Enhance CodePlacementOpt's unconditional intra-loop branch elimination logic

to be more general and understand more varieties of loops.

Teach CodePlacementOpt to reorganize the basic blocks of a loop so that
they are contiguous. This also includes a fair amount of logic for preserving
fall-through edges while doing so. This fixes a BranchFolding-ism where blocks
which can't be made to use a fall-through edge and don't conveniently fit
anywhere nearby get tossed out to the end of the function.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@84295 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Dan Gohman 2009-10-17 00:32:43 +00:00
parent b68d67caf3
commit 3bdd8de280
3 changed files with 568 additions and 184 deletions

View File

@ -34,14 +34,6 @@ namespace {
const TargetInstrInfo *TII;
const TargetLowering *TLI;
/// ChangedMBBs - BBs which are modified by OptimizeIntraLoopEdges.
SmallPtrSet<MachineBasicBlock*, 8> ChangedMBBs;
/// UncondJmpMBBs - A list of BBs which are in loops and end with
/// unconditional branches.
SmallVector<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 4>
UncondJmpMBBs;
public:
static char ID;
CodePlacementOpt() : MachineFunctionPass(&ID) {}
@ -58,7 +50,15 @@ namespace {
}
private:
bool OptimizeIntraLoopEdges();
bool HasFallthrough(MachineBasicBlock *MBB);
bool HasAnalyzableTerminator(MachineBasicBlock *MBB);
void Splice(MachineFunction &MF,
MachineFunction::iterator InsertPt,
MachineFunction::iterator Begin,
MachineFunction::iterator End);
void UpdateTerminator(MachineBasicBlock *MBB);
bool OptimizeIntraLoopEdges(MachineFunction &MF);
bool OptimizeIntraLoopEdgesInLoop(MachineFunction &MF, MachineLoop *L);
bool AlignLoops(MachineFunction &MF);
bool AlignLoop(MachineFunction &MF, MachineLoop *L, unsigned Align);
};
@ -70,168 +70,364 @@ FunctionPass *llvm::createCodePlacementOptPass() {
return new CodePlacementOpt();
}
/// OptimizeBackEdges - Place loop back edges to move unconditional branches
/// out of the loop.
/// HasFallthrough - Test whether the given branch has a fallthrough, either as
/// a plain fallthrough or as a fallthrough case of a conditional branch.
///
/// A:
/// ...
/// <fallthrough to B>
bool CodePlacementOpt::HasFallthrough(MachineBasicBlock *MBB) {
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond))
return false;
// This conditional branch has no fallthrough.
if (FBB)
return false;
// An unconditional branch has no fallthrough.
if (Cond.empty() && TBB)
return false;
// It has a fallthrough.
return true;
}
/// HasAnalyzableTerminator - Test whether AnalyzeBranch will succeed on MBB.
/// This is called before major changes are begun to test whether it will be
/// possible to complete the changes.
///
/// B: --> loop header
/// ...
/// jcc <cond> C, [exit]
/// Target-specific code is hereby encouraged to make AnalyzeBranch succeed
/// whenever possible.
///
/// C:
/// ...
/// jmp B
///
/// ==>
///
/// A:
/// ...
/// jmp B
///
/// C:
/// ...
/// <fallthough to B>
///
/// B: --> loop header
/// ...
/// jcc <cond> C, [exit]
///
bool CodePlacementOpt::OptimizeIntraLoopEdges() {
if (!TLI->shouldOptimizeCodePlacement())
bool CodePlacementOpt::HasAnalyzableTerminator(MachineBasicBlock *MBB) {
// Conservatively ignore EH landing pads.
if (MBB->isLandingPad()) return false;
// Ignore blocks which look like they might have EH-related control flow.
