Gut the type printing code so there is only one copy of it instead of 3

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@2576 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chris Lattner 2002-05-09 14:40:11 +00:00
parent 2d05a1acb0
commit 3ef6dc7bdd
2 changed files with 182 additions and 590 deletions

View File

@ -48,10 +48,6 @@ void CLocalVars::addLocalVar(const Type *t, const string & var) {
}
}
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar);
static std::string getConstStrValue(const Constant* CPV);
@ -119,147 +115,47 @@ static std::string getConstArrayStrValue(const Constant* CPV) {
return Result;
}
static std::string getConstStructStrValue(const Constant* CPV) {
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
return Result + " }";
}
// our own getStrValue function for constant initializers
static std::string getConstStrValue(const Constant* CPV) {
// Does not handle null pointers, that needs to be checked explicitly
string tempstr;
if (CPV == ConstantBool::False)
return "0";
else if (CPV == ConstantBool::True)
return "1";
else if (isa<ConstantArray>(CPV)) {
tempstr = getConstArrayStrValue(CPV);
}
else if (isa<ConstantStruct>(CPV)) {
tempstr = getConstStructStrValue(CPV);
}
else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(CPV)) {
tempstr = utostr(CUI->getValue());
}
else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CPV)) {
tempstr = itostr(CSI->getValue());
}
else if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
tempstr = ftostr(CFP->getValue());
}
if (CPV->getType() == Type::ULongTy)
tempstr += "ull";
else if (CPV->getType() == Type::LongTy)
tempstr += "ll";
else if (CPV->getType() == Type::UIntTy ||
CPV->getType() == Type::UShortTy)
tempstr += "u";
return tempstr;
switch (CPV->getType()->getPrimitiveID()) {
case Type::BoolTyID:
return CPV == ConstantBool::False ? "0" : "1";
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
return itostr(cast<ConstantSInt>(CPV)->getValue());
case Type::LongTyID:
return itostr(cast<ConstantSInt>(CPV)->getValue()) + "ll";
}
case Type::UByteTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue());
case Type::UShortTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue());
case Type::UIntTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue())+"u";
case Type::ULongTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue())+"ull";
case Type::FloatTyID:
case Type::DoubleTyID:
return ftostr(cast<ConstantFP>(CPV)->getValue());
case Type::ArrayTyID:
return getConstArrayStrValue(CPV);
// Internal function
// Essentially pass the Type* variable, an empty typestack and this prints
// out the C type
static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
string &FunctionInfo) {
// Takin' care of the fact that boolean would be int in C
// and that ushort would be unsigned short etc.
// Base Case
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return "void";
case Type::BoolTyID: return "bool";
case Type::UByteTyID: return "unsigned char";
case Type::SByteTyID: return "signed char";
case Type::UShortTyID: return "unsigned short";
case Type::ShortTyID: return "short";
case Type::UIntTyID: return "unsigned";
case Type::IntTyID: return "int";
case Type::ULongTyID: return "unsigned long long";
case Type::LongTyID: return "signed long long";
case Type::FloatTyID: return "float";
case Type::DoubleTyID: return "double";
default : assert(0 && "Unknown primitive type!");
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
string Result;
string MInfo = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += "(";
FunctionInfo += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
FunctionInfo += ", ";
MInfo = "";
FunctionInfo += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
FunctionInfo += ", ";
FunctionInfo += "...";
}
FunctionInfo += ")";
break;
}
case Type::StructTyID: {
string tempstr = "";
const StructType *STy = cast<const StructType>(Ty);
Result = " struct {\n ";
int indx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), tempstr);
Result += ";\n ";
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
Result += " } ";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeNames, MInfo);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeName(ATy->getElementType(), TypeNames, MInfo);
Result += "*";
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
return Result + " }";
}
return Result;
default:
cerr << "Unknown constant type: " << CPV << "\n";
abort();
}
}
// Internal function
@ -269,54 +165,48 @@ static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
// the size of the array would appear after the variable name itself
