mirror of
https://github.com/RPCS3/llvm.git
synced 2025-03-06 09:39:28 +00:00
Rework the SelectionDAG-based implementations of SimplifyDemandedBits
and ComputeMaskedBits to match the new improved versions in instcombine. Tested against all of multisource/benchmarks on ppc. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@26238 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
a6bbfe8448
commit
368e18d56a
@ -23,6 +23,7 @@
|
||||
#define LLVM_TARGET_TARGETLOWERING_H
|
||||
|
||||
#include "llvm/Type.h"
|
||||
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
||||
#include "llvm/CodeGen/ValueTypes.h"
|
||||
#include "llvm/Support/DataTypes.h"
|
||||
#include <vector>
|
||||
@ -284,22 +285,55 @@ public:
|
||||
// TargetLowering Optimization Methods
|
||||
//
|
||||
|
||||
/// TargetLoweringOpt - A convenience struct that encapsulates a DAG, and two
|
||||
/// SDOperands for returning information from TargetLowering to its clients
|
||||
/// that want to combine
|
||||
struct TargetLoweringOpt {
|
||||
SelectionDAG &DAG;
|
||||
SDOperand Old;
|
||||
SDOperand New;
|
||||
|
||||
TargetLoweringOpt::TargetLoweringOpt(SelectionDAG &InDAG) : DAG(InDAG) {}
|
||||
|
||||
bool CombineTo(SDOperand O, SDOperand N) {
|
||||
Old = O;
|
||||
New = N;
|
||||
return true;
|
||||
}
|
||||
|
||||
/// ShrinkDemandedConstant - Check to see if the specified operand of the
|
||||
/// specified instruction is a constant integer. If so, check to see if there
|
||||
/// are any bits set in the constant that are not demanded. If so, shrink the
|
||||
/// constant and return true.
|
||||
bool ShrinkDemandedConstant(SDOperand Op, uint64_t Demanded);
|
||||
};
|
||||
|
||||
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We
|
||||
/// use this predicate to simplify operations downstream. Op and Mask are
|
||||
/// known to be the same type. Targets can implement the
|
||||
/// isMaskedValueZeroForTargetNode method, to allow target nodes to be
|
||||
/// understood.
|
||||
bool MaskedValueIsZero(const SDOperand &Op, uint64_t Mask) const;
|
||||
/// known to be the same type.
|
||||
bool MaskedValueIsZero(SDOperand Op, uint64_t Mask, unsigned Depth = 0)
|
||||
const;
|
||||
|
||||
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
||||
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
||||
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
||||
/// processing. Targets can implement the computeMaskedBitsForTargetNode
|
||||
/// method, to allow target nodes to be understood.
|
||||
void ComputeMaskedBits(SDOperand Op, uint64_t Mask, uint64_t &KnownZero,
|
||||
uint64_t &KnownOne, unsigned Depth = 0) const;
|
||||
|
||||
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
|
||||
/// DemandedMask bits of the result of Op are ever used downstream. If we can
|
||||
/// use this information to simplify Op, create a new simplified DAG node and
|
||||
/// return true, returning the original and new nodes in Old and New.
|
||||
/// Otherwise, analyze the expression and return a mask of KnownOne and
|
||||
/// KnownZero bits for the expression (used to simplify the caller).
|
||||
/// The KnownZero/One bits may only be accurate for those bits in the
|
||||
/// DemandedMask.
|
||||
bool SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
|
||||
uint64_t &KnownZero, uint64_t &KnownOne,
|
||||
TargetLoweringOpt &TLO, unsigned Depth = 0) const;
|
||||
|
||||
/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a
|
||||
/// bit set operation such as a sign extend or or/xor with constant whose only
|
||||
/// use is Op. If it returns true, the old node that sets bits which are
|
||||
/// not demanded is returned in Old, and its replacement node is returned in
|
||||
/// New, such that callers of SetBitsAreZero may call CombineTo on them if
|
||||
/// desired.
|
||||
bool DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask, SDOperand &Old,
|
||||
SDOperand &New, SelectionDAG &DAG) const;
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// TargetLowering Configuration Methods - These methods should be invoked by
|
||||
// the derived class constructor to configure this object for the target.
|
||||
@ -433,10 +467,14 @@ public:
|
||||
/// DAG node.
|
||||
virtual const char *getTargetNodeName(unsigned Opcode) const;
|
||||
|
||||
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
|
||||
/// be zero. Op is expected to be a target specific node.
|
||||
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
|
||||
uint64_t Mask) const;
|
||||
/// computeMaskedBitsForTargetNode - Determine which of the bits specified in
|
||||
/// Mask are known to be either zero or one and return them in the
|
||||
/// KnownZero/KnownOne bitsets.