// At the time of this writing, there are blocks which AnalyzeBranch
// thinks end in single uncoditional branches, yet which have two CFG
// successors. Code in this file is not prepared to reason about such things.
if (!MBB->empty() && MBB->back().getOpcode() == TargetInstrInfo::EH_LABEL)
return false;
bool Changed = false;
for (unsigned i = 0, e = UncondJmpMBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = UncondJmpMBBs[i].first;
MachineBasicBlock *SuccMBB = UncondJmpMBBs[i].second;
MachineLoop *L = MLI->getLoopFor(MBB);
assert(L && "BB is expected to be in a loop!");
// Aggressively handle return blocks and similar constructs.
if (MBB->succ_empty()) return true;
if (ChangedMBBs.count(MBB)) {
// BB has been modified, re-analyze.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond) || !Cond.empty())
continue;
if (MLI->getLoopFor(TBB) != L || TBB->isLandingPad())
continue;
SuccMBB = TBB;
// Ask the target's AnalyzeBranch if it can handle this block.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
// Make the the terminator is understood.
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond))
return false;
// Make sure we have the option of reversing the condition.
if (!Cond.empty() && TII->ReverseBranchCondition(Cond))
return false;
return true;
}
/// Splice - Move the sequence of instructions [Begin,End) to just before
/// InsertPt. Update branch instructions as needed to account for broken
/// fallthrough edges and to take advantage of newly exposed fallthrough
/// opportunities.
///
void CodePlacementOpt::Splice(MachineFunction &MF,
MachineFunction::iterator InsertPt,
MachineFunction::iterator Begin,
MachineFunction::iterator End) {
assert(Begin != MF.begin() && End != MF.begin() && InsertPt != MF.begin() &&
"Splice can't change the entry block!");
MachineFunction::iterator OldBeginPrior = prior(Begin);
MachineFunction::iterator OldEndPrior = prior(End);
MF.splice(InsertPt, Begin, End);
UpdateTerminator(prior(Begin));
UpdateTerminator(OldBeginPrior);
UpdateTerminator(OldEndPrior);
}
/// UpdateTerminator - Update the terminator instructions in MBB to account
/// for changes to the layout. If the block previously used a fallthrough,
/// it may now need a branch, and if it previously used branching it may now
/// be able to use a fallthrough.
///
void CodePlacementOpt::UpdateTerminator(MachineBasicBlock *MBB) {
// A block with no successors has no concerns with fall-through edges.
if (MBB->succ_empty()) return;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
bool B = TII->AnalyzeBranch(*MBB, TBB, FBB, Cond);
assert(!B && "UpdateTerminators requires analyzable predecessors!");
if (Cond.empty()) {
if (TBB) {
// The block has an unconditional branch. If its successor is now
// its layout successor, delete the branch.
if (MBB->isLayoutSuccessor(TBB))
TII->RemoveBranch(*MBB);
} else {
assert(MLI->getLoopFor(SuccMBB) == L &&
"Successor is not in the same loop!");
// The block has an unconditional fallthrough. If its successor is not
// its layout successor, insert a branch.
TBB = *MBB->succ_begin();
if (!MBB->isLayoutSuccessor(TBB))
TII->InsertBranch(*MBB, TBB, 0, Cond);
}
if (MBB->isLayoutSuccessor(SuccMBB)) {
// Successor is right after MBB, just eliminate the unconditional jmp.
// Can this happen?
TII->RemoveBranch(*MBB);
ChangedMBBs.insert(MBB);
++NumIntraElim;
Changed = true;
continue;
}
// Now check if the predecessor is fallthrough from any BB. If there is,
// that BB should be from outside the loop since edge will become a jmp.
bool OkToMove = true;
MachineBasicBlock *FtMBB = 0, *FtTBB = 0, *FtFBB = 0;
SmallVector<MachineOperand, 4> FtCond;
for (MachineBasicBlock::pred_iterator PI = SuccMBB->pred_begin(),
PE = SuccMBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *PredMBB = *PI;
if (PredMBB->isLayoutSuccessor(SuccMBB)) {
if (TII->AnalyzeBranch(*PredMBB, FtTBB, FtFBB, FtCond)) {
OkToMove = false;
break;
}
if (!FtTBB)
FtTBB = SuccMBB;
else if (!FtFBB) {
assert(FtFBB != SuccMBB && "Unexpected control flow!");
FtFBB = SuccMBB;
}
// A fallthrough.
