mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-30 16:34:03 +00:00
Implement sext(C1 + C2*X) --> sext(C1) + sext(C2*X) and
sext{C1,+,C2} --> sext(C1) + sext{0,+,C2} transformation in Scalar Evolution. That helps SLP-vectorizer to recognize consecutive loads/stores. <rdar://problem/14860614> git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@209568 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
6a04ef99f6
commit
45788be6e2
@ -1201,6 +1201,24 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
return getTruncateOrSignExtend(X, Ty);
|
||||
}
|
||||
|
||||
// sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
|
||||
if (auto SA = dyn_cast<SCEVAddExpr>(Op)) {
|
||||
if (SA->getNumOperands() == 2) {
|
||||
auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
|
||||
auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
|
||||
if (SMul && SC1) {
|
||||
if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
|
||||
APInt C1 = SC1->getValue()->getValue();
|
||||
APInt C2 = SC2->getValue()->getValue();
|
||||
APInt CDiff = C2 - C1;
|
||||
if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
|
||||
CDiff.isStrictlyPositive() && C2.isPowerOf2())
|
||||
return getAddExpr(getSignExtendExpr(SC1, Ty),
|
||||
getSignExtendExpr(SMul, Ty));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
// If the input value is a chrec scev, and we can prove that the value
|
||||
// did not overflow the old, smaller, value, we can sign extend all of the
|
||||
// operands (often constants). This allows analysis of something like
|
||||
@ -1292,6 +1310,23 @@ const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
|
||||
L, AR->getNoWrapFlags());
|
||||
}
|
||||
}
|
||||
// If Start and Step are constants, check if we can apply this
|
||||
// transformation:
|
||||
// sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
|
||||
auto SC1 = dyn_cast<SCEVConstant>(Start);
|
||||
auto SC2 = dyn_cast<SCEVConstant>(Step);
|
||||
if (SC1 && SC2) {
|
||||
APInt C1 = SC1->getValue()->getValue();
|
||||
APInt C2 = SC2->getValue()->getValue();
|
||||
APInt CDiff = C2 - C1;
|
||||
if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
|
||||
CDiff.isStrictlyPositive() && C2.isPowerOf2()) {
|
||||
Start = getSignExtendExpr(Start, Ty);
|
||||
const SCEV *NewAR = getAddRecExpr(getConstant(AR->getType(), 0), Step,
|
||||
L, AR->getNoWrapFlags());
|
||||
return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// The cast wasn't folded; create an explicit cast node.
|
||||
|
175
test/Transforms/SLPVectorizer/X86/consecutive-access.ll
Normal file
175
test/Transforms/SLPVectorizer/X86/consecutive-access.ll
Normal file
@ -0,0 +1,175 @@
|
||||
; RUN: opt < %s -basicaa -slp-vectorizer -S | FileCheck %s
|
||||
target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
|
||||
target triple = "x86_64-apple-macosx10.9.0"
|
||||
|
||||
@A = common global [2000 x double] zeroinitializer, align 16
|
||||
@B = common global [2000 x double] zeroinitializer, align 16
|
||||
@C = common global [2000 x float] zeroinitializer, align 16
|
||||
@D = common global [2000 x float] zeroinitializer, align 16
|
||||
|
||||
; Currently SCEV isn't smart enough to figure out that accesses
|
||||
; A[3*i], A[3*i+1] and A[3*i+2] are consecutive, but in future
|
||||
; that would hopefully be fixed. For now, check that this isn't
|
||||
; vectorized.
