Enable the shrink wrapping optimization for PPC64.

The changes in this patch are as follows:
  1. Modify the emitPrologue and emitEpilogue methods to work properly when the prologue and epilogue blocks are not the first/last blocks in the function
  2. Fix a bug in PPCEarlyReturn optimization caused by an empty entry block in the function
  3. Override the runShrinkWrap PredicateFtor (defined in TargetMachine) to check whether shrink wrapping should run:
      Shrink wrapping will run on PPC64 (Little Endian and Big Endian) unless -enable-shrink-wrap=false is specified on command line

A new test case, ppc-shrink-wrapping.ll was created based on the existing shrink wrapping tests for x86, arm, and arm64.

Phabricator review: http://reviews.llvm.org/D11817


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@247237 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Kit Barton 2015-09-10 01:55:44 +00:00
parent b01975128c
commit 37d7ddff3e
4 changed files with 643 additions and 75 deletions

View File

@ -71,7 +71,14 @@ protected:
for (MachineBasicBlock::pred_iterator PI = ReturnMBB.pred_begin(),
PIE = ReturnMBB.pred_end(); PI != PIE; ++PI) {
bool OtherReference = false, BlockChanged = false;
if ((*PI)->empty())
continue;
for (MachineBasicBlock::iterator J = (*PI)->getLastNonDebugInstr();;) {
if (J == (*PI)->end())
break;
MachineInstrBuilder MIB;
if (J->getOpcode() == PPC::B) {
if (J->getOperand(0).getMBB() == &ReturnMBB) {