FtMBB = PredMBB;
MachineLoop *PL = MLI->getLoopFor(PredMBB);
if (PL && (PL == L || PL->getLoopDepth() >= L->getLoopDepth()))
OkToMove = false;
break;
} else {
if (FBB) {
// The block has a non-fallthrough conditional branch. If one of its
// successors is its layout successor, rewrite it to a fallthrough
// conditional branch.
if (MBB->isLayoutSuccessor(TBB)) {
TII->RemoveBranch(*MBB);
TII->ReverseBranchCondition(Cond);
TII->InsertBranch(*MBB, FBB, 0, Cond);
} else if (MBB->isLayoutSuccessor(FBB)) {
TII->RemoveBranch(*MBB);
TII->InsertBranch(*MBB, TBB, 0, Cond);
}
} else {
// The block has a fallthrough conditional branch.
MachineBasicBlock *MBBA = *MBB->succ_begin();
MachineBasicBlock *MBBB = *next(MBB->succ_begin());
if (MBBA == TBB) std::swap(MBBB, MBBA);
if (MBB->isLayoutSuccessor(TBB)) {
TII->RemoveBranch(*MBB);
TII->ReverseBranchCondition(Cond);
TII->InsertBranch(*MBB, MBBA, 0, Cond);
} else if (!MBB->isLayoutSuccessor(MBBA)) {
TII->RemoveBranch(*MBB);
TII->InsertBranch(*MBB, TBB, MBBA, Cond);
}
}
}
}
if (!OkToMove)
continue;
/// OptimizeIntraLoopEdges - Reposition loop blocks to minimize
/// intra-loop branching and to form contiguous loops.
///
bool CodePlacementOpt::OptimizeIntraLoopEdges(MachineFunction &MF) {
bool Changed = false;
// Is it profitable? If SuccMBB can fallthrough itself, that can be changed
// into a jmp.
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*SuccMBB, TBB, FBB, Cond))
continue;
if (!TBB && Cond.empty())
TBB = next(MachineFunction::iterator(SuccMBB));
else if (!FBB && !Cond.empty())
FBB = next(MachineFunction::iterator(SuccMBB));
if (!TLI->shouldOptimizeCodePlacement())
return Changed;
// This calculate the cost of the transformation. Also, it finds the *only*
// intra-loop edge if there is one.
int Cost = 0;
bool HasOneIntraSucc = true;
MachineBasicBlock *IntraSucc = 0;
for (MachineBasicBlock::succ_iterator SI = SuccMBB->succ_begin(),
SE = SuccMBB->succ_end(); SI != SE; ++SI) {
MachineBasicBlock *SSMBB = *SI;
if (MLI->getLoopFor(SSMBB) == L) {
if (!IntraSucc)
IntraSucc = SSMBB;
else
HasOneIntraSucc = false;
}
for (MachineLoopInfo::iterator I = MLI->begin(), E = MLI->end();
I != E; ++I)
Changed |= OptimizeIntraLoopEdgesInLoop(MF, *I);
if (SuccMBB->isLayoutSuccessor(SSMBB))
// This will become a jmp.
++Cost;
else if (MBB->isLayoutSuccessor(SSMBB)) {
// One of the successor will become the new fallthrough.
if (SSMBB == FBB) {
FBB = 0;
--Cost;
} else if (!FBB && SSMBB == TBB && Cond.empty()) {
TBB = 0;
--Cost;
} else if (!Cond.empty() && !TII->ReverseBranchCondition(Cond)) {
assert(SSMBB == TBB);
TBB = FBB;
FBB = 0;
--Cost;
}
}
return Changed;
}
/// OptimizeIntraLoopEdgesInLoop - Reposition loop blocks to minimize
/// intra-loop branching and to form contiguous loops.
///
/// This code takes the approach of making minor changes to the existing
/// layout to fix specific loop-oriented problems. Also, it depends on
/// AnalyzeBranch, which can't understand complex control instructions.
///
bool CodePlacementOpt::OptimizeIntraLoopEdgesInLoop(MachineFunction &MF,
MachineLoop *L) {
bool Changed = false;
// Do optimization for nested loops.
for (MachineLoop::iterator I = L->begin(), E = L->end(); I != E; ++I)
Changed |= OptimizeIntraLoopEdgesInLoop(MF, *I);
// Keep a record of which blocks are in the portion of the loop contiguous
// with the loop header.