|
||||
virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth = 0) const;
|
||||
|
||||
//===--------------------------------------------------------------------===//
|
||||
// Inline Asm Support hooks
|
||||
|
@ -98,6 +98,18 @@ namespace {
|
||||
DAG.DeleteNode(N);
|
||||
return SDOperand(N, 0);
|
||||
}
|
||||
|
||||
bool DemandedBitsAreZero(SDOperand Op, uint64_t DemandedMask,
|
||||
SDOperand &Old, SDOperand &New) const {
|
||||
TargetLowering::TargetLoweringOpt TLO(DAG);
|
||||
uint64_t KnownZero, KnownOne;
|
||||
if (TLI.SimplifyDemandedBits(Op, DemandedMask, KnownZero, KnownOne, TLO)){
|
||||
Old = TLO.Old;
|
||||
New = TLO.New;
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
SDOperand CombineTo(SDNode *N, SDOperand Res) {
|
||||
std::vector<SDOperand> To;
|
||||
@ -897,12 +909,8 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
|
||||
if (N1C && N1C->isAllOnesValue())
|
||||
return N0;
|
||||
// if (and x, c) is known to be zero, return 0
|
||||
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
|
||||
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT)))
|
||||
return DAG.getConstant(0, VT);
|
||||
// fold (and x, c) -> x iff (x & ~c) == 0
|
||||
if (N1C &&
|
||||
TLI.MaskedValueIsZero(N0, ~N1C->getValue() & (~0ULL>>(64-OpSizeInBits))))
|
||||
return N0;
|
||||
// reassociate and
|
||||
SDOperand RAND = ReassociateOps(ISD::AND, N0, N1);
|
||||
if (RAND.Val != 0)
|
||||
@ -984,38 +992,12 @@ SDOperand DAGCombiner::visitAND(SDNode *N) {
|
||||
}
|
||||
// fold (and (sign_extend_inreg x, i16 to i32), 1) -> (and x, 1)
|
||||
// fold (and (sra)) -> (and (srl)) when possible.
|
||||
if (TLI.DemandedBitsAreZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits), Old,
|
||||
New, DAG)) {
|
||||
if (DemandedBitsAreZero(SDOperand(N, 0), MVT::getIntVTBitMask(VT), Old,
|
||||
New)) {
|
||||
WorkList.push_back(N);
|
||||
CombineTo(Old.Val, New);
|
||||
return SDOperand();
|
||||
}
|
||||
// FIXME: DemandedBitsAreZero cannot currently handle AND with non-constant
|
||||
// RHS and propagate known cleared bits to LHS. For this reason, we must keep
|
||||
// this fold, for now, for the following testcase:
|
||||
//
|
||||
//int %test2(uint %mode.0.i.0) {
|
||||
// %tmp.79 = cast uint %mode.0.i.0 to int
|
||||
// %tmp.80 = shr int %tmp.79, ubyte 15
|
||||
// %tmp.81 = shr uint %mode.0.i.0, ubyte 16
|
||||
// %tmp.82 = cast uint %tmp.81 to int
|
||||
// %tmp.83 = and int %tmp.80, %tmp.82
|
||||
// ret int %tmp.83
|
||||
//}
|
||||
// fold (and (sra)) -> (and (srl)) when possible.
|
||||
if (N0.getOpcode() == ISD::SRA && N0.Val->hasOneUse()) {
|
||||
if (ConstantSDNode *N01C = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
|
||||
// If the RHS of the AND has zeros where the sign bits of the SRA will
|
||||
// land, turn the SRA into an SRL.
|
||||
if (TLI.MaskedValueIsZero(N1, (~0ULL << (OpSizeInBits-N01C->getValue())) &
|
||||
(~0ULL>>(64-OpSizeInBits)))) {
|
||||
WorkList.push_back(N);
|
||||
CombineTo(N0.Val, DAG.getNode(ISD::SRL, VT, N0.getOperand(0),
|
||||
N0.getOperand(1)));
|
||||
return SDOperand();
|
||||
}
|
||||
}
|
||||
}
|
||||
// fold (zext_inreg (extload x)) -> (zextload x)
|
||||
if (N0.getOpcode() == ISD::EXTLOAD) {
|
||||
MVT::ValueType EVT = cast<VTSDNode>(N0.getOperand(3))->getVT();
|
||||
@ -1298,8 +1280,8 @@ SDOperand DAGCombiner::visitSHL(SDNode *N) {
|
||||
// if (shl x, c) is known to be zero, return 0
|
||||
if (N1C && TLI.MaskedValueIsZero(SDOperand(N, 0), ~0ULL >> (64-OpSizeInBits)))
|
||||
return DAG.getConstant(0, VT);
|
||||
if (N1C && TLI.DemandedBitsAreZero(SDOperand(N,0), ~0ULL >> (64-OpSizeInBits),
|
||||
Old, New, DAG)) {
|
||||
if (N1C && DemandedBitsAreZero(SDOperand(N,0), ~0ULL >> (64-OpSizeInBits),
|
||||
Old, New)) {
|
||||
WorkList.push_back(N);
|
||||
CombineTo(Old.Val, New);
|
||||
return SDOperand();
|
||||
|
@ -135,175 +135,559 @@ const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
||||
// Optimization Methods
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// DemandedBitsAreZero - Return true if 'Op & Mask' demands no bits from a bit
|
||||
/// set operation such as a sign extend or or/xor with constant whose only
|
||||
/// use is Op. If it returns true, the old node that sets bits which are
|
||||
/// not demanded is returned in Old, and its replacement node is returned in
|
||||
/// New, such that callers of DemandedBitsAreZero may call CombineTo on them if
|
||||
/// desired.
|
||||
bool TargetLowering::DemandedBitsAreZero(const SDOperand &Op, uint64_t Mask,
|
||||
SDOperand &Old, SDOperand &New,
|
||||
SelectionDAG &DAG) const {
|
||||
// If the operation has more than one use, we're not interested in it.
|
||||
// Tracking down and checking all uses would be problematic and slow.
|
||||
if (!Op.Val->hasOneUse())
|
||||
return false;
|
||||
|
||||
switch (Op.getOpcode()) {
|
||||
/// ShrinkDemandedConstant - Check to see if the specified operand of the
|
||||
/// specified instruction is a constant integer. If so, check to see if there
|
||||
/// are any bits set in the constant that are not demanded. If so, shrink the
|
||||
/// constant and return true.
