerifierPass(Registry);
initializeVerifierLegacyPassPass(Registry);
}

View File

@ -0,0 +1,358 @@
//===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Run a sanity check on the IR to ensure that Safepoints - if they've been
// inserted - were inserted correctly. In particular, look for use of
// non-relocated values after a safepoint. It's primary use is to check the
// correctness of safepoint insertion immediately after insertion, but it can
// also be used to verify that later transforms have not found a way to break
// safepoint semenatics.
//
// In its current form, this verify checks a property which is sufficient, but
// not neccessary for correctness. There are some cases where an unrelocated
// pointer can be used after the safepoint. Consider this example:
//
// a = ...
// b = ...
// (a',b') = safepoint(a,b)
// c = cmp eq a b
// br c, ..., ....
//
// Because it is valid to reorder 'c' above the safepoint, this is legal. In
// practice, this is a somewhat uncommon transform, but CodeGenPrep does create
// idioms like this. Today, the verifier would report a spurious failure on
// this case.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/SafepointIRVerifier.h"
#include "llvm/IR/Statepoint.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "safepoint-ir-verifier"
using namespace llvm;
/// This option is used for writing test cases. Instead of crashing the program
/// when verification fails, report a message to the console (for FileCheck
/// usage) and continue execution as if nothing happened.
static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only",
cl::init(false));
static void Verify(const Function &F, const DominatorTree &DT);
struct SafepointIRVerifier : public FunctionPass {
static char ID; // Pass identification, replacement for typeid
DominatorTree DT;
SafepointIRVerifier() : FunctionPass(ID) {
initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry());
}
bool runOnFunction(Function &F) override {
DT.recalculate(F);
Verify(F, DT);
return false; // no modifications
}
void getAnalysisUsage(AnalysisUsage &AU) const override {
AU.setPreservesAll();
}
StringRef getPassName() const override { return "safepoint verifier"; }
};
void llvm::verifySafepointIR(Function &F) {
SafepointIRVerifier pass;
pass.runOnFunction(F);
}
char SafepointIRVerifier::ID = 0;
FunctionPass *llvm::createSafepointIRVerifierPass() {
return new SafepointIRVerifier();
}
INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir",
"Safepoint IR Verifier", false, true)
static bool isGCPointerType(Type *T) {
if (auto *PT = dyn_cast<PointerType>(T))
// For the sake of this example GC, we arbitrarily pick addrspace(1) as our
// GC managed heap. We know that a pointer into this heap needs to be
// updated and that no other pointer does.
return (1 == PT->getAddressSpace());
return false;
}
static bool containsGCPtrType(Type *Ty) {
if (isGCPointerType(Ty))
return true;
if (VectorType *VT = dyn_cast<VectorType>(Ty))
return isGCPointerType(VT->getScalarType());
if (ArrayType *AT = dyn_cast<ArrayType>(Ty))
return containsGCPtrType(AT->getElementType());
if (StructType *ST = dyn_cast<StructType>(Ty))
return std::any_of(ST->subtypes().begin(), ST->subtypes().end(),
containsGCPtrType);
return false;
}
// Debugging aid -- prints a [Begin, End) range of values.
template<typename IteratorTy>
static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) {
OS << "[ ";
while (Begin != End) {
OS << **Begin << " ";
++Begin;
}
OS << "]";
}
/// The verifier algorithm is phrased in terms of availability. The set of
/// values "available" at a given point in the control flow graph is the set of
/// correctly relocated value at that point, and is a subset of the set of
/// definitions dominating that point.
/// State we compute and track per basic block.
struct BasicBlockState {
// Set of values available coming in, before the phi nodes
DenseSet<const Value *> AvailableIn;
// Set of values available going out
DenseSet<const Value *> AvailableOut;
// AvailableOut minus AvailableIn.