SmallPtrSet<MachineBasicBlock *, 8> ContiguousBlocks;
ContiguousBlocks.insert(L->getHeader());
// Find the loop "top", ignoring any discontiguous parts.
MachineBasicBlock *TopMBB = L->getHeader();
if (TopMBB != MF.begin()) {
MachineBasicBlock *PriorMBB = prior(MachineFunction::iterator(TopMBB));
while (L->contains(PriorMBB)) {
ContiguousBlocks.insert(PriorMBB);
TopMBB = PriorMBB;
if (TopMBB == MF.begin()) break;
PriorMBB = prior(MachineFunction::iterator(TopMBB));
}
if (Cost)
continue;
// Now, let's move the successor to below the BB to eliminate the jmp.
SuccMBB->moveAfter(MBB);
TII->RemoveBranch(*MBB);
TII->RemoveBranch(*SuccMBB);
if (TBB)
TII->InsertBranch(*SuccMBB, TBB, FBB, Cond);
ChangedMBBs.insert(MBB);
ChangedMBBs.insert(SuccMBB);
if (FtMBB) {
TII->RemoveBranch(*FtMBB);
TII->InsertBranch(*FtMBB, FtTBB, FtFBB, FtCond);
ChangedMBBs.insert(FtMBB);
}
Changed = true;
}
++NumIntraMoved;
// Find the loop "bottom", ignoring any discontiguous parts.
MachineBasicBlock *BotMBB = L->getHeader();
if (BotMBB != prior(MF.end())) {
MachineBasicBlock *NextMBB = next(MachineFunction::iterator(BotMBB));
while (L->contains(NextMBB)) {
ContiguousBlocks.insert(NextMBB);
BotMBB = NextMBB;
if (BotMBB == next(MachineFunction::iterator(BotMBB))) break;
NextMBB = next(MachineFunction::iterator(BotMBB));
}
}
// First, move blocks which unconditionally jump to the loop top to the
// top of the loop so that they have a fall through. This can introduce a
// branch on entry to the loop, but it can eliminate a branch within the
// loop. See the @simple case in test/CodeGen/X86/loop_blocks.ll for an
// example of this.
bool BotHasFallthrough = HasFallthrough(BotMBB);
if (TopMBB == MF.begin() ||
HasAnalyzableTerminator(prior(MachineFunction::iterator(TopMBB)))) {
new_top:
for (MachineBasicBlock::pred_iterator PI = TopMBB->pred_begin(),
PE = TopMBB->pred_end(); PI != PE; ++PI) {
MachineBasicBlock *Pred = *PI;
if (Pred == TopMBB) continue;
if (HasFallthrough(Pred)) continue;
if (!L->contains(Pred)) continue;
// Verify that we can analyze all the loop entry edges before beginning
// any changes which will require us to be able to analyze them.
if (Pred == MF.begin())
continue;
if (!HasAnalyzableTerminator(Pred))
continue;
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(Pred))))
continue;
// Move the block.
Changed = true;
ContiguousBlocks.insert(Pred);
// Move it and all the blocks that can reach it via fallthrough edges
// exclusively, to keep existing fallthrough-edges intact.
MachineFunction::iterator Begin = Pred;
MachineFunction::iterator End = next(Begin);
while (Begin != MF.begin()) {
MachineFunction::iterator Prior = prior(Begin);
if (Prior == MF.begin())
break;
// Stop when a non-fallthrough edge is found.
if (!HasFallthrough(Prior))
break;
// Stop if a block which could fall-through out of the loop is found.
if (Prior->isSuccessor(End))
break;
// If we've reached the top, stop scanning.
if (Prior == MachineFunction::iterator(TopMBB)) {
// We know top currently has a fall through (because we just checked
// it) which would be lost if we do the transformation, so it isn't
// worthwhile to do the transformation unless it would expose a new
// fallthrough edge.
if (!Prior->isSuccessor(End))
goto next_pred;
// Otherwise we can stop scanning and procede to move the blocks.
break;
}
// If we hit a switch or something complicated, don't move anything
// for this predecessor.