|
||||
bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
|
||||
uint64_t Demanded) {
|
||||
// FIXME: ISD::SELECT
|
||||
switch(Op.getOpcode()) {
|
||||
default: break;
|
||||
case ISD::AND:
|
||||
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
|
||||
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t NewVal = Mask & AndRHS->getValue();
|
||||
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
|
||||
}
|
||||
break;
|
||||
case ISD::SHL:
|
||||
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0
|
||||
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t NewVal = Mask >> ShAmt->getValue();
|
||||
return DemandedBitsAreZero(Op.getOperand(0), NewVal, Old, New, DAG);
|
||||
}
|
||||
break;
|
||||
case ISD::SIGN_EXTEND_INREG: {
|
||||
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
||||
unsigned ExtendBits = MVT::getSizeInBits(EVT);
|
||||
// If we're extending from something smaller than MVT::i64 and all of the
|
||||
// sign extension bits are masked, return true and set New to be the
|
||||
// first operand, since we no longer care what the high bits are.
|
||||
if (ExtendBits < 64 && ((Mask & (~0ULL << ExtendBits)) == 0)) {
|
||||
Old = Op;
|
||||
New = Op.getOperand(0);
|
||||
return true;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ISD::SRA:
|
||||
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
unsigned OpBits = MVT::getSizeInBits(Op.getValueType());
|
||||
unsigned SH = ShAmt->getValue();
|
||||
if (SH && ((Mask & (~0ULL << (OpBits-SH))) == 0)) {
|
||||
Old = Op;
|
||||
New = DAG.getNode(ISD::SRL, Op.getValueType(), Op.getOperand(0),
|
||||
Op.getOperand(1));
|
||||
return true;
|
||||
case ISD::OR:
|
||||
case ISD::XOR:
|
||||
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
||||
if ((~Demanded & C->getValue()) != 0) {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
|
||||
DAG.getConstant(Demanded & C->getValue(),
|
||||
VT));
|
||||
return CombineTo(Op, New);
|
||||
}
|
||||
}
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We use
|
||||
/// this predicate to simplify operations downstream. Op and Mask are known to
|
||||
/// be the same type.
|
||||
bool TargetLowering::MaskedValueIsZero(const SDOperand &Op,
|
||||
uint64_t Mask) const {
|
||||
unsigned SrcBits;
|
||||
if (Mask == 0) return true;
|
||||
|
||||
// If we know the result of a setcc has the top bits zero, use this info.
|
||||
/// SimplifyDemandedBits - Look at Op. At this point, we know that only the
|
||||
/// DemandedMask bits of the result of Op are ever used downstream. If we can
|
||||
/// use this information to simplify Op, create a new simplified DAG node and
|
||||
/// return true, returning the original and new nodes in Old and New. Otherwise,
|
||||
/// analyze the expression and return a mask of KnownOne and KnownZero bits for
|
||||
/// the expression (used to simplify the caller). The KnownZero/One bits may
|
||||
/// only be accurate for those bits in the DemandedMask.
|
||||
bool TargetLowering::SimplifyDemandedBits(SDOperand Op, uint64_t DemandedMask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
TargetLoweringOpt &TLO,
|
||||
unsigned Depth) const {
|
||||
KnownZero = KnownOne = 0; // Don't know anything.
|
||||
// Other users may use these bits.
|
||||
if (!Op.Val->hasOneUse()) {
|
||||
if (Depth != 0) {
|
||||
// If not at the root, Just compute the KnownZero/KnownOne bits to
|
||||
// simplify things downstream.
|
||||
ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
|
||||
return false;
|
||||
}
|
||||
// If this is the root being simplified, allow it to have multiple uses,
|
||||
// just set the DemandedMask to all bits.
|
||||
DemandedMask = MVT::getIntVTBitMask(Op.getValueType());
|
||||
} else if (DemandedMask == 0) {
|
||||
// Not demanding any bits from Op.
|
||||
if (Op.getOpcode() != ISD::UNDEF)
|
||||
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
|
||||
return false;
|
||||
} else if (Depth == 6) { // Limit search depth.
|
||||
return false;
|
||||
}
|
||||
|
||||
uint64_t KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
|
||||
switch (Op.getOpcode()) {
|
||||
case ISD::Constant:
|
||||
return (cast<ConstantSDNode>(Op)->getValue() & Mask) == 0;
|
||||
case ISD::SETCC:
|
||||
return ((Mask & 1) == 0) &&
|
||||
getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult;
|
||||
case ISD::ZEXTLOAD:
|
||||
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
|
||||
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
|
||||
case ISD::ZERO_EXTEND:
|
||||
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
||||
return MaskedValueIsZero(Op.getOperand(0),Mask & (~0ULL >> (64-SrcBits)));
|
||||
case ISD::ANY_EXTEND:
|
||||
// If the mask only includes bits in the low part, recurse.
|
||||
SrcBits = MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
||||
if (Mask >> SrcBits) return false; // Use of unknown top bits.
|
||||
return MaskedValueIsZero(Op.getOperand(0), Mask);
|
||||
case ISD::AssertZext:
|
||||
SrcBits = MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
||||
return (Mask & ((1ULL << SrcBits)-1)) == 0; // Returning only the zext bits.
|
||||
// We know all of the bits for a constant!
