mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-04 17:58:22 +00:00
Move the scev expansion code into this pass, where it belongs. There is
still room for cleanup, but at least the code modification is out of the analysis now. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@13135 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
b06432c276
commit
4a7553e2da
@ -50,6 +50,247 @@
|
||||
#include "Support/Statistic.h"
|
||||
using namespace llvm;
|
||||
|
||||
namespace {
|
||||
/// SCEVExpander - This class uses information about analyze scalars to
|
||||
/// rewrite expressions in canonical form.
|
||||
///
|
||||
/// Clients should create an instance of this class when rewriting is needed,
|
||||
/// and destroying it when finished to allow the release of the associated
|
||||
/// memory.
|
||||
struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
|
||||
ScalarEvolution &SE;
|
||||
LoopInfo &LI;
|
||||
std::map<SCEVHandle, Value*> InsertedExpressions;
|
||||
std::set<Instruction*> InsertedInstructions;
|
||||
|
||||
Instruction *InsertPt;
|
||||
|
||||
friend class SCEVVisitor<SCEVExpander, Value*>;
|
||||
public:
|
||||
SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
|
||||
|
||||
/// isInsertedInstruction - Return true if the specified instruction was
|
||||
/// inserted by the code rewriter. If so, the client should not modify the
|
||||
/// instruction.
|
||||
bool isInsertedInstruction(Instruction *I) const {
|
||||
return InsertedInstructions.count(I);
|
||||
}
|
||||
|
||||
/// getOrInsertCanonicalInductionVariable - This method returns the
|
||||
/// canonical induction variable of the specified type for the specified
|
||||
/// loop (inserting one if there is none). A canonical induction variable
|
||||
/// starts at zero and steps by one on each iteration.
|
||||
Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
|
||||
assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
|
||||
"Can only insert integer or floating point induction variables!");
|
||||
SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
|
||||
SCEVUnknown::getIntegerSCEV(1, Ty), L);
|
||||
return expand(H);
|
||||
}
|
||||
|
||||
/// addInsertedValue - Remember the specified instruction as being the
|
||||
/// canonical form for the specified SCEV.
|
||||
void addInsertedValue(Instruction *I, SCEV *S) {
|
||||
InsertedExpressions[S] = (Value*)I;
|
||||
InsertedInstructions.insert(I);
|
||||
}
|
||||
|
||||
/// expandCodeFor - Insert code to directly compute the specified SCEV
|
||||
/// expression into the program. The inserted code is inserted into the
|
||||
/// specified block.
|
||||
///
|
||||
/// If a particular value sign is required, a type may be specified for the
|
||||
/// result.
|
||||
Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
|
||||
// Expand the code for this SCEV.
|
||||
this->InsertPt = IP;
|
||||
return expandInTy(SH, Ty);
|
||||
}
|
||||
|
||||
protected:
|
||||
Value *expand(SCEV *S) {
|
||||
// Check to see if we already expanded this.
|
||||
std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
|
||||
if (I != InsertedExpressions.end())
|
||||
return I->second;
|
||||
|
||||
Value *V = visit(S);
|
||||
InsertedExpressions[S] = V;
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *expandInTy(SCEV *S, const Type *Ty) {
|
||||
Value *V = expand(S);
|
||||
if (Ty && V->getType() != Ty) {
|
||||
// FIXME: keep track of the cast instruction.
|
||||
if (Constant *C = dyn_cast<Constant>(V))
|
||||
return ConstantExpr::getCast(C, Ty);
|
||||
else if (Instruction *I = dyn_cast<Instruction>(V)) {
|
||||
// Check to see if there is already a cast. If there is, use it.
|
||||
for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
|
||||
UI != E; ++UI) {
|
||||
if ((*UI)->getType() == Ty)
|
||||
if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
|
||||
BasicBlock::iterator It = I; ++It;
|
||||
while (isa<PHINode>(It)) ++It;
|
||||
if (It != BasicBlock::iterator(CI)) {
|
||||
// Splice the cast immediately after the operand in question.
|
||||
I->getParent()->getInstList().splice(It,
|
||||
CI->getParent()->getInstList(),
|
||||
CI);
|
||||
}
|
||||
return CI;
|
||||
}
|
||||
}
|
||||
BasicBlock::iterator IP = I; ++IP;
|
||||
if (InvokeInst *II = dyn_cast<InvokeInst>(I))
|
||||
IP = II->getNormalDest()->begin();
|
||||
while (isa<PHINode>(IP)) ++IP;
|
||||
return new CastInst(V, Ty, V->getName(), IP);
|
||||
} else {
|
||||
// FIXME: check to see if there is already a cast!