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(Prior))))
break;
Begin = Prior;
ContiguousBlocks.insert(Begin);
++NumIntraMoved;
}
// Update BotMBB, before moving Begin/End around and forgetting where
// the new bottom is.
if (BotMBB == prior(End))
BotMBB = prior(Begin);
// Move the blocks.
Splice(MF, TopMBB, Begin, End);
// Update TopMBB, now that all the updates requiring the old top are
// complete.
TopMBB = Begin;
// We have a new loop top. Iterate on it. We shouldn't have to do this
// too many times if BranchFolding has done a reasonable job.
goto new_top;
next_pred:;
}
}
// If the loop previously didn't exit with a fall-through and it now does,
// we eliminated a branch.
if (!BotHasFallthrough && HasFallthrough(BotMBB)) {
++NumIntraElim;
BotHasFallthrough = true;
}
// Next, move any loop blocks that are not in the portion of the loop
// contiguous with the header. This makes the loop contiguous, provided that
// AnalyzeBranch can handle all the relevant branching. See the @cfg_islands
// case in test/CodeGen/X86/loop_blocks.ll for an example of this.
// Determine a position to move orphaned loop blocks to. If TopMBB is not
// entered via fallthrough and BotMBB is exited via fallthrough, prepend them
// to the top of the loop to avoid loosing that fallthrough. Otherwise append
// them to the bottom, even if it previously had a fallthrough, on the theory
// that it's worth an extra branch to keep the loop contiguous.
MachineFunction::iterator InsertPt = next(MachineFunction::iterator(BotMBB));
bool InsertAtTop = false;
if (TopMBB != MF.begin() &&
!HasFallthrough(prior(MachineFunction::iterator(TopMBB))) &&
HasFallthrough(BotMBB)) {
InsertPt = TopMBB;
InsertAtTop = true;
}
// Find non-contigous blocks and fix them.
if (InsertPt != MF.begin() && HasAnalyzableTerminator(prior(InsertPt)))
for (MachineLoop::block_iterator BI = L->block_begin(), BE = L->block_end();
BI != BE; ++BI) {
MachineBasicBlock *BB = *BI;
// Verify that we can analyze all the loop entry edges before beginning
// any changes which will require us to be able to analyze them.
if (!HasAnalyzableTerminator(BB))
continue;
if (!HasAnalyzableTerminator(prior(MachineFunction::iterator(BB))))
continue;
// If the layout predecessor is part of the loop, this block will be
// processed along with it. This keeps them in their relative order.
if (BB != MF.begin() &&
L->contains(prior(MachineFunction::iterator(BB))))
continue;
// Check to see if this block is already contiguous with the main
// portion of the loop.
if (!ContiguousBlocks.insert(BB))
continue;
// Move the block.
Changed = true;
// Process this block and all loop blocks contiguous with it, to keep
// them in their relative order.
MachineFunction::iterator Begin = BB;
MachineFunction::iterator End = next(MachineFunction::iterator(BB));
for (; End != MF.end(); ++End) {
if (!L->contains(End)) break;
if (!HasAnalyzableTerminator(End)) break;
ContiguousBlocks.insert(End);
++NumIntraMoved;
}
// Update BotMBB.
if (!InsertAtTop)
BotMBB = prior(End);
// If we're inserting at the bottom of the loop, and the code we're
// moving originally had fall-through successors, bring the sucessors
// up with the loop blocks to preserve the fall-through edges.
if (!InsertAtTop)
for (; End != MF.end(); ++End) {
if (L->contains(End)) break;
if (!HasAnalyzableTerminator(End)) break;
if (!HasFallthrough(prior(End))) break;
}
// Move the blocks.
Splice(MF, InsertPt, Begin, End);
// Update TopMBB.
if (InsertAtTop)
TopMBB = Begin;
}
return Changed;
}
@ -255,6 +451,8 @@ bool CodePlacementOpt::AlignLoops(MachineFunction &MF) {
return Changed;
}
/// AlignLoop - Align loop headers to target preferred alignments.