// All elements are Instructions
DenseSet<const Value *> Contribution;
// True if this block contains a safepoint and thus AvailableIn does not
// contribute to AvailableOut.
bool Cleared = false;
};
/// Gather all the definitions dominating the start of BB into Result. This is
/// simply the Defs introduced by every dominating basic block and the function
/// arguments.
static void GatherDominatingDefs(const BasicBlock *BB,
DenseSet<const Value *> &Result,
const DominatorTree &DT,
DenseMap<const BasicBlock *, BasicBlockState *> &BlockMap) {
DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)];
while (DTN->getIDom()) {
DTN = DTN->getIDom();
const auto &Defs = BlockMap[DTN->getBlock()]->Contribution;
Result.insert(Defs.begin(), Defs.end());
// If this block is 'Cleared', then nothing LiveIn to this block can be
// available after this block completes. Note: This turns out to be
// really important for reducing memory consuption of the initial available
// sets and thus peak memory usage by this verifier.
if (BlockMap[DTN->getBlock()]->Cleared)
return;
}
for (const Argument &A : BB->getParent()->args())
if (containsGCPtrType(A.getType()))
Result.insert(&A);
}
/// Model the effect of an instruction on the set of available values.
static void TransferInstruction(const Instruction &I, bool &Cleared,
DenseSet<const Value *> &Available) {
if (isStatepoint(I)) {
Cleared = true;
Available.clear();
} else if (containsGCPtrType(I.getType()))
Available.insert(&I);
}
/// Compute the AvailableOut set for BB, based on the
/// BasicBlockState BBS, which is the BasicBlockState for BB. FirstPass is set
/// when the verifier runs for the first time computing the AvailableOut set
/// for BB.
static void TransferBlock(const BasicBlock *BB,
BasicBlockState &BBS, bool FirstPass) {
const DenseSet<const Value *> &AvailableIn = BBS.AvailableIn;
DenseSet<const Value *> &AvailableOut = BBS.AvailableOut;
if (BBS.Cleared) {
// AvailableOut does not change no matter how the input changes, just
// leave it be. We need to force this calculation the first time so that
// we have a AvailableOut at all.
if (FirstPass) {
AvailableOut = BBS.Contribution;
}
} else {
// Otherwise, we need to reduce the AvailableOut set by things which are no
// longer in our AvailableIn
DenseSet<const Value *> Temp = BBS.Contribution;
set_union(Temp, AvailableIn);
AvailableOut = std::move(Temp);
}
DEBUG(dbgs() << "Transfered block " << BB->getName() << " from ";
PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end());
dbgs() << " to ";
PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end());
dbgs() << "\n";);
}
/// Return true if V is exclusively derived off a constant base, i.e. all
/// operands of non-unary operators (phi/select) are derived off a constant
/// base.
static bool
isExclusivelyConstantDerivedRecursive(const Value *V,
DenseSet<const Value *> &Visited) {
if (!Visited.insert(V).second)
return true;
if (isa<Constant>(V))
return true;
if (const auto *CI = dyn_cast<CastInst>(V))
return isExclusivelyConstantDerivedRecursive(CI->stripPointerCasts(),
Visited);
if (const auto *GEP = dyn_cast<GetElementPtrInst>(V))
return isExclusivelyConstantDerivedRecursive(GEP->getPointerOperand(),
Visited);
// All operands of the phi and select nodes should be derived off a constant
// base.
if (const auto *PN = dyn_cast<PHINode>(V)) {
return all_of(PN->incoming_values(), [&](const Value *InV) {
return isExclusivelyConstantDerivedRecursive(InV, Visited);
});
}
if (const auto *SI = dyn_cast<SelectInst>(V))
return isExclusivelyConstantDerivedRecursive(SI->getTrueValue(), Visited) &&
isExclusivelyConstantDerivedRecursive(SI->getFalseValue(), Visited);
return false;
}
static bool isExclusivelyConstantDerived(const Value *V) {
DenseSet<const Value*> Visited;
return isExclusivelyConstantDerivedRecursive(V, Visited);
}
static void Verify(const Function &F, const DominatorTree &DT) {
SpecificBumpPtrAllocator<BasicBlockState> BSAllocator;
DenseMap<const BasicBlock *, BasicBlockState *> BlockMap;
DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n");
if (PrintOnly)
dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n";
for (const BasicBlock &BB : F) {
BasicBlockState *BBS = new(BSAllocator.Allocate()) BasicBlockState;
for (const auto &I : BB)
TransferInstruction(I, BBS->Cleared, BBS->Contribution);
BlockMap[&BB] = BBS;
}
for (auto &BBI : BlockMap) {
GatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT, BlockMap);
TransferBlock(BBI.first, *BBI.second, true);
}
SetVector<const BasicBlock *> Worklist;
for (auto &BBI : BlockMap)
Worklist.insert(BBI.first);
// This loop iterates the AvailableIn and AvailableOut sets to a fixed point.