View File

@ -558,7 +558,6 @@ void PPCFrameLowering::replaceFPWithRealFP(MachineFunction &MF) const {
void PPCFrameLowering::emitPrologue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
assert(&MF.front() == &MBB && "Shrink-wrapping not yet supported");
MachineBasicBlock::iterator MBBI = MBB.begin();
MachineFrameInfo *MFI = MF.getFrameInfo();
const PPCInstrInfo &TII =
@ -590,7 +589,7 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF,
}
}
// Move MBBI back to the beginning of the function.
// Move MBBI back to the beginning of the prologue block.
MBBI = MBB.begin();
// Work out frame sizes.
@ -917,27 +916,18 @@ void PPCFrameLowering::emitPrologue(MachineFunction &MF,
}
void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI != MBB.end() && "Returning block has no terminator");
MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator MBBI = MBB.getFirstTerminator();
DebugLoc dl;
if (MBBI != MBB.end())
dl = MBBI->getDebugLoc();
const PPCInstrInfo &TII =
*static_cast<const PPCInstrInfo *>(Subtarget.getInstrInfo());
const PPCRegisterInfo *RegInfo =
static_cast<const PPCRegisterInfo *>(Subtarget.getRegisterInfo());
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc dl;
assert((RetOpcode == PPC::BLR ||
RetOpcode == PPC::BLR8 ||
RetOpcode == PPC::TCRETURNri ||
RetOpcode == PPC::TCRETURNdi ||
RetOpcode == PPC::TCRETURNai ||
RetOpcode == PPC::TCRETURNri8 ||
RetOpcode == PPC::TCRETURNdi8 ||
RetOpcode == PPC::TCRETURNai8) &&
"Can only insert epilog into returning blocks");
// Get alignment info so we know how to restore the SP.
const MachineFrameInfo *MFI = MF.getFrameInfo();
@ -1009,25 +999,30 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
PBPOffset = FFI->getObjectOffset(PBPIndex);
}
bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
RetOpcode == PPC::TCRETURNdi ||
RetOpcode == PPC::TCRETURNai ||
RetOpcode == PPC::TCRETURNri8 ||
RetOpcode == PPC::TCRETURNdi8 ||
RetOpcode == PPC::TCRETURNai8;
bool IsReturnBlock = MBBI->isReturn();
if (IsReturnBlock) {
unsigned RetOpcode = MBBI->getOpcode();
bool UsesTCRet = RetOpcode == PPC::TCRETURNri ||
RetOpcode == PPC::TCRETURNdi ||
RetOpcode == PPC::TCRETURNai ||
RetOpcode == PPC::TCRETURNri8 ||
RetOpcode == PPC::TCRETURNdi8 ||
RetOpcode == PPC::TCRETURNai8;
if (UsesTCRet) {
int MaxTCRetDelta = FI->getTailCallSPDelta();
MachineOperand &StackAdjust = MBBI->getOperand(1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int Delta = StackAdj - MaxTCRetDelta;
assert((Delta >= 0) && "Delta must be positive");
if (MaxTCRetDelta>0)
FrameSize += (StackAdj +Delta);
else
FrameSize += StackAdj;
if (UsesTCRet) {
int MaxTCRetDelta = FI->getTailCallSPDelta();
MachineOperand &StackAdjust = MBBI->getOperand(1);
assert(StackAdjust.isImm() && "Expecting immediate value.");
// Adjust stack pointer.
int StackAdj = StackAdjust.getImm();
int Delta = StackAdj - MaxTCRetDelta;
assert((Delta >= 0) && "Delta must be positive");
if (MaxTCRetDelta>0)
FrameSize += (StackAdj +Delta);
else
FrameSize += StackAdj;
}
}
// Frames of 32KB & larger require special handling because they cannot be
@ -1110,52 +1105,55 @@ void PPCFrameLowering::emitEpilogue(MachineFunction &MF,
// Callee pop calling convention. Pop parameter/linkage area. Used for tail
// call optimization
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
(RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
MF.getFunction()->getCallingConv() == CallingConv::Fast) {
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
unsigned CallerAllocatedAmt = FI->getMinReservedArea();
if (IsReturnBlock) {
unsigned RetOpcode = MBBI->getOpcode();
if (MF.getTarget().Options.GuaranteedTailCallOpt &&
(RetOpcode == PPC::BLR || RetOpcode == PPC::BLR8) &&
MF.getFunction()->getCallingConv() == CallingConv::Fast) {
PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
unsigned CallerAllocatedAmt = FI->getMinReservedArea();
if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
.addReg(SPReg).addImm(CallerAllocatedAmt);
} else {
BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
if (CallerAllocatedAmt && isInt<16>(CallerAllocatedAmt)) {
BuildMI(MBB, MBBI, dl, AddImmInst, SPReg)
.addReg(SPReg).addImm(CallerAllocatedAmt);
} else {
BuildMI(MBB, MBBI, dl, LoadImmShiftedInst, ScratchReg)
.addImm(CallerAllocatedAmt >> 16);
BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
BuildMI(MBB, MBBI, dl, OrImmInst, ScratchReg)
.addReg(ScratchReg, RegState::Kill)
.addImm(CallerAllocatedAmt & 0xFFFF);
BuildMI(MBB, MBBI, dl, AddInst)
BuildMI(MBB, MBBI, dl, AddInst)
.addReg(SPReg)
.addReg(FPReg)
.addReg(ScratchReg);
}
} else if (RetOpcode == PPC::TCRETURNdi) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
} else if (RetOpcode == PPC::TCRETURNri) {
MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
} else if (RetOpcode == PPC::TCRETURNai) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
} else if (RetOpcode == PPC::TCRETURNdi8) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
} else if (RetOpcode == PPC::TCRETURNri8) {
MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
} else if (RetOpcode == PPC::TCRETURNai8) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
}
} else if (RetOpcode == PPC::TCRETURNdi) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
} else if (RetOpcode == PPC::TCRETURNri) {
MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR));
} else if (RetOpcode == PPC::TCRETURNai) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA)).addImm(JumpTarget.getImm());
} else if (RetOpcode == PPC::TCRETURNdi8) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILB8)).
addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset());
} else if (RetOpcode == PPC::TCRETURNri8) {
MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->getOperand(0).isReg() && "Expecting register operand.");
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBCTR8));
} else if (RetOpcode == PPC::TCRETURNai8) {
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
BuildMI(MBB, MBBI, dl, TII.get(PPC::TAILBA8)).addImm(JumpTarget.getImm());
}
}
}
@ -1710,3 +1708,8 @@ PPCFrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
return true;
}
bool PPCFrameLowering::enableShrinkWrapping(const MachineFunction &MF) const {
return (MF.getSubtarget<PPCSubtarget>().isSVR4ABI() &&
MF.getSubtarget<PPCSubtarget>().isPPC64());
}

View File

@ -92,6 +92,8 @@ public:
const SpillSlot *
getCalleeSavedSpillSlots(unsigned &NumEntries) const override;
bool enableShrinkWrapping(const MachineFunction &MF) const override;
};
} // End llvm namespace