|
||||
KnownOne = cast<ConstantSDNode>(Op)->getValue() & DemandedMask;
|
||||
KnownZero = ~KnownOne & DemandedMask;
|
||||
return false;
|
||||
case ISD::AND:
|
||||
// If either of the operands has zero bits, the result will too.
|
||||
if (MaskedValueIsZero(Op.getOperand(1), Mask) ||
|
||||
MaskedValueIsZero(Op.getOperand(0), Mask))
|
||||
// If either the LHS or the RHS are Zero, the result is zero.
|
||||
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
||||
KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
// (X & C1) & C2 == 0 iff C1 & C2 == 0.
|
||||
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
|
||||
return MaskedValueIsZero(Op.getOperand(0),AndRHS->getValue() & Mask);
|
||||
return false;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
// If something is known zero on the RHS, the bits aren't demanded on the
|
||||
// LHS.
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownZero,
|
||||
KnownZero2, KnownOne2, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// If all of the demanded bits are known one on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'and'.
|
||||
if ((DemandedMask & ~KnownZero2 & KnownOne)==(DemandedMask & ~KnownZero2))
|
||||
return TLO.CombineTo(Op, Op.getOperand(0));
|
||||
if ((DemandedMask & ~KnownZero & KnownOne2)==(DemandedMask & ~KnownZero))
|
||||
return TLO.CombineTo(Op, Op.getOperand(1));
|
||||
// If all of the demanded bits in the inputs are known zeros, return zero.
|
||||
if ((DemandedMask & (KnownZero|KnownZero2)) == DemandedMask)
|
||||
return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
|
||||
// If the RHS is a constant, see if we can simplify it.
|
||||
if (TLO.ShrinkDemandedConstant(Op, DemandedMask & ~KnownZero2))
|
||||
return true;
|
||||
|
||||
// Output known-1 bits are only known if set in both the LHS & RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
||||
KnownZero |= KnownZero2;
|
||||
break;
|
||||
case ISD::OR:
|
||||
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
||||
KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask & ~KnownOne,
|
||||
KnownZero2, KnownOne2, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// If all of the demanded bits are known zero on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'or'.
|
||||
if ((DemandedMask & ~KnownOne2 & KnownZero) == DemandedMask & ~KnownOne2)
|
||||
return TLO.CombineTo(Op, Op.getOperand(0));
|
||||
if ((DemandedMask & ~KnownOne & KnownZero2) == DemandedMask & ~KnownOne)
|
||||
return TLO.CombineTo(Op, Op.getOperand(1));
|
||||
// If all of the potentially set bits on one side are known to be set on
|
||||
// the other side, just use the 'other' side.
|
||||
if ((DemandedMask & (~KnownZero) & KnownOne2) ==
|
||||
(DemandedMask & (~KnownZero)))
|
||||
return TLO.CombineTo(Op, Op.getOperand(0));
|
||||
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
|
||||
(DemandedMask & (~KnownZero2)))
|
||||
return TLO.CombineTo(Op, Op.getOperand(1));
|
||||
// If the RHS is a constant, see if we can simplify it.
|
||||
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
||||
return true;
|
||||
|
||||
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
||||
KnownZero &= KnownZero2;
|
||||
// Output known-1 are known to be set if set in either the LHS | RHS.
|
||||
KnownOne |= KnownOne2;
|
||||
break;
|
||||
case ISD::XOR:
|
||||
return MaskedValueIsZero(Op.getOperand(0), Mask) &&
|
||||
MaskedValueIsZero(Op.getOperand(1), Mask);
|
||||
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero,
|
||||
KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero2,
|
||||
KnownOne2, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// If all of the demanded bits are known zero on one side, return the other.
|
||||
// These bits cannot contribute to the result of the 'xor'.
|
||||
if ((DemandedMask & KnownZero) == DemandedMask)
|
||||
return TLO.CombineTo(Op, Op.getOperand(0));
|
||||
if ((DemandedMask & KnownZero2) == DemandedMask)
|
||||
return TLO.CombineTo(Op, Op.getOperand(1));
|
||||
|
||||
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
||||
KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
||||
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
||||
KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
||||
|
||||
// If all of the unknown bits are known to be zero on one side or the other
|
||||
// (but not both) turn this into an *inclusive* or.
|
||||
// e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
|
||||
if (uint64_t UnknownBits = DemandedMask & ~(KnownZeroOut|KnownOneOut))
|
||||
if ((UnknownBits & (KnownZero|KnownZero2)) == UnknownBits)
|
||||
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
|
||||
Op.getOperand(0),
|
||||
Op.getOperand(1)));
|
||||
// If all of the demanded bits on one side are known, and all of the set
|
||||
// bits on that side are also known to be set on the other side, turn this
|
||||
// into an AND, as we know the bits will be cleared.
|
||||
// e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
|
||||
if ((DemandedMask & (KnownZero|KnownOne)) == DemandedMask) { // all known
|
||||
if ((KnownOne & KnownOne2) == KnownOne) {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & DemandedMask, VT);
|
||||
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
|
||||
ANDC));
|
||||
}
|
||||
}
|
||||
|
||||
// If the RHS is a constant, see if we can simplify it.
|
||||
// FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
|
||||
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
||||
return true;
|
||||
|
||||
KnownZero = KnownZeroOut;
|
||||
KnownOne = KnownOneOut;
|
||||
break;
|
||||
case ISD::SETCC:
|
||||
// If we know the result of a setcc has the top bits zero, use this info.