///
bool CodePlacementOpt::AlignLoop(MachineFunction &MF, MachineLoop *L,
unsigned Align) {
bool Changed = false;
@ -264,13 +462,13 @@ bool CodePlacementOpt::AlignLoop(MachineFunction &MF, MachineLoop *L,
Changed |= AlignLoop(MF, *I, Align);
MachineBasicBlock *TopMBB = L->getHeader();
if (TopMBB == MF.begin()) return Changed;
MachineBasicBlock *PredMBB = prior(MachineFunction::iterator(TopMBB));
while (MLI->getLoopFor(PredMBB) == L) {
TopMBB = PredMBB;
if (TopMBB == MF.begin()) return Changed;
PredMBB = prior(MachineFunction::iterator(TopMBB));
if (TopMBB != MF.begin()) {
MachineBasicBlock *PredMBB = prior(MachineFunction::iterator(TopMBB));
while (L->contains(PredMBB)) {
TopMBB = PredMBB;
if (TopMBB == MF.begin()) break;
PredMBB = prior(MachineFunction::iterator(TopMBB));
}
}
TopMBB->setAlignment(Align);
@ -288,30 +486,9 @@ bool CodePlacementOpt::runOnMachineFunction(MachineFunction &MF) {
TLI = MF.getTarget().getTargetLowering();
TII = MF.getTarget().getInstrInfo();
// Analyze the BBs first and keep track of BBs that
// end with an unconditional jmp to another block in the same loop.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = I;
if (MBB->isLandingPad())
continue;
MachineLoop *L = MLI->getLoopFor(MBB);
if (!L)
continue;
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*MBB, TBB, FBB, Cond) || !Cond.empty())
continue;
if (MLI->getLoopFor(TBB) == L && !TBB->isLandingPad())
UncondJmpMBBs.push_back(std::make_pair(MBB, TBB));
}
bool Changed = OptimizeIntraLoopEdges();
bool Changed = OptimizeIntraLoopEdges(MF);
Changed |= AlignLoops(MF);
ChangedMBBs.clear();
UncondJmpMBBs.clear();
return Changed;
}

View File

@ -1,4 +1,4 @@
; RUN: llc < %s -mtriple=x86_64-apple-darwin10.0 -relocation-model=pic -disable-fp-elim -stats |& grep asm-printer | grep 84
; RUN: llc < %s -mtriple=x86_64-apple-darwin10.0 -relocation-model=pic -disable-fp-elim -stats |& grep asm-printer | grep 83
; rdar://6802189
; Test if linearscan is unfavoring registers for allocation to allow more reuse

View File

@ -0,0 +1,207 @@
; RUN: llc < %s -march=x86-64 -mtriple=x86_64-unknown-linux-gnu -asm-verbose=false | FileCheck %s
; These tests check for loop branching structure, and that the loop align
; directive is placed in the expected place.
; CodeGen should insert a branch into the middle of the loop in
; order to avoid a branch within the loop.
; CHECK: simple:
; CHECK: jmp .LBB1_1
; CHECK-NEXT: align
; CHECK-NEXT: .LBB1_2:
; CHECK-NEXT: call loop_latch
; CHECK-NEXT: .LBB1_1:
; CHECK-NEXT: call loop_header
define void @simple() nounwind {
entry:
br label %loop
loop:
call void @loop_header()
%t0 = tail call i32 @get()
%t1 = icmp slt i32 %t0, 0
br i1 %t1, label %done, label %bb
bb:
call void @loop_latch()
br label %loop
done:
call void @exit()
ret void
}
; CodeGen should move block_a to the top of the loop so that it
; falls through into the loop, avoiding a branch within the loop.
; CHECK: slightly_more_involved:
; CHECK: jmp .LBB2_1
; CHECK-NEXT: align
; CHECK-NEXT: .LBB2_4:
; CHECK-NEXT: call bar99
; CHECK-NEXT: .LBB2_1:
; CHECK-NEXT: call body
define void @slightly_more_involved() nounwind {
entry:
br label %loop
loop:
call void @body()
%t0 = call i32 @get()
%t1 = icmp slt i32 %t0, 2
br i1 %t1, label %block_a, label %bb
bb:
%t2 = call i32 @get()
%t3 = icmp slt i32 %t2, 99
br i1 %t3, label %exit, label %loop
block_a:
call void @bar99()
br label %loop
exit:
call void @exit()
ret void
}
; Same as slightly_more_involved, but block_a is now a CFG diamond with
; fallthrough edges which should be preserved.