// For eg. int a[10];
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar) {
map<const Type *, string> &TypeNames,
const string &NameSoFar, bool ignoreName = false){
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "bool " + NameSoFar + VariableName;
return "bool " + NameSoFar;
case Type::UByteTyID:
return "unsigned char " + NameSoFar + VariableName;
return "unsigned char " + NameSoFar;
case Type::SByteTyID:
return "signed char " + NameSoFar + VariableName;
return "signed char " + NameSoFar;
case Type::UShortTyID:
return "unsigned long long " + NameSoFar + VariableName;
return "unsigned long long " + NameSoFar;
case Type::ULongTyID:
return "unsigned long long " + NameSoFar + VariableName;
return "unsigned long long " + NameSoFar;
case Type::LongTyID:
return "signed long long " + NameSoFar + VariableName;
return "signed long long " + NameSoFar;
case Type::UIntTyID:
return "unsigned " + NameSoFar + VariableName;
return "unsigned " + NameSoFar;
default :
return Ty->getDescription() + " " + NameSoFar + VariableName;
return Ty->getDescription() + " " + NameSoFar;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar + VariableName;
string Result;
string tempstr = "";
if (!ignoreName) {
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar;
}
string Result;
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
string MInfo = "";
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result += calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += " " + NameSoFar + VariableName;
Result += calcTypeNameVar(MTy->getReturnType(), TypeNames, "");
Result += " " + NameSoFar;
Result += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
MInfo = "";
Result += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += calcTypeNameVar(*I, TypeNames, "");
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
@ -333,19 +223,17 @@ static string calcTypeNameVar(const Type *Ty,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), "");
Result += calcTypeNameVar(*I, TypeNames, "field" + itostr(indx++));
Result += ";\n ";
}
Result += " }";
Result += " " + NameSoFar + VariableName;
Result += " " + NameSoFar;
break;
}
case Type::PointerTyID: {
Result = calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeNames, tempstr,
"(*" + NameSoFar + VariableName + ")");
TypeNames, "(*" + NameSoFar + ")");
break;
}
@ -353,8 +241,7 @@ static string calcTypeNameVar(const Type *Ty,
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeNameVar(ATy->getElementType(), TypeNames,
tempstr, NameSoFar + VariableName + "[" +
itostr(NumElements) + "]");
NameSoFar + "[" + itostr(NumElements) + "]");
break;
}
default:
@ -365,94 +252,7 @@ static string calcTypeNameVar(const Type *Ty,
return Result;
}
// printTypeVarInt - The internal guts of printing out a type that has a
// potentially named portion and the variable associated with the type.
static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames,
const string &VariableName) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "bool " << VariableName;
case Type::UByteTyID:
return Out << "unsigned char " << VariableName;
case Type::SByteTyID:
return Out << "signed char " << VariableName;
case Type::UShortTyID:
return Out << "unsigned long long " << VariableName;
case Type::ULongTyID:
return Out << "unsigned long long " << VariableName;
case Type::LongTyID:
return Out << "signed long long " << VariableName;
case Type::UIntTyID:
return Out << "unsigned " << VariableName;
default :
return Out << Ty->getDescription() << " " << VariableName;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << " " << VariableName;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
string TypeNameVar, tempstr = "";
TypeNameVar = calcTypeNameVar(Ty, TypeNames, VariableName, tempstr);
return Out << TypeNameVar;
}
// Internal guts of printing a type name
static ostream &printTypeInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "bool";
case Type::UByteTyID:
return Out << "unsigned char";
case Type::SByteTyID:
return Out << "signed char";
case Type::UShortTyID:
return Out << "unsigned short";
case Type::ULongTyID:
return Out << "unsigned long long";
case Type::LongTyID:
return Out << "signed long long";
case Type::UIntTyID:
return Out << "unsigned";
default :
return Out << Ty->getDescription();
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
string MInfo;
string TypeName = calcTypeName(Ty, TypeNames, MInfo);
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
if (MInfo != "")
return Out << TypeName << ")" << MInfo;
else
return Out << TypeName;
}
namespace {
//Internal CWriter class mimics AssemblyWriter.