// The AvailableIn and AvailableOut sets decrease as we iterate.
while (!Worklist.empty()) {
const BasicBlock *BB = Worklist.pop_back_val();
BasicBlockState *BBS = BlockMap[BB];
size_t OldInCount = BBS->AvailableIn.size();
for (const BasicBlock *PBB : predecessors(BB))
set_intersect(BBS->AvailableIn, BlockMap[PBB]->AvailableOut);
if (OldInCount == BBS->AvailableIn.size())
continue;
assert(OldInCount > BBS->AvailableIn.size() && "invariant!");
size_t OldOutCount = BBS->AvailableOut.size();
TransferBlock(BB, *BBS, false);
if (OldOutCount != BBS->AvailableOut.size()) {
assert(OldOutCount > BBS->AvailableOut.size() && "invariant!");
Worklist.insert(succ_begin(BB), succ_end(BB));
}
}
// We now have all the information we need to decide if the use of a heap
// reference is legal or not, given our safepoint semantics.
bool AnyInvalidUses = false;
auto ReportInvalidUse = [&AnyInvalidUses](const Value &V,
const Instruction &I) {
errs() << "Illegal use of unrelocated value found!\n";
errs() << "Def: " << V << "\n";
errs() << "Use: " << I << "\n";
if (!PrintOnly)
abort();
AnyInvalidUses = true;
};
for (const BasicBlock &BB : F) {
// We destructively modify AvailableIn as we traverse the block instruction
// by instruction.
DenseSet<const Value *> &AvailableSet = BlockMap[&BB]->AvailableIn;
for (const Instruction &I : BB) {
if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
if (containsGCPtrType(PN->getType()))
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
const BasicBlock *InBB = PN->getIncomingBlock(i);
const Value *InValue = PN->getIncomingValue(i);
if (!isExclusivelyConstantDerived(InValue) &&
!BlockMap[InBB]->AvailableOut.count(InValue))
ReportInvalidUse(*InValue, *PN);
}
} else {
for (const Value *V : I.operands())
if (containsGCPtrType(V->getType()) &&
!isExclusivelyConstantDerived(V) && !AvailableSet.count(V))
ReportInvalidUse(*V, I);
}
bool Cleared = false;
TransferInstruction(I, Cleared, AvailableSet);
(void)Cleared;
}
}
if (PrintOnly && !AnyInvalidUses) {
dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName()
<< "\n";
}
}

View File

@ -0,0 +1,23 @@
; RUN: opt -safepoint-ir-verifier-print-only -verify-safepoint-ir -S %s 2>&1 | FileCheck %s
; This test checks that if a value is used immediately after a
; safepoint without using the relocated value that the verifier
; catches this.
%jObject = type { [8 x i8] }
; Function Attrs: nounwind
define %jObject addrspace(1)* @test(%jObject addrspace(1)* %arg) gc "statepoint-example" {
bci_0:
%safepoint_token3 = tail call token (i64, i32, double (double)*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_f64f64f(i64 0, i32 0, double (double)* undef, i32 1, i32 0, double undef, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0, %jObject addrspace(1)* %arg)
%arg2.relocated4 = call coldcc %jObject addrspace(1)* @llvm.experimental.gc.relocate.p1jObject(token %safepoint_token3, i32 13, i32 13)
ret %jObject addrspace(1)* %arg
; CHECK: Illegal use of unrelocated value found!