View File

@ -0,0 +1,556 @@
; RUN: llc -mtriple=powerpc64le-unknown-linux-gnu -mcpu=pwr8 %s -o - | FileCheck %s --check-prefix=CHECK --check-prefix=ENABLE
; RUN: llc -mtriple=powerpc64le-unknown-linux-gnu %s -o - -enable-shrink-wrap=false | FileCheck %s --check-prefix=CHECK --check-prefix=DISABLE
;
; Note: Lots of tests use inline asm instead of regular calls.
; This allows to have a better control on what the allocation will do.
; Otherwise, we may have spill right in the entry block, defeating
; shrink-wrapping. Moreover, some of the inline asm statement (nop)
; are here to ensure that the related paths do not end up as critical
; edges.
; Initial motivating example: Simple diamond with a call just on one side.
; CHECK-LABEL: foo:
;
; Compare the arguments and return
; No prologue needed.
; ENABLE: cmpw 0, 3, 4
; ENABLE-NEXT: bgelr 0
;
; Prologue code.
; At a minimum, we save/restore the link register. Other registers may be saved
; as well.
; CHECK: mflr
;
; Compare the arguments and jump to exit.
; After the prologue is set.
; DISABLE: cmpw 0, 3, 4
; DISABLE-NEXT: bge 0, .[[EXIT_LABEL:LBB[0-9_]+]]
;
; Store %a on the stack
; CHECK: stw 3, {{[0-9]+([0-9]+)}}
; Set the alloca address in the second argument.
; CHECK-NEXT: addi 4, 1, {{[0-9]+}}
; Set the first argument to zero.
; CHECK-NEXT: li 3, 0
; CHECK-NEXT: bl doSomething
;
; With shrink-wrapping, epilogue is just after the call.
; Restore the link register and return.
; Note that there could be other epilog code before the link register is
; restored but we will not check for it here.
; ENABLE: mtlr
; ENABLE-NEXT: blr
;
; DISABLE: [[EXIT_LABEL]]:
;
; Without shrink-wrapping, epilogue is in the exit block.
; Epilogue code. (What we pop does not matter.)
; DISABLE: mtlr 0
; DISABLE-NEXT: blr
;
define i32 @foo(i32 %a, i32 %b) {
%tmp = alloca i32, align 4
%tmp2 = icmp slt i32 %a, %b
br i1 %tmp2, label %true, label %false
true:
store i32 %a, i32* %tmp, align 4
%tmp4 = call i32 @doSomething(i32 0, i32* %tmp)
br label %false
false:
%tmp.0 = phi i32 [ %tmp4, %true ], [ %a, %0 ]
ret i32 %tmp.0
}
; Function Attrs: optsize
declare i32 @doSomething(i32, i32*)
; Check that we do not perform the restore inside the loop whereas the save
; is outside.
; CHECK-LABEL: freqSaveAndRestoreOutsideLoop:
;
; Shrink-wrapping allows to skip the prologue in the else case.
; ENABLE: cmplwi 0, 3, 0
; ENABLE: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr 0
;
; DISABLE: cmplwi 0, 3, 0
; DISABLE: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB.
; CHECK: slwi 3, [[SUM]], 3
;
; Jump to epilogue.
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
; DISABLE: .[[EPILOG_BB]]: # %if.end
;
; Epilogue code.
; CHECK: mtlr 0
; CHECK-NEXT: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @freqSaveAndRestoreOutsideLoop(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
%sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
declare i32 @something(...)
; Check that we do not perform the shrink-wrapping inside the loop even
; though that would be legal. The cost model must prevent that.
; CHECK-LABEL: freqSaveAndRestoreOutsideLoop2:
; Prologue code.
; Make sure we save the link register before the call
; CHECK: mflr 0
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB
; CHECK: %for.exit
; CHECK: mtlr 0
; CHECK-NEXT: blr
define i32 @freqSaveAndRestoreOutsideLoop2(i32 %cond) {
entry:
br label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %for.body, %entry
%i.04 = phi i32 [ 0, %for.preheader ], [ %inc, %for.body ]
%sum.03 = phi i32 [ 0, %for.preheader ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.03
%inc = add nuw nsw i32 %i.04, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