class CWriter {
ostream& Out;
SlotCalculator &Table;
@ -466,14 +266,14 @@ namespace {
inline void write(const Module *M) { printModule(M); }
ostream& printTypeVar(const Type *Ty, const string &VariableName) {
return printTypeVarInt(Out, Ty, TypeNames, VariableName);
return Out << calcTypeNameVar(Ty, TypeNames, VariableName);
}
ostream& printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
return Out << calcTypeNameVar(Ty, TypeNames, "");
}
void writeOperand(const Value *Operand, bool PrintName = true);
void writeOperand(const Value *Operand);
string getValueName(const Value *V);
private :
@ -502,10 +302,8 @@ namespace {
InstLocalVarsVisitor(CWriter &cw) : CW(cw) {}
void visitInstruction(Instruction *I) {
if (I->getType() != Type::VoidTy) {
string tempostr = CW.getValueName(I);
CLV.addLocalVar(I->getType(), tempostr);
}
if (I->getType() != Type::VoidTy)
CLV.addLocalVar(I->getType(), CW.getValueName(I));
}
void visitBranchInst(BranchInst *I) {
@ -615,7 +413,7 @@ void CInstPrintVisitor::visitCallInst(CallInst *I) {
Out << CW.getValueName(I->getOperand(0)) << "(";
if (I->getNumOperands() != 0) {
if (I->getNumOperands() > 1) {
CW.writeOperand(I->getOperand(1));
for (unsigned op = 2, Eop = I->getNumOperands(); op != Eop; ++op) {
@ -630,9 +428,11 @@ void CInstPrintVisitor::visitCallInst(CallInst *I) {
// neccesary because we use the instruction classes as opaque types...
//
void CInstPrintVisitor::visitReturnInst(ReturnInst *I) {
Out << " return ";
if (I->getNumOperands())
Out << " return";
if (I->getNumOperands()) {
Out << " ";
CW.writeOperand(I->getOperand(0));
}
Out << ";\n";
}
@ -685,12 +485,10 @@ void CInstPrintVisitor::visitMallocInst(MallocInst *I) {
void CInstPrintVisitor::visitAllocaInst(AllocaInst *I) {
outputLValue(I);
string tempstr = "";
Out << "(";
CW.printTypeVar(I->getType(), tempstr);
CW.printTypeVar(I->getType(), "");
Out << ") alloca(sizeof(";
CW.printTypeVar(cast<PointerType>(I->getType())->getElementType(),
tempstr);
CW.printTypeVar(I->getType()->getElementType(), "");
Out << ")";
if (I->isArrayAllocation()) {
Out << " * " ;
@ -851,14 +649,13 @@ void CWriter::printModule(const Module *M) {
// prints the global constants
void CWriter::printGlobal(const GlobalVariable *GV) {
string tempostr = getValueName(GV);
if (GV->hasInternalLinkage()) Out << "static ";
printTypeVar(GV->getType()->getElementType(), tempostr);
printTypeVar(GV->getType()->getElementType(), getValueName(GV));
if (GV->hasInitializer()) {
Out << " = " ;
writeOperand(GV->getInitializer(), false);
writeOperand(GV->getInitializer());
}
Out << ";\n";
@ -868,39 +665,38 @@ void CWriter::printGlobal(const GlobalVariable *GV) {
// if a named constant is found, emit it's declaration...
// Assuming that symbol table has only types and constants.
void CWriter::printSymbolTable(const SymbolTable &ST) {
// GraphT G;
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
// TODO
// Need to run through all the used types in the program
// FindUsedTypes &FUT = new FindUsedTypes();
// const std::set<const Type *> &UsedTypes = FUT.getTypes();
// Filter out the structures printing forward definitions for each of them
// and creating the dependency graph.
