Optimize away fabs() calls when input is squared (known positive).

Eliminate library calls and intrinsic calls to fabs when the input 
is a squared value.

Note that no unsafe-math / fast-math assumptions are needed for
this optimization.

Differential Revision: http://reviews.llvm.org/D5777



git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@219717 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Sanjay Patel 2014-10-14 20:43:11 +00:00
parent 40017084f7
commit 3f349b2ba8
3 changed files with 131 additions and 1 deletions

View File

@ -92,6 +92,7 @@ private:
Value *optimizeCos(CallInst *CI, IRBuilder<> &B);
Value *optimizePow(CallInst *CI, IRBuilder<> &B);
Value *optimizeExp2(CallInst *CI, IRBuilder<> &B);
Value *optimizeFabs(CallInst *CI, IRBuilder<> &B);
Value *optimizeSinCosPi(CallInst *CI, IRBuilder<> &B);
// Integer Library Call Optimizations

View File

@ -1230,6 +1230,30 @@ Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
return Ret;
}
Value *LibCallSimplifier::optimizeFabs(CallInst *CI, IRBuilder<> &B) {
Function *Callee = CI->getCalledFunction();
Value *Ret = nullptr;
if (Callee->getName() == "fabs" && TLI->has(LibFunc::fabsf)) {
Ret = optimizeUnaryDoubleFP(CI, B, false);
}
FunctionType *FT = Callee->getFunctionType();
// Make sure this has 1 argument of FP type which matches the result type.
if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
!FT->getParamType(0)->isFloatingPointTy())
return Ret;
Value *Op = CI->getArgOperand(0);
if (Instruction *I = dyn_cast<Instruction>(Op)) {
// Fold fabs(x * x) -> x * x; any squared FP value must already be positive.
if (I->getOpcode() == Instruction::FMul)
if (I->getOperand(0) == I->getOperand(1))
return Op;
}
return Ret;
}
static bool isTrigLibCall(CallInst *CI);
static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
bool UseFloat, Value *&Sin, Value *&Cos,
@ -1893,6 +1917,8 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
return optimizePow(CI, Builder);
case Intrinsic::exp2:
return optimizeExp2(CI, Builder);
case Intrinsic::fabs:
return optimizeFabs(CI, Builder);
default:
return nullptr;
}
@ -1965,6 +1991,10 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
case LibFunc::exp2:
case LibFunc::exp2f:
return optimizeExp2(CI, Builder);
case LibFunc::fabsf:
case LibFunc::fabs:
case LibFunc::fabsl:
return optimizeFabs(CI, Builder);
case LibFunc::ffs:
case LibFunc::ffsl:
case LibFunc::ffsll:
@ -1999,7 +2029,6 @@ Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
case LibFunc::fputc:
return optimizeErrorReporting(CI, Builder, 1);
case LibFunc::ceil:
case LibFunc::fabs:
case LibFunc::floor:
case LibFunc::rint:
case LibFunc::round:

View File

@ -0,0 +1,100 @@
; RUN: opt < %s -instcombine -S | FileCheck %s
; Make sure all library calls are eliminated when the input is known positive.
declare float @fabsf(float)
declare double @fabs(double)
declare fp128 @fabsl(fp128)
define float @square_fabs_call_f32(float %x) {
%mul = fmul float %x, %x
%fabsf = tail call float @fabsf(float %mul)
ret float %fabsf
; CHECK-LABEL: square_fabs_call_f32(
; CHECK-NEXT: %mul = fmul float %x, %x
; CHECK-NEXT: ret float %mul
}
define double @square_fabs_call_f64(double %x) {
%mul = fmul double %x, %x
%fabs = tail call double @fabs(double %mul)
ret double %fabs
; CHECK-LABEL: square_fabs_call_f64(
; CHECK-NEXT: %mul = fmul double %x, %x
; CHECK-NEXT: ret double %mul
}
define fp128 @square_fabs_call_f128(fp128 %x) {
%mul = fmul fp128 %x, %x
%fabsl = tail call fp128 @fabsl(fp128 %mul)
ret fp128 %fabsl
; CHECK-LABEL: square_fabs_call_f128(
; CHECK-NEXT: %mul = fmul fp128 %x, %x
; CHECK-NEXT: ret fp128 %mul
}
; Make sure all intrinsic calls are eliminated when the input is known positive.
declare float @llvm.fabs.f32(float)
declare double @llvm.fabs.f64(double)
declare fp128 @llvm.fabs.f128(fp128)
define float @square_fabs_intrinsic_f32(float %x) {
%mul = fmul float %x, %x
%fabsf = tail call float @llvm.fabs.f32(float %mul)
ret float %fabsf
; CHECK-LABEL: square_fabs_intrinsic_f32(
; CHECK-NEXT: %mul = fmul float %x, %x
; CHECK-NEXT: ret float %mul
}
define double @square_fabs_intrinsic_f64(double %x) {
%mul = fmul double %x, %x
%fabs = tail call double @llvm.fabs.f64(double %mul)
ret double %fabs
; CHECK-LABEL: square_fabs_intrinsic_f64(
; CHECK-NEXT: %mul = fmul double %x, %x
; CHECK-NEXT: ret double %mul
}
define fp128 @square_fabs_intrinsic_f128(fp128 %x) {
%mul = fmul fp128 %x, %x
%fabsl = tail call fp128 @llvm.fabs.f128(fp128 %mul)
ret fp128 %fabsl
; CHECK-LABEL: square_fabs_intrinsic_f128(
; CHECK-NEXT: %mul = fmul fp128 %x, %x
; CHECK-NEXT: ret fp128 %mul
}
; Shrinking a library call to a smaller type should not be inhibited by nor inhibit the square optimization.
define float @square_fabs_shrink_call1(float %x) {
%ext = fpext float %x to double
%sq = fmul double %ext, %ext
%fabs = call double @fabs(double %sq)
%trunc = fptrunc double %fabs to float
ret float %trunc
; CHECK-LABEL: square_fabs_shrink_call1(
; CHECK-NEXT: %trunc = fmul float %x, %x
; CHECK-NEXT: ret float %trunc
}
define float @square_fabs_shrink_call2(float %x) {
%sq = fmul float %x, %x
%ext = fpext float %sq to double
%fabs = call double @fabs(double %ext)
%trunc = fptrunc double %fabs to float
ret float %trunc
; CHECK-LABEL: square_fabs_shrink_call2(
; CHECK-NEXT: %sq = fmul float %x, %x
; CHECK-NEXT: ret float %sq
}