; CHECK: yet_more_involved:
; CHECK: jmp .LBB3_1
; CHECK-NEXT: align
; CHECK-NEXT: .LBB3_7:
; CHECK-NEXT: call block_a_true_func
; CHECK-NEXT: jmp .LBB3_4
; CHECK-NEXT: .LBB3_2:
; CHECK-NEXT: call bar99
; CHECK-NEXT: call get
; CHECK-NEXT: cmpl $2999, %eax
; CHECK-NEXT: jle .LBB3_7
; CHECK-NEXT: call block_a_false_func
; CHECK-NEXT: .LBB3_4:
; CHECK-NEXT: call block_a_merge_func
; CHECK-NEXT: .LBB3_1:
; CHECK-NEXT: call body
define void @yet_more_involved() nounwind {
entry:
br label %loop
loop:
call void @body()
%t0 = call i32 @get()
%t1 = icmp slt i32 %t0, 2
br i1 %t1, label %block_a, label %bb
bb:
%t2 = call i32 @get()
%t3 = icmp slt i32 %t2, 99
br i1 %t3, label %exit, label %loop
block_a:
call void @bar99()
%z0 = call i32 @get()
%z1 = icmp slt i32 %z0, 3000
br i1 %z1, label %block_a_true, label %block_a_false
block_a_true:
call void @block_a_true_func()
br label %block_a_merge
block_a_false:
call void @block_a_false_func()
br label %block_a_merge
block_a_merge:
call void @block_a_merge_func()
br label %loop
exit:
call void @exit()
ret void
}
; CodeGen should move the CFG islands that are part of the loop but don't
; conveniently fit anywhere so that they are at least contiguous with the
; loop.
; CHECK: cfg_islands:
; CHECK: jmp .LBB4_1
; CHECK-NEXT: align
; CHECK-NEXT: .LBB4_7:
; CHECK-NEXT: call bar100
; CHECK-NEXT: jmp .LBB4_1
; CHECK-NEXT: .LBB4_8:
; CHECK-NEXT: call bar101
; CHECK-NEXT: jmp .LBB4_1
; CHECK-NEXT: .LBB4_9:
; CHECK-NEXT: call bar102
; CHECK-NEXT: jmp .LBB4_1
; CHECK-NEXT: .LBB4_5:
; CHECK-NEXT: call loop_latch
; CHECK-NEXT: .LBB4_1:
; CHECK-NEXT: call loop_header
define void @cfg_islands() nounwind {
entry:
br label %loop
loop:
call void @loop_header()
%t0 = call i32 @get()
%t1 = icmp slt i32 %t0, 100
br i1 %t1, label %block100, label %bb
bb:
%t2 = call i32 @get()
%t3 = icmp slt i32 %t2, 101
br i1 %t3, label %block101, label %bb1
bb1:
%t4 = call i32 @get()
%t5 = icmp slt i32 %t4, 102
br i1 %t5, label %block102, label %bb2
bb2:
%t6 = call i32 @get()
%t7 = icmp slt i32 %t6, 103
br i1 %t7, label %exit, label %bb3
bb3:
call void @loop_latch()
br label %loop
exit:
call void @exit()
ret void
block100:
call void @bar100()
br label %loop
block101:
call void @bar101()
br label %loop
block102:
call void @bar102()
br label %loop
}
declare void @bar99() nounwind
declare void @bar100() nounwind
declare void @bar101() nounwind
declare void @bar102() nounwind
declare void @body() nounwind
declare void @exit() nounwind
declare void @loop_header() nounwind
declare void @loop_latch() nounwind
declare i32 @get() nounwind
declare void @block_a_true_func() nounwind
declare void @block_a_false_func() nounwind
declare void @block_a_merge_func() nounwind