// Print forward definitions to all of them
// print the typedefs topologically sorted
for (; I != End; ++I)
if (const Type *Ty = dyn_cast<const StructType>(I->second)) {
string Name = "struct l_" + I->first;
Out << Name << ";\n";
// But for now we have
TypeNames.insert(std::make_pair(Ty, Name));
}
}
Out << "\n";
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const Type *Ty = dyn_cast<const Type>(V)) {
string tempostr;
string tempstr = "";
Out << "typedef ";
tempostr = "llvm__" + I->first;
string TypeNameVar = calcTypeNameVar(Ty, TypeNames,
tempostr, tempstr);
Out << TypeNameVar << ";\n";
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
TypeNames.insert(std::make_pair(Ty, "llvm__"+I->first));
string Name = "l_" + I->first;
if (isa<StructType>(Ty)) Name = "struct " + Name;
Out << calcTypeNameVar(Ty, TypeNames, Name, true) << ";\n";
}
}
}
}
// printFunctionDecl - Print function declaration
//
void CWriter::printFunctionDecl(const Function *F) {
@ -1001,11 +797,11 @@ void CWriter::outputBasicBlock(const BasicBlock* BB) {
CIPV.visit((BasicBlock *) BB);
}
void CWriter::writeOperand(const Value *Operand, bool PrintName = true) {
void CWriter::writeOperand(const Value *Operand) {
if (isa<GlobalVariable>(Operand))
Out << "(&"; // Global variables are references as their addresses by llvm
if (PrintName && Operand->hasName()) {
if (Operand->hasName()) {
Out << getValueName(Operand);
} else if (const Constant *CPV = dyn_cast<const Constant>(Operand)) {
if (isa<ConstantPointerNull>(CPV))

View File

@ -48,10 +48,6 @@ void CLocalVars::addLocalVar(const Type *t, const string & var) {
}
}
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar);
static std::string getConstStrValue(const Constant* CPV);
@ -119,147 +115,47 @@ static std::string getConstArrayStrValue(const Constant* CPV) {
return Result;
}
static std::string getConstStructStrValue(const Constant* CPV) {
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
return Result + " }";
}
// our own getStrValue function for constant initializers
static std::string getConstStrValue(const Constant* CPV) {
// Does not handle null pointers, that needs to be checked explicitly
string tempstr;
if (CPV == ConstantBool::False)
return "0";
else if (CPV == ConstantBool::True)
return "1";
else if (isa<ConstantArray>(CPV)) {
tempstr = getConstArrayStrValue(CPV);
}
else if (isa<ConstantStruct>(CPV)) {
tempstr = getConstStructStrValue(CPV);
}
else if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(CPV)) {
tempstr = utostr(CUI->getValue());
}
else if (ConstantSInt *CSI = dyn_cast<ConstantSInt>(CPV)) {
tempstr = itostr(CSI->getValue());
}
else if (ConstantFP *CFP = dyn_cast<ConstantFP>(CPV)) {
tempstr = ftostr(CFP->getValue());
}
if (CPV->getType() == Type::ULongTy)
tempstr += "ull";
else if (CPV->getType() == Type::LongTy)
tempstr += "ll";
else if (CPV->getType() == Type::UIntTy ||
CPV->getType() == Type::UShortTy)
tempstr += "u";
return tempstr;
switch (CPV->getType()->getPrimitiveID()) {
case Type::BoolTyID:
return CPV == ConstantBool::False ? "0" : "1";
case Type::SByteTyID:
case Type::ShortTyID:
case Type::IntTyID:
return itostr(cast<ConstantSInt>(CPV)->getValue());
case Type::LongTyID:
return itostr(cast<ConstantSInt>(CPV)->getValue()) + "ll";
}
case Type::UByteTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue());
case Type::UShortTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue());
case Type::UIntTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue())+"u";
case Type::ULongTyID:
return utostr(cast<ConstantUInt>(CPV)->getValue())+"ull";
case Type::FloatTyID:
case Type::DoubleTyID:
return ftostr(cast<ConstantFP>(CPV)->getValue());
case Type::ArrayTyID:
return getConstArrayStrValue(CPV);
// Internal function
// Essentially pass the Type* variable, an empty typestack and this prints
// out the C type
static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
string &FunctionInfo) {
// Takin' care of the fact that boolean would be int in C
// and that ushort would be unsigned short etc.