|
||||
return new CastInst(V, Ty, V->getName(), InsertPt);
|
||||
}
|
||||
}
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *visitConstant(SCEVConstant *S) {
|
||||
return S->getValue();
|
||||
}
|
||||
|
||||
Value *visitTruncateExpr(SCEVTruncateExpr *S) {
|
||||
Value *V = expand(S->getOperand());
|
||||
return new CastInst(V, S->getType(), "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
|
||||
Value *V = expandInTy(S->getOperand(),V->getType()->getUnsignedVersion());
|
||||
return new CastInst(V, S->getType(), "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
Value *visitAddExpr(SCEVAddExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
|
||||
|
||||
// Emit a bunch of add instructions
|
||||
for (int i = S->getNumOperands()-2; i >= 0; --i)
|
||||
V = BinaryOperator::create(Instruction::Add, V,
|
||||
expandInTy(S->getOperand(i), Ty),
|
||||
"tmp.", InsertPt);
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *visitMulExpr(SCEVMulExpr *S);
|
||||
|
||||
Value *visitUDivExpr(SCEVUDivExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
Value *LHS = expandInTy(S->getLHS(), Ty);
|
||||
Value *RHS = expandInTy(S->getRHS(), Ty);
|
||||
return BinaryOperator::create(Instruction::Div, LHS, RHS, "tmp.",
|
||||
InsertPt);
|
||||
}
|
||||
|
||||
Value *visitAddRecExpr(SCEVAddRecExpr *S);
|
||||
|
||||
Value *visitUnknown(SCEVUnknown *S) {
|
||||
return S->getValue();
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
int FirstOp = 0; // Set if we should emit a subtract.
|
||||
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
|
||||
if (SC->getValue()->isAllOnesValue())
|
||||
FirstOp = 1;
|
||||
|
||||
int i = S->getNumOperands()-2;
|
||||
Value *V = expandInTy(S->getOperand(i+1), Ty);
|
||||
|
||||
// Emit a bunch of multiply instructions
|
||||
for (; i >= FirstOp; --i)
|
||||
V = BinaryOperator::create(Instruction::Mul, V,
|
||||
expandInTy(S->getOperand(i), Ty),
|
||||
"tmp.", InsertPt);
|
||||
// -1 * ... ---> 0 - ...
|
||||
if (FirstOp == 1)
|
||||
V = BinaryOperator::create(Instruction::Sub, Constant::getNullValue(Ty),
|
||||
V, "tmp.", InsertPt);
|
||||
return V;
|
||||
}
|
||||
|
||||
Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
|
||||
const Type *Ty = S->getType();
|
||||
const Loop *L = S->getLoop();
|
||||
// We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
|
||||
assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
|
||||
|
||||
// {X,+,F} --> X + {0,+,F}
|
||||
if (!isa<SCEVConstant>(S->getStart()) ||
|
||||
!cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
|
||||
Value *Start = expandInTy(S->getStart(), Ty);
|
||||
std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
|
||||
NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
|
||||
Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
|
||||
|
||||
// FIXME: look for an existing add to use.
|
||||
return BinaryOperator::create(Instruction::Add, Rest, Start, "tmp.",
|
||||
InsertPt);
|
||||
}
|
||||
|
||||
// {0,+,1} --> Insert a canonical induction variable into the loop!
|
||||
if (S->getNumOperands() == 2 &&
|
||||
S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
|
||||
// Create and insert the PHI node for the induction variable in the
|
||||
// specified loop.
|
||||
BasicBlock *Header = L->getHeader();
|
||||
PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
|
||||
PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
|
||||
|
||||
pred_iterator HPI = pred_begin(Header);
|
||||
assert(HPI != pred_end(Header) && "Loop with zero preds???");
|
||||
if (!L->contains(*HPI)) ++HPI;
|
||||
assert(HPI != pred_end(Header) && L->contains(*HPI) &&
|
||||
"No backedge in loop?");
|
||||
|
||||
// Insert a unit add instruction right before the terminator corresponding
|
||||
// to the back-edge.
|
||||
Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
|
||||
: ConstantInt::get(Ty, 1);
|
||||
Instruction *Add = BinaryOperator::create(Instruction::Add, PN, One,
|
||||
"indvar.next",
|
||||
(*HPI)->getTerminator());
|
||||
|
||||
pred_iterator PI = pred_begin(Header);
|
||||
if (*PI == L->getLoopPreheader())
|
||||
++PI;
|
||||
PN->addIncoming(Add, *PI);
|
||||
return PN;
|
||||
}
|
||||
|
||||
// Get the canonical induction variable I for this loop.
|
||||
Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
|
||||
|
||||
if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
|
||||
Value *F = expandInTy(S->getOperand(1), Ty);
|
||||
return BinaryOperator::create(Instruction::Mul, I, F, "tmp.", InsertPt);
|
||||
}
|
||||
|
||||
// If this is a chain of recurrences, turn it into a closed form, using the
|
||||
// folders, then expandCodeFor the closed form. This allows the folders to
|
||||
// simplify the expression without having to build a bunch of special code
|
||||
// into this folder.