|
||||
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
||||
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
||||
break;
|
||||
case ISD::SELECT:
|
||||
return MaskedValueIsZero(Op.getOperand(1), Mask) &&
|
||||
MaskedValueIsZero(Op.getOperand(2), Mask);
|
||||
case ISD::SELECT_CC:
|
||||
return MaskedValueIsZero(Op.getOperand(2), Mask) &&
|
||||
MaskedValueIsZero(Op.getOperand(3), Mask);
|
||||
case ISD::SRL:
|
||||
// (ushr X, C1) & C2 == 0 iff X & (C2 << C1) == 0
|
||||
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t NewVal = Mask << ShAmt->getValue();
|
||||
SrcBits = MVT::getSizeInBits(Op.getValueType());
|
||||
if (SrcBits != 64) NewVal &= (1ULL << SrcBits)-1;
|
||||
return MaskedValueIsZero(Op.getOperand(0), NewVal);
|
||||
}
|
||||
return false;
|
||||
if (SimplifyDemandedBits(Op.getOperand(2), DemandedMask, KnownZero,
|
||||
KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
if (SimplifyDemandedBits(Op.getOperand(1), DemandedMask, KnownZero2,
|
||||
KnownOne2, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// If the operands are constants, see if we can simplify them.
|
||||
if (TLO.ShrinkDemandedConstant(Op, DemandedMask))
|
||||
return true;
|
||||
|
||||
// Only known if known in both the LHS and RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
KnownZero &= KnownZero2;
|
||||
break;
|
||||
case ISD::SHL:
|
||||
// (ushl X, C1) & C2 == 0 iff X & (C2 >> C1) == 0
|
||||
if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t NewVal = Mask >> ShAmt->getValue();
|
||||
return MaskedValueIsZero(Op.getOperand(0), NewVal);
|
||||
}
|
||||
return false;
|
||||
case ISD::ADD:
|
||||
// (add X, Y) & C == 0 iff (X&C)|(Y&C) == 0 and all bits are low bits.
|
||||
if ((Mask&(Mask+1)) == 0) { // All low bits
|
||||
if (MaskedValueIsZero(Op.getOperand(0), Mask) &&
|
||||
MaskedValueIsZero(Op.getOperand(1), Mask))
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask >> SA->getValue(),
|
||||
KnownZero, KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
KnownZero <<= SA->getValue();
|
||||
KnownOne <<= SA->getValue();
|
||||
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
||||
}
|
||||
break;
|
||||
case ISD::SUB:
|
||||
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
|
||||
// We know that the top bits of C-X are clear if X contains less bits
|
||||
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
||||
// positive if we can prove that X is >= 0 and < 16.
|
||||
unsigned Bits = MVT::getSizeInBits(CLHS->getValueType(0));
|
||||
if ((CLHS->getValue() & (1 << (Bits-1))) == 0) { // sign bit clear
|
||||
unsigned NLZ = CountLeadingZeros_64(CLHS->getValue()+1);
|
||||
uint64_t MaskV = (1ULL << (63-NLZ))-1;
|
||||
if (MaskedValueIsZero(Op.getOperand(1), ~MaskV)) {
|
||||
// High bits are clear this value is known to be >= C.
|
||||
unsigned NLZ2 = CountLeadingZeros_64(CLHS->getValue());
|
||||
if ((Mask & ((1ULL << (64-NLZ2))-1)) == 0)
|
||||
return true;
|
||||
}
|
||||
case ISD::SRL:
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
unsigned ShAmt = SA->getValue();
|
||||
|
||||
// Compute the new bits that are at the top now.
|
||||
uint64_t HighBits = (1ULL << ShAmt)-1;
|
||||
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
||||
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
||||
|
||||
if (SimplifyDemandedBits(Op.getOperand(0),
|
||||
(DemandedMask << ShAmt) & TypeMask,
|
||||
KnownZero, KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
KnownZero &= TypeMask;
|
||||
KnownOne &= TypeMask;
|
||||
KnownZero >>= ShAmt;
|
||||
KnownOne >>= ShAmt;
|
||||
KnownZero |= HighBits; // high bits known zero.
|
||||
}
|
||||
break;
|
||||
case ISD::SRA:
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
unsigned ShAmt = SA->getValue();
|
||||
|
||||
// Compute the new bits that are at the top now.
|
||||
uint64_t HighBits = (1ULL << ShAmt)-1;
|
||||
HighBits <<= MVT::getSizeInBits(VT) - ShAmt;
|
||||
uint64_t TypeMask = MVT::getIntVTBitMask(VT);
|
||||
|
||||
if (SimplifyDemandedBits(Op.getOperand(0),
|
||||
(DemandedMask << ShAmt) & TypeMask,
|
||||
KnownZero, KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
KnownZero &= TypeMask;
|
||||
KnownOne &= TypeMask;
|
||||
KnownZero >>= SA->getValue();
|
||||
KnownOne >>= SA->getValue();
|
||||
|
||||
// Handle the sign bits.
|
||||
uint64_t SignBit = MVT::getIntVTSignBit(VT);
|
||||
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
|
||||
|
||||
// If the input sign bit is known to be zero, or if none of the top bits
|
||||
// are demanded, turn this into an unsigned shift right.
|
||||
if ((KnownZero & SignBit) || (HighBits & ~DemandedMask) == HighBits) {
|
||||
return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
|
||||
Op.getOperand(1)));
|
||||
} else if (KnownOne & SignBit) { // New bits are known one.