tail call void asm "nop", ""()
br label %for.end
for.end: ; preds = %for.body
ret i32 %add
}
; Check with a more complex case that we do not have save within the loop and
; restore outside.
; CHECK-LABEL: loopInfoSaveOutsideLoop:
;
; ENABLE: cmplwi 0, 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr 0
;
; DISABLE: cmplwi 0, 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB
; CHECK: bl somethingElse
; CHECK: slwi 3, [[SUM]], 3
;
; Jump to epilogue
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
;
; DISABLE: .[[EPILOG_BB]]: # %if.end
; Epilog code
; CHECK: mtlr 0
; CHECK-NEXT: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @loopInfoSaveOutsideLoop(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.05 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
%sum.04 = phi i32 [ %add, %for.body ], [ 0, %for.preheader ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
tail call void bitcast (void (...)* @somethingElse to void ()*)()
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
declare void @somethingElse(...)
; Check with a more complex case that we do not have restore within the loop and
; save outside.
; CHECK-LABEL: loopInfoRestoreOutsideLoop:
;
; ENABLE: cmplwi 0, 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the link register
; CHECK: mflr 0
;
; DISABLE: cmplwi 0, 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; CHECK: bl somethingElse
;
; Loop preheader
; CHECK-DAG: li [[SUM:[0-9]+]], 0
; CHECK-DAG: li [[IV:[0-9]+]], 10
;
; Loop body
; CHECK: .[[LOOP:LBB[0-9_]+]]: # %for.body
; CHECK: bl something
; CHECK-DAG: addi [[IV]], [[IV]], -1
; CHECK-DAG: add [[SUM]], 3, [[SUM]]
; CHECK-NEXT: cmplwi [[IV]], 0
; CHECK-NEXT: bne 0, .[[LOOP]]
;
; Next BB.
; slwi 3, [[SUM]], 3
;
; DISABLE: b .[[EPILOG_BB:LBB[0-9_]+]]
;
; DISABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; DISABLE: slwi 3, 4, 1
; DISABLE: .[[EPILOG_BB]]: # %if.end
;
; Epilogue code.
; CHECK: mtlr 0
; CHECK-NEXT: blr
;
; ENABLE: .[[ELSE_LABEL]]: # %if.else
; Shift second argument by one and store into returned register.
; ENABLE: slwi 3, 4, 1
; ENABLE-NEXT: blr
define i32 @loopInfoRestoreOutsideLoop(i32 %cond, i32 %N) #0 {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %if.then
if.then: ; preds = %entry
tail call void bitcast (void (...)* @somethingElse to void ()*)()
br label %for.body
for.body: ; preds = %for.body, %if.then
%i.05 = phi i32 [ 0, %if.then ], [ %inc, %for.body ]
%sum.04 = phi i32 [ 0, %if.then ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.04
%inc = add nuw nsw i32 %i.05, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.end, label %for.body
for.end: ; preds = %for.body
%shl = shl i32 %add, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %for.end
%sum.1 = phi i32 [ %shl, %for.end ], [ %mul, %if.else ]
ret i32 %sum.1
}
; Check that we handle function with no frame information correctly.
; CHECK-LABEL: emptyFrame:
; CHECK: # %entry
; CHECK-NEXT: li 3, 0
; CHECK-NEXT: blr
define i32 @emptyFrame() {
entry:
ret i32 0
}
; Check that we handle inline asm correctly.
; CHECK-LABEL: inlineAsm:
;
; ENABLE: cmplwi 0, 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; Make sure we save the CSR used in the inline asm: r14
; ENABLE-DAG: li [[IV:[0-9]+]], 10
; ENABLE-DAG: std 14, -[[STACK_OFFSET:[0-9]+]](1) # 8-byte Folded Spill
;
; DISABLE: std 14, -[[STACK_OFFSET:[0-9]+]](1) # 8-byte Folded Spill
; DISABLE: cmplwi 0, 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
; DISABLE: li [[IV:[0-9]+]], 10
;
; CHECK: nop
; CHECK: mtctr [[IV]]
;
; CHECK: .[[LOOP_LABEL:LBB[0-9_]+]]: # %for.body
; Inline asm statement.
; CHECK: addi 14, 14, 1
; CHECK: bdnz .[[LOOP_LABEL]]
;
; Epilogue code.
; CHECK: li 3, 0