|
||||
; CHECK-LABEL: foo_3double
|
||||
; CHECK-NOT: x double>
|
||||
; Function Attrs: nounwind ssp uwtable
|
||||
define void @foo_3double(i32 %u) #0 {
|
||||
entry:
|
||||
%u.addr = alloca i32, align 4
|
||||
store i32 %u, i32* %u.addr, align 4
|
||||
%mul = mul nsw i32 %u, 3
|
||||
%idxprom = sext i32 %mul to i64
|
||||
%arrayidx = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom
|
||||
%0 = load double* %arrayidx, align 8
|
||||
%arrayidx4 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom
|
||||
%1 = load double* %arrayidx4, align 8
|
||||
%add5 = fadd double %0, %1
|
||||
store double %add5, double* %arrayidx, align 8
|
||||
%add11 = add nsw i32 %mul, 1
|
||||
%idxprom12 = sext i32 %add11 to i64
|
||||
%arrayidx13 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom12
|
||||
%2 = load double* %arrayidx13, align 8
|
||||
%arrayidx17 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom12
|
||||
%3 = load double* %arrayidx17, align 8
|
||||
%add18 = fadd double %2, %3
|
||||
store double %add18, double* %arrayidx13, align 8
|
||||
%add24 = add nsw i32 %mul, 2
|
||||
%idxprom25 = sext i32 %add24 to i64
|
||||
%arrayidx26 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom25
|
||||
%4 = load double* %arrayidx26, align 8
|
||||
%arrayidx30 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom25
|
||||
%5 = load double* %arrayidx30, align 8
|
||||
%add31 = fadd double %4, %5
|
||||
store double %add31, double* %arrayidx26, align 8
|
||||
ret void
|
||||
}
|
||||
|
||||
; SCEV should be able to tell that accesses A[C1 + C2*i], A[C1 + C2*i], ...
|
||||
; A[C1 + C2*i] are consecutive, if C2 is a power of 2, and C2 > C1 > 0.
|
||||
; Thus, the following code should be vectorized.
|
||||
; CHECK-LABEL: foo_2double
|
||||
; CHECK: x double>
|
||||
; Function Attrs: nounwind ssp uwtable
|
||||
define void @foo_2double(i32 %u) #0 {
|
||||
entry:
|
||||
%u.addr = alloca i32, align 4
|
||||
store i32 %u, i32* %u.addr, align 4
|
||||
%mul = mul nsw i32 %u, 2
|
||||
%idxprom = sext i32 %mul to i64
|
||||
%arrayidx = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom
|
||||
%0 = load double* %arrayidx, align 8
|
||||
%arrayidx4 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom
|
||||
%1 = load double* %arrayidx4, align 8
|
||||
%add5 = fadd double %0, %1
|
||||
store double %add5, double* %arrayidx, align 8
|
||||
%add11 = add nsw i32 %mul, 1
|
||||
%idxprom12 = sext i32 %add11 to i64
|
||||
%arrayidx13 = getelementptr inbounds [2000 x double]* @A, i32 0, i64 %idxprom12
|
||||
%2 = load double* %arrayidx13, align 8
|
||||
%arrayidx17 = getelementptr inbounds [2000 x double]* @B, i32 0, i64 %idxprom12
|
||||
%3 = load double* %arrayidx17, align 8
|
||||
%add18 = fadd double %2, %3
|
||||
store double %add18, double* %arrayidx13, align 8
|
||||
ret void
|
||||
}
|
||||
|
||||
; Similar to the previous test, but with different datatype.
|
||||
; CHECK-LABEL: foo_4float
|
||||
; CHECK: x float>
|
||||
; Function Attrs: nounwind ssp uwtable
|
||||
define void @foo_4float(i32 %u) #0 {
|
||||
entry:
|
||||
%u.addr = alloca i32, align 4
|
||||
store i32 %u, i32* %u.addr, align 4
|
||||
%mul = mul nsw i32 %u, 4
|
||||
%idxprom = sext i32 %mul to i64
|
||||
%arrayidx = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom
|
||||
%0 = load float* %arrayidx, align 4
|
||||
%arrayidx4 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom
|
||||
%1 = load float* %arrayidx4, align 4
|
||||
%add5 = fadd float %0, %1
|
||||
store float %add5, float* %arrayidx, align 4
|
||||
%add11 = add nsw i32 %mul, 1
|
||||
%idxprom12 = sext i32 %add11 to i64
|
||||
%arrayidx13 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom12
|
||||
%2 = load float* %arrayidx13, align 4
|
||||
%arrayidx17 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom12
|
||||
%3 = load float* %arrayidx17, align 4
|
||||
%add18 = fadd float %2, %3
|
||||
store float %add18, float* %arrayidx13, align 4
|
||||
%add24 = add nsw i32 %mul, 2
|
||||
%idxprom25 = sext i32 %add24 to i64
|
||||
%arrayidx26 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom25
|
||||
%4 = load float* %arrayidx26, align 4
|
||||
%arrayidx30 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom25
|
||||
%5 = load float* %arrayidx30, align 4
|
||||
%add31 = fadd float %4, %5
|
||||
store float %add31, float* %arrayidx26, align 4
|
||||
%add37 = add nsw i32 %mul, 3
|
||||
%idxprom38 = sext i32 %add37 to i64
|
||||
%arrayidx39 = getelementptr inbounds [2000 x float]* @C, i32 0, i64 %idxprom38
|
||||
%6 = load float* %arrayidx39, align 4
|
||||
%arrayidx43 = getelementptr inbounds [2000 x float]* @D, i32 0, i64 %idxprom38
|
||||
%7 = load float* %arrayidx43, align 4
|
||||
%add44 = fadd float %6, %7
|
||||
store float %add44, float* %arrayidx39, align 4
|
||||
ret void
|
||||
}
|
||||
|
||||
; Similar to the previous tests, but now we are dealing with AddRec SCEV.