// Base Case
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::VoidTyID: return "void";
case Type::BoolTyID: return "bool";
case Type::UByteTyID: return "unsigned char";
case Type::SByteTyID: return "signed char";
case Type::UShortTyID: return "unsigned short";
case Type::ShortTyID: return "short";
case Type::UIntTyID: return "unsigned";
case Type::IntTyID: return "int";
case Type::ULongTyID: return "unsigned long long";
case Type::LongTyID: return "signed long long";
case Type::FloatTyID: return "float";
case Type::DoubleTyID: return "double";
default : assert(0 && "Unknown primitive type!");
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second;
string Result;
string MInfo = "";
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result = calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += "(";
FunctionInfo += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
FunctionInfo += ", ";
MInfo = "";
FunctionInfo += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
FunctionInfo += ", ";
FunctionInfo += "...";
}
FunctionInfo += ")";
break;
}
case Type::StructTyID: {
string tempstr = "";
const StructType *STy = cast<const StructType>(Ty);
Result = " struct {\n ";
int indx = 0;
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), tempstr);
Result += ";\n ";
std::string Result = "{";
if (CPV->getNumOperands()) {
Result += " " + getConstStrValue(cast<Constant>(CPV->getOperand(0)));
for (unsigned i = 1; i < CPV->getNumOperands(); i++)
Result += ", " + getConstStrValue(cast<Constant>(CPV->getOperand(i)));
}
Result += " } ";
break;
}
case Type::PointerTyID:
Result = calcTypeName(cast<const PointerType>(Ty)->getElementType(),
TypeNames, MInfo);
Result += "*";
break;
case Type::ArrayTyID: {
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeName(ATy->getElementType(), TypeNames, MInfo);
Result += "*";
break;
}
default:
assert(0 && "Unhandled case in getTypeProps!");
Result = "<error>";
return Result + " }";
}
return Result;
default:
cerr << "Unknown constant type: " << CPV << "\n";
abort();
}
}
// Internal function
@ -269,54 +165,48 @@ static string calcTypeName(const Type *Ty, map<const Type *, string> &TypeNames,
// the size of the array would appear after the variable name itself
// For eg. int a[10];
static string calcTypeNameVar(const Type *Ty,
map<const Type *, string> &TypeNames,
string VariableName, string NameSoFar) {
map<const Type *, string> &TypeNames,
const string &NameSoFar, bool ignoreName = false){
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return "bool " + NameSoFar + VariableName;
return "bool " + NameSoFar;
case Type::UByteTyID:
return "unsigned char " + NameSoFar + VariableName;
return "unsigned char " + NameSoFar;
case Type::SByteTyID:
return "signed char " + NameSoFar + VariableName;
return "signed char " + NameSoFar;
case Type::UShortTyID:
return "unsigned long long " + NameSoFar + VariableName;
return "unsigned long long " + NameSoFar;
case Type::ULongTyID:
return "unsigned long long " + NameSoFar + VariableName;
return "unsigned long long " + NameSoFar;
case Type::LongTyID:
return "signed long long " + NameSoFar + VariableName;
return "signed long long " + NameSoFar;
case Type::UIntTyID:
return "unsigned " + NameSoFar + VariableName;
return "unsigned " + NameSoFar;
default :
return Ty->getDescription() + " " + NameSoFar + VariableName;
return Ty->getDescription() + " " + NameSoFar;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar + VariableName;
string Result;
string tempstr = "";
if (!ignoreName) {
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end())
return I->second + " " + NameSoFar;
}
string Result;
switch (Ty->getPrimitiveID()) {
case Type::FunctionTyID: {
string MInfo = "";
const FunctionType *MTy = cast<const FunctionType>(Ty);
Result += calcTypeName(MTy->getReturnType(), TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += " " + NameSoFar + VariableName;
Result += calcTypeNameVar(MTy->getReturnType(), TypeNames, "");
Result += " " + NameSoFar;
Result += " (";
for (FunctionType::ParamTypes::const_iterator
I = MTy->getParamTypes().begin(),
E = MTy->getParamTypes().end(); I != E; ++I) {
if (I != MTy->getParamTypes().begin())
Result += ", ";
MInfo = "";
Result += calcTypeName(*I, TypeNames, MInfo);
if (MInfo != "")
Result += ") " + MInfo;
Result += calcTypeNameVar(*I, TypeNames, "");
}
if (MTy->isVarArg()) {
if (!MTy->getParamTypes().empty())
@ -333,19 +223,17 @@ static string calcTypeNameVar(const Type *Ty,
for (StructType::ElementTypes::const_iterator
I = STy->getElementTypes().begin(),
E = STy->getElementTypes().end(); I != E; ++I) {
Result += calcTypeNameVar(*I, TypeNames,
"field" + itostr(indx++), "");
Result += calcTypeNameVar(*I, TypeNames, "field" + itostr(indx++));
Result += ";\n ";
}
Result += " }";
Result += " " + NameSoFar + VariableName;
Result += " " + NameSoFar;
break;
}
case Type::PointerTyID: {
Result = calcTypeNameVar(cast<const PointerType>(Ty)->getElementType(),
TypeNames, tempstr,
"(*" + NameSoFar + VariableName + ")");
TypeNames, "(*" + NameSoFar + ")");
break;
}
@ -353,8 +241,7 @@ static string calcTypeNameVar(const Type *Ty,
const ArrayType *ATy = cast<const ArrayType>(Ty);
int NumElements = ATy->getNumElements();
Result = calcTypeNameVar(ATy->getElementType(), TypeNames,
tempstr, NameSoFar + VariableName + "[" +
itostr(NumElements) + "]");
NameSoFar + "[" + itostr(NumElements) + "]");
break;
}
default:
@ -365,94 +252,7 @@ static string calcTypeNameVar(const Type *Ty,
return Result;
}
// printTypeVarInt - The internal guts of printing out a type that has a
// potentially named portion and the variable associated with the type.