|
||||
KnownOne |= HighBits;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ISD::SIGN_EXTEND_INREG: {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
MVT::ValueType EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
|
||||
|
||||
// Sign or Zero extension. Compute the bits in the result that are not
|
||||
// present in the input.
|
||||
uint64_t NotIn = ~MVT::getIntVTBitMask(EVT);
|
||||
uint64_t NewBits = MVT::getIntVTBitMask(VT) & NotIn;
|
||||
|
||||
// Sign extension.
|
||||
uint64_t InSignBit = MVT::getIntVTSignBit(EVT);
|
||||
int64_t InputDemandedBits = DemandedMask & MVT::getIntVTBitMask(EVT);
|
||||
|
||||
// If any of the sign extended bits are demanded, we know that the sign
|
||||
// bit is demanded.
|
||||
if (NewBits & DemandedMask)
|
||||
InputDemandedBits |= InSignBit;
|
||||
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
|
||||
KnownZero, KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// If the sign bit of the input is known set or clear, then we know the
|
||||
// top bits of the result.
|
||||
|
||||
// If the input sign bit is known zero, or if the NewBits are not demanded
|
||||
// convert this into a zero extension.
|
||||
if ((KnownZero & InSignBit) || (NewBits & ~DemandedMask) == NewBits) {
|
||||
return TLO.CombineTo(Op, Op.getOperand(0));
|
||||
} else if (KnownOne & InSignBit) { // Input sign bit known set
|
||||
KnownOne |= NewBits;
|
||||
KnownZero &= ~NewBits;
|
||||
} else { // Input sign bit unknown
|
||||
KnownZero &= ~NewBits;
|
||||
KnownOne &= ~NewBits;
|
||||
}
|
||||
break;
|
||||
}
|
||||
case ISD::ADD:
|
||||
if (ConstantSDNode *AA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
if (SimplifyDemandedBits(Op.getOperand(0), DemandedMask, KnownZero,
|
||||
KnownOne, TLO, Depth+1))
|
||||
return true;
|
||||
// Compute the KnownOne/KnownZero masks for the constant, so we can set
|
||||
// KnownZero appropriately if we're adding a constant that has all low
|
||||
// bits cleared.
|
||||
ComputeMaskedBits(Op.getOperand(1),
|
||||
MVT::getIntVTBitMask(Op.getValueType()),
|
||||
KnownZero2, KnownOne2, Depth+1);
|
||||
|
||||
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
||||
CountTrailingZeros_64(~KnownZero2));
|
||||
KnownZero = (1ULL << KnownZeroOut) - 1;
|
||||
KnownOne = 0;
|
||||
}
|
||||
break;
|
||||
case ISD::CTTZ:
|
||||
case ISD::CTLZ:
|
||||
case ISD::CTPOP: {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
||||
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
||||
KnownOne = 0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
|
||||
/// this predicate to simplify operations downstream. Mask is known to be zero
|
||||
/// for bits that V cannot have.
|
||||
bool TargetLowering::MaskedValueIsZero(SDOperand Op, uint64_t Mask,
|
||||
unsigned Depth) const {
|
||||
uint64_t KnownZero, KnownOne;
|
||||
ComputeMaskedBits(Op, Mask, KnownZero, KnownOne, Depth);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
return (KnownZero & Mask) == Mask;
|
||||
}
|
||||
|
||||
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
|
||||
/// known to be either zero or one and return them in the KnownZero/KnownOne
|
||||
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
|
||||
/// processing.
|
||||
void TargetLowering::ComputeMaskedBits(SDOperand Op, uint64_t Mask,
|
||||
uint64_t &KnownZero, uint64_t &KnownOne,
|
||||
unsigned Depth) const {
|
||||
KnownZero = KnownOne = 0; // Don't know anything.
|
||||
if (Depth == 6 || Mask == 0)
|
||||
return; // Limit search depth.
|
||||
|
||||
uint64_t KnownZero2, KnownOne2;
|
||||
|
||||
switch (Op.getOpcode()) {
|
||||
case ISD::Constant:
|
||||
// We know all of the bits for a constant!
|
||||
KnownOne = cast<ConstantSDNode>(Op)->getValue() & Mask;
|
||||
KnownZero = ~KnownOne & Mask;
|
||||
return;
|
||||
case ISD::AND:
|
||||
// If either the LHS or the RHS are Zero, the result is zero.
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
||||
Mask &= ~KnownZero;
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Output known-1 bits are only known if set in both the LHS & RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
// Output known-0 are known to be clear if zero in either the LHS | RHS.
|
||||
KnownZero |= KnownZero2;
|
||||
return;
|
||||
case ISD::OR:
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
||||
Mask &= ~KnownOne;
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Output known-0 bits are only known if clear in both the LHS & RHS.
|
||||
KnownZero &= KnownZero2;
|
||||
// Output known-1 are known to be set if set in either the LHS | RHS.
|
||||
KnownOne |= KnownOne2;
|
||||
return;
|
||||
case ISD::XOR: {
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Output known-0 bits are known if clear or set in both the LHS & RHS.
|
||||
uint64_t KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
|
||||
// Output known-1 are known to be set if set in only one of the LHS, RHS.
|
||||
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
|
||||
KnownZero = KnownZeroOut;
|
||||
return;
|
||||
}
|
||||
case ISD::SELECT:
|
||||
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Only known if known in both the LHS and RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
KnownZero &= KnownZero2;
|
||||
return;
|
||||
case ISD::SELECT_CC:
|
||||
ComputeMaskedBits(Op.getOperand(3), Mask, KnownZero, KnownOne, Depth+1);
|
||||
ComputeMaskedBits(Op.getOperand(2), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Only known if known in both the LHS and RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
KnownZero &= KnownZero2;
|
||||
return;
|
||||
case ISD::SETCC:
|
||||
// If we know the result of a setcc has the top bits zero, use this info.