|
||||
; CHECK-LABEL: foo_loop
|
||||
; CHECK: x double>
|
||||
; Function Attrs: nounwind ssp uwtable
|
||||
define i32 @foo_loop(double* %A, i32 %n) #0 {
|
||||
entry:
|
||||
%A.addr = alloca double*, align 8
|
||||
%n.addr = alloca i32, align 4
|
||||
%sum = alloca double, align 8
|
||||
%i = alloca i32, align 4
|
||||
store double* %A, double** %A.addr, align 8
|
||||
store i32 %n, i32* %n.addr, align 4
|
||||
store double 0.000000e+00, double* %sum, align 8
|
||||
store i32 0, i32* %i, align 4
|
||||
%cmp1 = icmp slt i32 0, %n
|
||||
br i1 %cmp1, label %for.body.lr.ph, label %for.end
|
||||
|
||||
for.body.lr.ph: ; preds = %entry
|
||||
br label %for.body
|
||||
|
||||
for.body: ; preds = %for.body.lr.ph, %for.body
|
||||
%0 = phi i32 [ 0, %for.body.lr.ph ], [ %inc, %for.body ]
|
||||
%1 = phi double [ 0.000000e+00, %for.body.lr.ph ], [ %add7, %for.body ]
|
||||
%mul = mul nsw i32 %0, 2
|
||||
%idxprom = sext i32 %mul to i64
|
||||
%arrayidx = getelementptr inbounds double* %A, i64 %idxprom
|
||||
%2 = load double* %arrayidx, align 8
|
||||
%mul1 = fmul double 7.000000e+00, %2
|
||||
%add = add nsw i32 %mul, 1
|
||||
%idxprom3 = sext i32 %add to i64
|
||||
%arrayidx4 = getelementptr inbounds double* %A, i64 %idxprom3
|
||||
%3 = load double* %arrayidx4, align 8
|
||||
%mul5 = fmul double 7.000000e+00, %3
|
||||
%add6 = fadd double %mul1, %mul5
|
||||
%add7 = fadd double %1, %add6
|
||||
store double %add7, double* %sum, align 8
|
||||
%inc = add nsw i32 %0, 1
|
||||
store i32 %inc, i32* %i, align 4
|
||||
%cmp = icmp slt i32 %inc, %n
|
||||
br i1 %cmp, label %for.body, label %for.cond.for.end_crit_edge
|
||||
|
||||
for.cond.for.end_crit_edge: ; preds = %for.body
|
||||
%split = phi double [ %add7, %for.body ]
|
||||
br label %for.end
|
||||
|
||||
for.end: ; preds = %for.cond.for.end_crit_edge, %entry
|
||||
%.lcssa = phi double [ %split, %for.cond.for.end_crit_edge ], [ 0.000000e+00, %entry ]
|
||||
%conv = fptosi double %.lcssa to i32
|
||||
ret i32 %conv
|
||||
}
|
||||
|
||||
attributes #0 = { nounwind ssp uwtable "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
|
||||
|
||||
!llvm.ident = !{!0}
|
||||
|
||||
!0 = metadata !{metadata !"clang version 3.5.0 "}
|
Loading…
Reference in New Issue
Block a user