; CHECK-NEXT: Def: %jObject addrspace(1)* %arg
; CHECK-NEXT: Use: ret %jObject addrspace(1)* %arg
}
; Function Attrs: nounwind
declare %jObject addrspace(1)* @llvm.experimental.gc.relocate.p1jObject(token, i32, i32) #3
declare token @llvm.experimental.gc.statepoint.p0f_f64f64f(i64, i32, double (double)*, i32, i32, ...)

View File

@ -0,0 +1,70 @@
; RUN: opt -safepoint-ir-verifier-print-only -verify-safepoint-ir -S %s 2>&1 | FileCheck %s
define i8 addrspace(1)* @test1(i64 %arg) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test1
entry:
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* null
}
define i8 addrspace(1)* @test2(i64 %arg) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test2
entry:
%load_addr = getelementptr i8, i8 addrspace(1)* inttoptr (i64 15 to i8 addrspace(1)*), i64 %arg
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %load_addr
}
define i8 addrspace(1)* @test3(i64 %arg) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test3
entry:
%load_addr = getelementptr i32, i32 addrspace(1)* inttoptr (i64 15 to i32 addrspace(1)*), i64 %arg
%load_addr.cast = bitcast i32 addrspace(1)* %load_addr to i8 addrspace(1)*
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %load_addr.cast
}
define i8 addrspace(1)* @test4(i64 %arg, i1 %cond) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test4
entry:
%load_addr.1 = getelementptr i8, i8 addrspace(1)* inttoptr (i64 15 to i8 addrspace(1)*), i64 %arg
br i1 %cond, label %split, label %join
split:
%load_addr.2 = getelementptr i8, i8 addrspace(1)* inttoptr (i64 30 to i8 addrspace(1)*), i64 %arg
br label %join
join:
%load_addr = phi i8 addrspace(1)* [%load_addr.1, %entry], [%load_addr.2, %split]
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %load_addr
}
define i8 addrspace(1)* @test5(i64 %arg, i1 %cond) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test5
entry:
%load_addr.1 = getelementptr i8, i8 addrspace(1)* inttoptr (i64 15 to i8 addrspace(1)*), i64 %arg
%load_addr.2 = getelementptr i8, i8 addrspace(1)* inttoptr (i64 30 to i8 addrspace(1)*), i64 %arg
%load_addr = select i1 %cond, i8 addrspace(1)* %load_addr.1, i8 addrspace(1)* %load_addr.2
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %load_addr
}
define i8 addrspace(1)* @test6(i64 %arg, i1 %cond, i8 addrspace(1)* %base) gc "statepoint-example" {
; CHECK-LABEL: Verifying gc pointers in function: test6
; CHECK: Illegal use of unrelocated value found!
entry:
%load_addr.1 = getelementptr i8, i8 addrspace(1)* %base, i64 %arg
br i1 %cond, label %split, label %join
split:
%load_addr.2 = getelementptr i8, i8 addrspace(1)* inttoptr (i64 30 to i8 addrspace(1)*), i64 %arg
br label %join
join:
%load_addr = phi i8 addrspace(1)* [%load_addr.1, %entry], [%load_addr.2, %split]
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
ret i8 addrspace(1)* %load_addr
}
declare token @llvm.experimental.gc.statepoint.p0f_isVoidf(i64, i32, void ()*, i32, i32, ...)

View File

@ -0,0 +1,71 @@
; RUN: opt %s -safepoint-ir-verifier-print-only -verify-safepoint-ir -S 2>&1 | FileCheck %s
; CHECK: Illegal use of unrelocated value found!