static ostream &printTypeVarInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames,
const string &VariableName) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "bool " << VariableName;
case Type::UByteTyID:
return Out << "unsigned char " << VariableName;
case Type::SByteTyID:
return Out << "signed char " << VariableName;
case Type::UShortTyID:
return Out << "unsigned long long " << VariableName;
case Type::ULongTyID:
return Out << "unsigned long long " << VariableName;
case Type::LongTyID:
return Out << "signed long long " << VariableName;
case Type::UIntTyID:
return Out << "unsigned " << VariableName;
default :
return Out << Ty->getDescription() << " " << VariableName;
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second << " " << VariableName;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
string TypeNameVar, tempstr = "";
TypeNameVar = calcTypeNameVar(Ty, TypeNames, VariableName, tempstr);
return Out << TypeNameVar;
}
// Internal guts of printing a type name
static ostream &printTypeInt(ostream &Out, const Type *Ty,
map<const Type *, string> &TypeNames) {
// Primitive types always print out their description, regardless of whether
// they have been named or not.
if (Ty->isPrimitiveType())
switch (Ty->getPrimitiveID()) {
case Type::BoolTyID:
return Out << "bool";
case Type::UByteTyID:
return Out << "unsigned char";
case Type::SByteTyID:
return Out << "signed char";
case Type::UShortTyID:
return Out << "unsigned short";
case Type::ULongTyID:
return Out << "unsigned long long";
case Type::LongTyID:
return Out << "signed long long";
case Type::UIntTyID:
return Out << "unsigned";
default :
return Out << Ty->getDescription();
}
// Check to see if the type is named.
map<const Type *, string>::iterator I = TypeNames.find(Ty);
if (I != TypeNames.end()) return Out << I->second;
// Otherwise we have a type that has not been named but is a derived type.
// Carefully recurse the type hierarchy to print out any contained symbolic
// names.
//
string MInfo;
string TypeName = calcTypeName(Ty, TypeNames, MInfo);
// TypeNames.insert(std::make_pair(Ty, TypeName));
//Cache type name for later use
if (MInfo != "")
return Out << TypeName << ")" << MInfo;
else
return Out << TypeName;
}
namespace {
//Internal CWriter class mimics AssemblyWriter.
class CWriter {
ostream& Out;
SlotCalculator &Table;
@ -466,14 +266,14 @@ namespace {
inline void write(const Module *M) { printModule(M); }
ostream& printTypeVar(const Type *Ty, const string &VariableName) {
return printTypeVarInt(Out, Ty, TypeNames, VariableName);
return Out << calcTypeNameVar(Ty, TypeNames, VariableName);
}
ostream& printType(const Type *Ty) {
return printTypeInt(Out, Ty, TypeNames);
return Out << calcTypeNameVar(Ty, TypeNames, "");
}
void writeOperand(const Value *Operand, bool PrintName = true);
void writeOperand(const Value *Operand);
string getValueName(const Value *V);
private :
@ -502,10 +302,8 @@ namespace {
InstLocalVarsVisitor(CWriter &cw) : CW(cw) {}
void visitInstruction(Instruction *I) {
if (I->getType() != Type::VoidTy) {
string tempostr = CW.getValueName(I);
CLV.addLocalVar(I->getType(), tempostr);
}
if (I->getType() != Type::VoidTy)
CLV.addLocalVar(I->getType(), CW.getValueName(I));
}
void visitBranchInst(BranchInst *I) {
@ -615,7 +413,7 @@ void CInstPrintVisitor::visitCallInst(CallInst *I) {
Out << CW.getValueName(I->getOperand(0)) << "(";
if (I->getNumOperands() != 0) {
if (I->getNumOperands() > 1) {
CW.writeOperand(I->getOperand(1));
for (unsigned op = 2, Eop = I->getNumOperands(); op != Eop; ++op) {
@ -630,9 +428,11 @@ void CInstPrintVisitor::visitCallInst(CallInst *I) {
// neccesary because we use the instruction classes as opaque types...