|
||||
if (getSetCCResultContents() == TargetLowering::ZeroOrOneSetCCResult)
|
||||
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
||||
return;
|
||||
case ISD::SHL:
|
||||
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
Mask >>= SA->getValue();
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
KnownZero <<= SA->getValue();
|
||||
KnownOne <<= SA->getValue();
|
||||
KnownZero |= (1ULL << SA->getValue())-1; // low bits known zero.
|
||||
}
|
||||
break;
|
||||
case ISD::SRL:
|
||||
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t HighBits = (1ULL << SA->getValue())-1;
|
||||
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
|
||||
Mask <<= SA->getValue();
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
|
||||
KnownZero >>= SA->getValue();
|
||||
KnownOne >>= SA->getValue();
|
||||
KnownZero |= HighBits; // high bits known zero.
|
||||
}
|
||||
break;
|
||||
case ISD::SRA:
|
||||
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
|
||||
uint64_t HighBits = (1ULL << SA->getValue())-1;
|
||||
HighBits <<= MVT::getSizeInBits(Op.getValueType())-SA->getValue();
|
||||
Mask <<= SA->getValue();
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
|
||||
KnownZero >>= SA->getValue();
|
||||
KnownOne >>= SA->getValue();
|
||||
|
||||
// Handle the sign bits.
|
||||
uint64_t SignBit = 1ULL << (MVT::getSizeInBits(Op.getValueType())-1);
|
||||
SignBit >>= SA->getValue(); // Adjust to where it is now in the mask.
|
||||
|
||||
if (KnownZero & SignBit) { // New bits are known zero.
|
||||
KnownZero |= HighBits;
|
||||
} else if (KnownOne & SignBit) { // New bits are known one.
|
||||
KnownOne |= HighBits;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case ISD::CTTZ:
|
||||
case ISD::CTLZ:
|
||||
case ISD::CTPOP:
|
||||
// Bit counting instructions can not set the high bits of the result
|
||||
// register. The max number of bits sets depends on the input.
|
||||
return (Mask & (MVT::getSizeInBits(Op.getValueType())*2-1)) == 0;
|
||||
case ISD::CTPOP: {
|
||||
MVT::ValueType VT = Op.getValueType();
|
||||
unsigned LowBits = Log2_32(MVT::getSizeInBits(VT))+1;
|
||||
KnownZero = ~((1ULL << LowBits)-1) & MVT::getIntVTBitMask(VT);
|
||||
KnownOne = 0;
|
||||
return;
|
||||
}
|
||||
case ISD::ZEXTLOAD: {
|
||||
unsigned SrcBits =
|
||||
MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(3))->getVT());
|
||||
KnownZero |= ~((1ULL << SrcBits)-1);
|
||||
return;
|
||||
}
|
||||
case ISD::ZERO_EXTEND: {
|
||||
unsigned SrcBits =
|
||||
MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
||||
KnownZero |= ~((1ULL << SrcBits)-1);
|
||||
return;
|
||||
}
|
||||
case ISD::ANY_EXTEND: {
|
||||
unsigned SrcBits =
|
||||
MVT::getSizeInBits(Op.getOperand(0).getValueType());
|
||||
KnownZero &= ((1ULL << SrcBits)-1);
|
||||
KnownOne &= ((1ULL << SrcBits)-1);
|
||||
return;
|
||||
}
|
||||
case ISD::AssertZext: {
|
||||
unsigned SrcBits =
|
||||
MVT::getSizeInBits(cast<VTSDNode>(Op.getOperand(1))->getVT());
|
||||
KnownZero |= ~((1ULL << SrcBits)-1);
|
||||
return;
|
||||
}
|
||||
case ISD::ADD: {
|
||||
// If either the LHS or the RHS are Zero, the result is zero.
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Output known-0 bits are known if clear or set in both the low clear bits
|
||||
// common to both LHS & RHS;
|
||||
uint64_t KnownZeroOut = std::min(CountTrailingZeros_64(~KnownZero),
|
||||
CountTrailingZeros_64(~KnownZero2));
|
||||
|
||||
KnownZero = (1ULL << KnownZeroOut) - 1;
|
||||
KnownOne = 0;
|
||||
return;
|
||||
}
|
||||
case ISD::SUB:
|
||||
// We know that the top bits of C-X are clear if X contains less bits
|
||||
// than C (i.e. no wrap-around can happen). For example, 20-X is
|
||||
// positive if we can prove that X is >= 0 and < 16.
|
||||
break;
|
||||
default:
|
||||
// Allow the target to implement this method for its nodes.
|
||||
if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
|
||||
return isMaskedValueZeroForTargetNode(Op, Mask);
|
||||
computeMaskedBitsForTargetNode(Op, Mask, KnownZero, KnownOne);
|
||||
break;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op,
|
||||
uint64_t Mask) const {
|
||||
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
||||
/// in Mask are known to be either zero or one and return them in the
|
||||
/// KnownZero/KnownOne bitsets.