; CHECK-NEXT: Def: %base_phi3 = phi %jObject addrspace(1)* [ %obj609.relocated, %not_zero146 ], [ %base_phi2, %bci_37-aload ], !is_base_value !0
; CHECK-NEXT: Use: %base_phi2 = phi %jObject addrspace(1)* [ %base_phi3, %not_zero179 ], [ %cast5, %bci_0 ], !is_base_value !0
%jObject = type { [8 x i8] }
declare %jObject addrspace(1)* @generate_obj1() #1
declare %jObject addrspace(1)* addrspace(1)* @generate_obj2() #1
declare %jObject addrspace(1)* @generate_obj3() #1
; Function Attrs: nounwind
define void @test(%jObject addrspace(1)*, %jObject addrspace(1)*, i32) #3 gc "statepoint-example" {
bci_0:
%result608 = call %jObject addrspace(1)* @generate_obj3()
%obj609 = bitcast %jObject addrspace(1)* %result608 to %jObject addrspace(1)*
%cast = bitcast %jObject addrspace(1)* %result608 to %jObject addrspace(1)*
%cast5 = bitcast %jObject addrspace(1)* %result608 to %jObject addrspace(1)*
br label %bci_37-aload
bci_37-aload: ; preds = %not_zero179, %bci_0
%base_phi = phi %jObject addrspace(1)* [ %base_phi1.relocated, %not_zero179 ], [ %cast, %bci_0 ], !is_base_value !0
%base_phi2 = phi %jObject addrspace(1)* [ %base_phi3, %not_zero179 ], [ %cast5, %bci_0 ], !is_base_value !0
%relocated8 = phi %jObject addrspace(1)* [ %relocated7.relocated, %not_zero179 ], [ %obj609, %bci_0 ]
%tmp3 = getelementptr inbounds %jObject, %jObject addrspace(1)* %relocated8, i64 0, i32 0, i64 32
%addr98 = bitcast i8 addrspace(1)* %tmp3 to %jObject addrspace(1)* addrspace(1)*
%cast6 = bitcast %jObject addrspace(1)* %base_phi2 to %jObject addrspace(1)* addrspace(1)*
br i1 undef, label %not_zero179, label %not_zero146
not_zero146: ; preds = %bci_37-aload
%addr98.relocated = call %jObject addrspace(1)* addrspace(1)* @generate_obj2() #1
%obj609.relocated = call %jObject addrspace(1)* @generate_obj1() #1
br label %not_zero179
not_zero179: ; preds = %not_zero146, %bci_37-aload
%base_phi1 = phi %jObject addrspace(1)* [ %obj609.relocated, %not_zero146 ], [ %base_phi, %bci_37-aload ], !is_base_value !0
%base_phi3 = phi %jObject addrspace(1)* [ %obj609.relocated, %not_zero146 ], [ %base_phi2, %bci_37-aload ], !is_base_value !0
%relocated7 = phi %jObject addrspace(1)* [ %obj609.relocated, %not_zero146 ], [ %relocated8, %bci_37-aload ]
%base_phi4 = phi %jObject addrspace(1)* addrspace(1)* [ %addr98.relocated, %not_zero146 ], [ %cast6, %bci_37-aload ], !is_base_value !0
%relocated4 = phi %jObject addrspace(1)* addrspace(1)* [ %addr98.relocated, %not_zero146 ], [ %addr98, %bci_37-aload ]
%safepoint_token = tail call token (i64, i32, i32 ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_i32f(i64 0, i32 0, i32 ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 0, i32 0, i32 0, i32 0, %jObject addrspace(1)* %base_phi1, %jObject addrspace(1)* addrspace(1)* %base_phi4, %jObject addrspace(1)* addrspace(1)* %relocated4, %jObject addrspace(1)* %relocated7)
%tmp4 = call i32 @llvm.experimental.gc.result.i32(token %safepoint_token)
%base_phi1.relocated = call coldcc %jObject addrspace(1)* @llvm.experimental.gc.relocate.p1jObject(token %safepoint_token, i32 12, i32 12)
%base_phi4.relocated = call coldcc %jObject addrspace(1)* addrspace(1)* @llvm.experimental.gc.relocate.p1p1jObject(token %safepoint_token, i32 13, i32 13)
%relocated4.relocated = call coldcc %jObject addrspace(1)* addrspace(1)* @llvm.experimental.gc.relocate.p1p1jObject(token %safepoint_token, i32 13, i32 14)
%relocated7.relocated = call coldcc %jObject addrspace(1)* @llvm.experimental.gc.relocate.p1jObject(token %safepoint_token, i32 12, i32 15)
%addr636 = bitcast %jObject addrspace(1)* addrspace(1)* %relocated4.relocated to %jObject addrspace(1)* addrspace(1)*
br label %bci_37-aload
}
declare token @llvm.experimental.gc.statepoint.p0f_i32f(i64, i32, i32 ()*, i32, i32, ...)
