[x86] Fix PR20540 where the x86 shuffle DAG combiner had completely

broken logic for merging shuffle masks in the face of SM_SentinelZero
mask operands.

While these are '-1' they don't mean 'undef' the way '-1' means in the
pre-legalized shuffle masks. Instead, they mean that the shuffle
operation is forcibly zeroing that lane. Reflect this and explicitly
handle it in a bunch of places. In one place the effect is equivalent
but much more clear. In the rest it was really weirdly broken.

Also, rewrite the entire merging thing to be a more directy operation
with a single loop and just doing math to map the indices through the
various masks.

Also add a bunch of asserts to try to make in extremely clear what the
different masks can possibly look like.

Finally, add some comments to clarify that we're merging shuffle masks
*up* here rather than *down* as we do everywhere else, and thus the
logic is quite confusing.

Thanks to several different people for sending test cases, and for
Robert Khasanov for an initial attempt at fixing.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@215687 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Chandler Carruth 2014-08-15 02:43:18 +00:00
parent feb45e3f0f
commit 477f28c48d
2 changed files with 53 additions and 22 deletions

View File

@ -19335,7 +19335,9 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
assert(Mask.size() <= 16 && "Can't shuffle elements smaller than bytes!");
int Ratio = 16 / Mask.size();
for (unsigned i = 0; i < 16; ++i) {
int M = Ratio * Mask[i / Ratio] + i % Ratio;
int M = Mask[i / Ratio] != SM_SentinelZero
? Ratio * Mask[i / Ratio] + i % Ratio
: 255;
PSHUFBMask.push_back(DAG.getConstant(M, MVT::i8));
}
Op = DAG.getNode(ISD::BITCAST, DL, MVT::v16i8, Input);
@ -19384,8 +19386,9 @@ static bool combineX86ShuffleChain(SDValue Op, SDValue Root, ArrayRef<int> Mask,
/// combine-ordering. To fix this, we should do the redundant instruction
/// combining in this recursive walk.
static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
ArrayRef<int> IncomingMask, int Depth,
bool HasPSHUFB, SelectionDAG &DAG,
ArrayRef<int> RootMask,
int Depth, bool HasPSHUFB,
SelectionDAG &DAG,
TargetLowering::DAGCombinerInfo &DCI,
const X86Subtarget *Subtarget) {
// Bound the depth of our recursive combine because this is ultimately
@ -19421,28 +19424,44 @@ static bool combineX86ShufflesRecursively(SDValue Op, SDValue Root,
assert(VT.getVectorNumElements() == OpMask.size() &&
"Different mask size from vector size!");
assert(((RootMask.size() > OpMask.size() &&
RootMask.size() % OpMask.size() == 0) ||
(OpMask.size() > RootMask.size() &&
OpMask.size() % RootMask.size() == 0) ||
OpMask.size() == RootMask.size()) &&
"The smaller number of elements must divide the larger.");
int RootRatio = std::max<int>(1, OpMask.size() / RootMask.size());
int OpRatio = std::max<int>(1, RootMask.size() / OpMask.size());
assert(((RootRatio == 1 && OpRatio == 1) ||
(RootRatio == 1) != (OpRatio == 1)) &&
"Must not have a ratio for both incoming and op masks!");
SmallVector<int, 16> Mask;
Mask.reserve(std::max(OpMask.size(), IncomingMask.size()));
Mask.reserve(std::max(OpMask.size(), RootMask.size()));
// Merge this shuffle operation's mask into our accumulated mask. This is
// a bit tricky as the shuffle may have a different size from the root.
if (OpMask.size() == IncomingMask.size()) {
for (int M : IncomingMask)
Mask.push_back(OpMask[M]);
} else if (OpMask.size() < IncomingMask.size()) {
assert(IncomingMask.size() % OpMask.size() == 0 &&
"The smaller number of elements must divide the larger.");
int Ratio = IncomingMask.size() / OpMask.size();
for (int M : IncomingMask)
Mask.push_back(Ratio * OpMask[M / Ratio] + M % Ratio);
} else {
assert(OpMask.size() > IncomingMask.size() && "All other cases handled!");
assert(OpMask.size() % IncomingMask.size() == 0 &&
"The smaller number of elements must divide the larger.");
int Ratio = OpMask.size() / IncomingMask.size();
for (int i = 0, e = OpMask.size(); i < e; ++i)
Mask.push_back(OpMask[Ratio * IncomingMask[i / Ratio] + i % Ratio]);
// Merge this shuffle operation's mask into our accumulated mask. Note that
// this shuffle's mask will be the first applied to the input, followed by the
// root mask to get us all the way to the root value arrangement. The reason
// for this order is that we are recursing up the operation chain.
for (int i = 0, e = std::max(OpMask.size(), RootMask.size()); i < e; ++i) {
int RootIdx = i / RootRatio;
if (RootMask[RootIdx] == SM_SentinelZero) {
// This is a zero-ed lane, we're done.
Mask.push_back(SM_SentinelZero);
continue;
}
int RootMaskedIdx = RootMask[RootIdx] * RootRatio + i % RootRatio;
int OpIdx = RootMaskedIdx / OpRatio;
if (OpMask[OpIdx] == SM_SentinelZero) {
// The incoming lanes are zero, it doesn't matter which ones we are using.
Mask.push_back(SM_SentinelZero);
continue;
}
// Ok, we have non-zero lanes, map them through.
Mask.push_back(OpMask[OpIdx] * OpRatio +
RootMaskedIdx % OpRatio);
}
// See if we can recurse into the operand to combine more things.

View File

@ -313,3 +313,15 @@ entry:
ret <16 x i8> %s.12.4
}
define <16 x i8> @PR20540(<8 x i8> %a) {
; SSSE3-LABEL: @PR20540
; SSSE3: # BB#0:
; SSSE3-NEXT: pxor %xmm1, %xmm1
; SSSE3-NEXT: pshufb {{.*}} # xmm1 = zero,zero,zero,zero,zero,zero,zero,zero,xmm1[0,0,0,0,0,0,0,0]
; SSSE3-NEXT: pshufb {{.*}} # xmm0 = xmm0[0,2,4,6,8,10,12,14],zero,zero,zero,zero,zero,zero,zero,zero
; SSSE3-NEXT: por %xmm1, %xmm0
; SSSE3-NEXT: retq
%shuffle = shufflevector <8 x i8> %a, <8 x i8> zeroinitializer, <16 x i32> <i32 0, i32 1, i32 2, i32 3, i32 4, i32 5, i32 6, i32 7, i32 8, i32 8, i32 8, i32 8, i32 8, i32 8, i32 8, i32 8>
ret <16 x i8> %shuffle
}