//
void CInstPrintVisitor::visitReturnInst(ReturnInst *I) {
Out << " return ";
if (I->getNumOperands())
Out << " return";
if (I->getNumOperands()) {
Out << " ";
CW.writeOperand(I->getOperand(0));
}
Out << ";\n";
}
@ -685,12 +485,10 @@ void CInstPrintVisitor::visitMallocInst(MallocInst *I) {
void CInstPrintVisitor::visitAllocaInst(AllocaInst *I) {
outputLValue(I);
string tempstr = "";
Out << "(";
CW.printTypeVar(I->getType(), tempstr);
CW.printTypeVar(I->getType(), "");
Out << ") alloca(sizeof(";
CW.printTypeVar(cast<PointerType>(I->getType())->getElementType(),
tempstr);
CW.printTypeVar(I->getType()->getElementType(), "");
Out << ")";
if (I->isArrayAllocation()) {
Out << " * " ;
@ -851,14 +649,13 @@ void CWriter::printModule(const Module *M) {
// prints the global constants
void CWriter::printGlobal(const GlobalVariable *GV) {
string tempostr = getValueName(GV);
if (GV->hasInternalLinkage()) Out << "static ";
printTypeVar(GV->getType()->getElementType(), tempostr);
printTypeVar(GV->getType()->getElementType(), getValueName(GV));
if (GV->hasInitializer()) {
Out << " = " ;
writeOperand(GV->getInitializer(), false);
writeOperand(GV->getInitializer());
}
Out << ";\n";
@ -868,39 +665,38 @@ void CWriter::printGlobal(const GlobalVariable *GV) {
// if a named constant is found, emit it's declaration...
// Assuming that symbol table has only types and constants.
void CWriter::printSymbolTable(const SymbolTable &ST) {
// GraphT G;
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
// TODO
// Need to run through all the used types in the program
// FindUsedTypes &FUT = new FindUsedTypes();
// const std::set<const Type *> &UsedTypes = FUT.getTypes();
// Filter out the structures printing forward definitions for each of them
// and creating the dependency graph.
// Print forward definitions to all of them
// print the typedefs topologically sorted
for (; I != End; ++I)
if (const Type *Ty = dyn_cast<const StructType>(I->second)) {
string Name = "struct l_" + I->first;
Out << Name << ";\n";
// But for now we have
TypeNames.insert(std::make_pair(Ty, Name));
}
}
Out << "\n";
for (SymbolTable::const_iterator TI = ST.begin(); TI != ST.end(); ++TI) {
SymbolTable::type_const_iterator I = ST.type_begin(TI->first);
SymbolTable::type_const_iterator End = ST.type_end(TI->first);
for (; I != End; ++I) {
const Value *V = I->second;
if (const Type *Ty = dyn_cast<const Type>(V)) {
string tempostr;
string tempstr = "";
Out << "typedef ";
tempostr = "llvm__" + I->first;
string TypeNameVar = calcTypeNameVar(Ty, TypeNames,
tempostr, tempstr);
Out << TypeNameVar << ";\n";
if (!isa<PointerType>(Ty) ||
!cast<PointerType>(Ty)->getElementType()->isPrimitiveType())
TypeNames.insert(std::make_pair(Ty, "llvm__"+I->first));
string Name = "l_" + I->first;
if (isa<StructType>(Ty)) Name = "struct " + Name;
Out << calcTypeNameVar(Ty, TypeNames, Name, true) << ";\n";
}
}
}
}
// printFunctionDecl - Print function declaration
//
void CWriter::printFunctionDecl(const Function *F) {
@ -1001,11 +797,11 @@ void CWriter::outputBasicBlock(const BasicBlock* BB) {
CIPV.visit((BasicBlock *) BB);
}
void CWriter::writeOperand(const Value *Operand, bool PrintName = true) {
void CWriter::writeOperand(const Value *Operand) {
if (isa<GlobalVariable>(Operand))
Out << "(&"; // Global variables are references as their addresses by llvm
if (PrintName && Operand->hasName()) {
if (Operand->hasName()) {
Out << getValueName(Operand);
} else if (const Constant *CPV = dyn_cast<const Constant>(Operand)) {
if (isa<ConstantPointerNull>(CPV))