; Function Attrs: nounwind
declare i32 @llvm.experimental.gc.result.i32(token) #4
; Function Attrs: nounwind
declare %jObject addrspace(1)* @llvm.experimental.gc.relocate.p1jObject(token, i32, i32) #4
; Function Attrs: nounwind
declare %jObject addrspace(1)* addrspace(1)* @llvm.experimental.gc.relocate.p1p1jObject(token, i32, i32) #4
attributes #0 = { noinline nounwind "gc-leaf-function"="true" }
attributes #1 = { "gc-leaf-function"="true" }
attributes #2 = { nounwind readonly "gc-leaf-function"="true" }
attributes #3 = { nounwind }
attributes #4 = { nounwind }
!0 = !{i32 1}

View File

@ -0,0 +1,78 @@
; RUN: opt -safepoint-ir-verifier-print-only -verify-safepoint-ir -S %s 2>&1 | FileCheck %s
define i8 addrspace(1)* @test.not.ok.0(i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK-LABEL: Verifying gc pointers in function: test.not.ok.0
bci_0:
br i1 undef, label %left, label %right
left:
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
br label %merge
right:
br label %merge
merge:
; CHECK: Illegal use of unrelocated value found!
; CHECK-NEXT: Def: i8 addrspace(1)* %arg
; CHECK-NEXT: Use: %val = phi i8 addrspace(1)* [ %arg, %left ], [ %arg, %right ]
%val = phi i8 addrspace(1)* [ %arg, %left ], [ %arg, %right]
ret i8 addrspace(1)* %val
}
define i8 addrspace(1)* @test.not.ok.1(i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK-LABEL: Verifying gc pointers in function: test.not.ok.1
bci_0:
br i1 undef, label %left, label %right
left:
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
br label %merge
right:
br label %merge
merge:
; CHECK: Illegal use of unrelocated value found!
; CHECK-NEXT: Def: i8 addrspace(1)* %arg
; CHECK-NEXT: Use: %val = phi i8 addrspace(1)* [ %arg, %left ], [ null, %right ]
%val = phi i8 addrspace(1)* [ %arg, %left ], [ null, %right]
ret i8 addrspace(1)* %val
}
define i8 addrspace(1)* @test.ok.0(i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test.ok.0
bci_0:
br i1 undef, label %left, label %right
left:
%safepoint_token = call token (i64, i32, void ()*, i32, i32, ...) @llvm.experimental.gc.statepoint.p0f_isVoidf(i64 0, i32 0, void ()* undef, i32 0, i32 0, i32 0, i32 5, i32 0, i32 -1, i32 0, i32 0, i32 0)
br label %merge
right:
br label %merge
merge:
%val = phi i8 addrspace(1)* [ null, %left ], [ null, %right]
ret i8 addrspace(1)* %val
}
define i8 addrspace(1)* @test.ok.1(i8 addrspace(1)* %arg) gc "statepoint-example" {
; CHECK: No illegal uses found by SafepointIRVerifier in: test.ok.1
bci_0:
br i1 undef, label %left, label %right
left:
call void @not_statepoint()
br label %merge
right:
br label %merge
merge:
%val = phi i8 addrspace(1)* [ %arg, %left ], [ %arg, %right]
ret i8 addrspace(1)* %val
}
declare token @llvm.experimental.gc.statepoint.p0f_isVoidf(i64, i32, void ()*, i32, i32, ...)
declare void @not_statepoint()