|
||||
void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth) const {
|
||||
assert(Op.getOpcode() >= ISD::BUILTIN_OP_END &&
|
||||
"Should use MaskedValueIsZero if you don't know whether Op"
|
||||
" is a target node!");
|
||||
return false;
|
||||
KnownZero = 0;
|
||||
KnownOne = 0;
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
@ -98,11 +98,14 @@ namespace {
|
||||
SparcTargetLowering(TargetMachine &TM);
|
||||
virtual SDOperand LowerOperation(SDOperand Op, SelectionDAG &DAG);
|
||||
|
||||
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
|
||||
/// be zero. Op is expected to be a target specific node. Used by DAG
|
||||
/// combiner.
|
||||
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
|
||||
uint64_t Mask) const;
|
||||
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
||||
/// in Mask are known to be either zero or one and return them in the
|
||||
/// KnownZero/KnownOne bitsets.
|
||||
virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth = 0) const;
|
||||
|
||||
virtual std::vector<SDOperand>
|
||||
LowerArguments(Function &F, SelectionDAG &DAG);
|
||||
@ -246,20 +249,30 @@ const char *SparcTargetLowering::getTargetNodeName(unsigned Opcode) const {
|
||||
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
|
||||
/// be zero. Op is expected to be a target specific node. Used by DAG
|
||||
/// combiner.
|
||||
bool SparcTargetLowering::
|
||||
isMaskedValueZeroForTargetNode(const SDOperand &Op, uint64_t Mask) const {
|
||||
void SparcTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth) const {
|
||||
uint64_t KnownZero2, KnownOne2;
|
||||
KnownZero = KnownOne = 0; // Don't know anything.
|
||||
|
||||
switch (Op.getOpcode()) {
|
||||
default: return false;
|
||||
default: break;
|
||||
case SPISD::SELECT_ICC:
|
||||
case SPISD::SELECT_FCC:
|
||||
assert(MVT::isInteger(Op.getValueType()) && "Not an integer select!");
|
||||
// These operations are masked zero if both the left and the right are zero.
|
||||
return MaskedValueIsZero(Op.getOperand(0), Mask) &&
|
||||
MaskedValueIsZero(Op.getOperand(1), Mask);
|
||||
ComputeMaskedBits(Op.getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
|
||||
ComputeMaskedBits(Op.getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
|
||||
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
|
||||
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
|
||||
|
||||
// Only known if known in both the LHS and RHS.
|
||||
KnownOne &= KnownOne2;
|
||||
KnownZero &= KnownZero2;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/// LowerArguments - V8 uses a very simple ABI, where all values are passed in
|
||||
/// either one or two GPRs, including FP values. TODO: we should pass FP values
|
||||
/// in FP registers for fastcc functions.
|
||||
|
@ -2035,19 +2035,23 @@ const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const {
|
||||
}
|
||||
}
|
||||
|
||||
bool X86TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op,
|
||||
uint64_t Mask) const {
|
||||
void X86TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth) const {
|
||||
|
||||
unsigned Opc = Op.getOpcode();
|
||||
KnownZero = KnownOne = 0; // Don't know anything.
|
||||
|
||||
switch (Opc) {
|
||||
default:
|
||||
assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node");
|
||||
break;
|
||||
case X86ISD::SETCC: return (Mask & 1) == 0;
|
||||
case X86ISD::SETCC:
|
||||
KnownZero |= (MVT::getIntVTBitMask(Op.getValueType()) ^ 1ULL);
|
||||
break;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
std::vector<unsigned> X86TargetLowering::
|
||||
|
@ -218,12 +218,15 @@ namespace llvm {
|
||||
/// DAG node.
|
||||
virtual const char *getTargetNodeName(unsigned Opcode) const;
|
||||
|
||||
/// isMaskedValueZeroForTargetNode - Return true if 'Op & Mask' is known to
|
||||
/// be zero. Op is expected to be a target specific node. Used by DAG
|
||||
/// combiner.
|
||||
virtual bool isMaskedValueZeroForTargetNode(const SDOperand &Op,
|
||||
uint64_t Mask) const;
|
||||
|
||||
/// computeMaskedBitsForTargetNode - Determine which of the bits specified
|
||||
/// in Mask are known to be either zero or one and return them in the
|
||||
/// KnownZero/KnownOne bitsets.
|
||||
virtual void computeMaskedBitsForTargetNode(const SDOperand Op,
|
||||
uint64_t Mask,
|
||||
uint64_t &KnownZero,
|
||||
uint64_t &KnownOne,
|
||||
unsigned Depth = 0) const;
|
||||
|
||||
SDOperand getReturnAddressFrameIndex(SelectionDAG &DAG);
|
||||
|
||||
std::vector<unsigned>
|
||||
|
@ -767,9 +767,9 @@ bool InstCombiner::SimplifyDemandedBits(Value *V, uint64_t DemandedMask,
|
||||
if ((DemandedMask & (~KnownZero) & KnownOne2) ==
|
||||
(DemandedMask & (~KnownZero)))
|
||||
return UpdateValueUsesWith(I, I->getOperand(0));
|
||||
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
|
||||
(DemandedMask & (~KnownZero2)))
|
||||
return UpdateValueUsesWith(I, I->getOperand(1));
|
||||
if ((DemandedMask & (~KnownZero2) & KnownOne) ==
|
||||
(DemandedMask & (~KnownZero2)))
|
||||
return UpdateValueUsesWith(I, I->getOperand(1));
|
||||
|
||||
// If the RHS is a constant, see if we can simplify it.
|
||||
if (ShrinkDemandedConstant(I, 1, DemandedMask))
|
||||
|
Loading…
x
Reference in New Issue
Block a user