; CHECK-DAG: ld 14, -[[STACK_OFFSET]](1) # 8-byte Folded Reload
; CHECK: nop
; CHECK: blr
;
; CHECK: [[ELSE_LABEL]]
; CHECK-NEXT: slwi 3, 4, 1
; DISABLE: ld 14, -[[STACK_OFFSET]](1) # 8-byte Folded Reload
; CHECK-NEXT blr
;
define i32 @inlineAsm(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %for.preheader
for.preheader:
tail call void asm "nop", ""()
br label %for.body
for.body: ; preds = %entry, %for.body
%i.03 = phi i32 [ %inc, %for.body ], [ 0, %for.preheader ]
tail call void asm "addi 14, 14, 1", "~{r14}"()
%inc = add nuw nsw i32 %i.03, 1
%exitcond = icmp eq i32 %inc, 10
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
tail call void asm "nop", ""()
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %for.body, %if.else
%sum.0 = phi i32 [ %mul, %if.else ], [ 0, %for.exit ]
ret i32 %sum.0
}
; Check that we handle calls to variadic functions correctly.
; CHECK-LABEL: callVariadicFunc:
;
; ENABLE: cmplwi 0, 3, 0
; ENABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Prologue code.
; CHECK: mflr 0
;
; DISABLE: cmplwi 0, 3, 0
; DISABLE-NEXT: beq 0, .[[ELSE_LABEL:LBB[0-9_]+]]
;
; Setup of the varags.
; CHECK: mr 4, 3
; CHECK-NEXT: mr 5, 3
; CHECK-NEXT: mr 6, 3
; CHECK-NEXT: mr 7, 3
; CHECK-NEXT: mr 8, 3
; CHECK-NEXT: mr 9, 3
; CHECK-NEXT: bl someVariadicFunc
; CHECK: slwi 3, 3, 3
; DISABLE: b .[[EPILOGUE_BB:LBB[0-9_]+]]
;
; ENABLE: mtlr 0
; ENABLE-NEXT: blr
;
; CHECK: .[[ELSE_LABEL]]: # %if.else
; CHECK-NEXT: slwi 3, 4, 1
;
; DISABLE: .[[EPILOGUE_BB]]: # %if.end
; DISABLE: mtlr
; CHECK: blr
define i32 @callVariadicFunc(i32 %cond, i32 %N) {
entry:
%tobool = icmp eq i32 %cond, 0
br i1 %tobool, label %if.else, label %if.then
if.then: ; preds = %entry
%call = tail call i32 (i32, ...) @someVariadicFunc(i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N, i32 %N)
%shl = shl i32 %call, 3
br label %if.end
if.else: ; preds = %entry
%mul = shl nsw i32 %N, 1
br label %if.end
if.end: ; preds = %if.else, %if.then
%sum.0 = phi i32 [ %shl, %if.then ], [ %mul, %if.else ]
ret i32 %sum.0
}
declare i32 @someVariadicFunc(i32, ...)
; Make sure we do not insert unreachable code after noreturn function.
; Although this is not incorrect to insert such code, it is useless
; and it hurts the binary size.
;
; CHECK-LABEL: noreturn:
; DISABLE: mflr 0
;
; CHECK: cmplwi 3, 0
; CHECK-NEXT: bne 0, .[[ABORT:LBB[0-9_]+]]
;
; CHECK: li 3, 42
;
; DISABLE: mtlr 0
;
; CHECK-NEXT: blr
;
; CHECK: .[[ABORT]]: # %if.abort
;
; ENABLE: mflr 0
;
; CHECK: bl abort
; ENABLE-NOT: mtlr 0
define i32 @noreturn(i8 signext %bad_thing) {
entry:
%tobool = icmp eq i8 %bad_thing, 0
br i1 %tobool, label %if.end, label %if.abort
if.abort:
tail call void @abort() #0
unreachable
if.end:
ret i32 42
}
declare void @abort() #0
attributes #0 = { noreturn nounwind }
; Make sure that we handle infinite loops properly When checking that the Save
; and Restore blocks are control flow equivalent, the loop searches for the
; immediate (post) dominator for the (restore) save blocks. When either the Save
; or Restore block is located in an infinite loop the only immediate (post)
; dominator is itself. In this case, we cannot perform shrink wrapping, but we
; should return gracefully and continue compilation.
; The only condition for this test is the compilation finishes correctly.
;
; CHECK-LABEL: infiniteloop
; CHECK: blr
define void @infiniteloop() {
entry:
br i1 undef, label %if.then, label %if.end
if.then:
%ptr = alloca i32, i32 4
br label %for.body
for.body: ; preds = %for.body, %entry
%sum.03 = phi i32 [ 0, %if.then ], [ %add, %for.body ]
%call = tail call i32 bitcast (i32 (...)* @something to i32 ()*)()
%add = add nsw i32 %call, %sum.03
store i32 %add, i32* %ptr
br label %for.body
if.end:
ret void
}