|
||||
SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
|
||||
|
||||
SCEVHandle V = S->evaluateAtIteration(IH);
|
||||
//std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
|
||||
|
||||
return expandInTy(V, Ty);
|
||||
}
|
||||
|
||||
|
||||
namespace {
|
||||
Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
|
||||
Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");
|
||||
@ -85,7 +326,7 @@ namespace {
|
||||
void EliminatePointerRecurrence(PHINode *PN, BasicBlock *Preheader,
|
||||
std::set<Instruction*> &DeadInsts);
|
||||
void LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
|
||||
ScalarEvolutionRewriter &RW);
|
||||
SCEVExpander &RW);
|
||||
void RewriteLoopExitValues(Loop *L);
|
||||
|
||||
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
|
||||
@ -97,7 +338,6 @@ Pass *llvm::createIndVarSimplifyPass() {
|
||||
return new IndVarSimplify();
|
||||
}
|
||||
|
||||
|
||||
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
|
||||
/// specified set are trivially dead, delete them and see if this makes any of
|
||||
/// their operands subsequently dead.
|
||||
@ -182,7 +422,7 @@ void IndVarSimplify::EliminatePointerRecurrence(PHINode *PN,
|
||||
/// SCEV analysis can determine a loop-invariant trip count of the loop, which
|
||||
/// is actually a much broader range than just linear tests.
|
||||
void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
|
||||
ScalarEvolutionRewriter &RW) {
|
||||
SCEVExpander &RW) {
|
||||
// Find the exit block for the loop. We can currently only handle loops with
|
||||
// a single exit.
|
||||
std::vector<BasicBlock*> ExitBlocks;
|
||||
@ -237,7 +477,7 @@ void IndVarSimplify::LinearFunctionTestReplace(Loop *L, SCEV *IterationCount,
|
||||
|
||||
// Expand the code for the iteration count into the preheader of the loop.
|
||||
BasicBlock *Preheader = L->getLoopPreheader();
|
||||
Value *ExitCnt = RW.ExpandCodeFor(TripCount, Preheader->getTerminator(),
|
||||
Value *ExitCnt = RW.expandCodeFor(TripCount, Preheader->getTerminator(),
|
||||
IndVar->getType());
|
||||
|
||||
// Insert a new setne or seteq instruction before the branch.
|
||||
@ -266,7 +506,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
|
||||
|
||||
// Scan all of the instructions in the loop, looking at those that have
|
||||
// extra-loop users and which are recurrences.
|
||||
ScalarEvolutionRewriter Rewriter(*SE, *LI);
|
||||
SCEVExpander Rewriter(*SE, *LI);
|
||||
|
||||
// We insert the code into the preheader of the loop if the loop contains
|
||||
// multiple exit blocks, or in the exit block if there is exactly one.
|
||||
@ -307,7 +547,7 @@ void IndVarSimplify::RewriteLoopExitValues(Loop *L) {
|
||||
if (!isa<SCEVCouldNotCompute>(ExitValue)) {
|
||||
Changed = true;
|
||||
++NumReplaced;
|
||||
Value *NewVal = Rewriter.ExpandCodeFor(ExitValue, InsertPt,
|
||||
Value *NewVal = Rewriter.expandCodeFor(ExitValue, InsertPt,
|
||||
I->getType());
|
||||
|
||||
// Rewrite any users of the computed value outside of the loop
|
||||
@ -379,8 +619,8 @@ void IndVarSimplify::runOnLoop(Loop *L) {
|
||||
// Actually, if we know how many times the loop iterates, lets insert a
|
||||
// canonical induction variable to help subsequent passes.
|
||||
if (!isa<SCEVCouldNotCompute>(IterationCount)) {
|
||||
ScalarEvolutionRewriter Rewriter(*SE, *LI);
|
||||
Rewriter.GetOrInsertCanonicalInductionVariable(L,
|
||||
SCEVExpander Rewriter(*SE, *LI);
|
||||
Rewriter.getOrInsertCanonicalInductionVariable(L,
|
||||
IterationCount->getType());
|
||||
LinearFunctionTestReplace(L, IterationCount, Rewriter);
|
||||
}
|
||||
@ -399,12 +639,12 @@ void IndVarSimplify::runOnLoop(Loop *L) {
|
||||
}
|
||||
|
||||
// Create a rewriter object which we'll use to transform the code with.
|
||||
ScalarEvolutionRewriter Rewriter(*SE, *LI);
|
||||
SCEVExpander Rewriter(*SE, *LI);
|
||||
|
||||
// Now that we know the largest of of the induction variables in this loop,
|
||||
// insert a canonical induction variable of the largest size.
|
||||
LargestType = LargestType->getUnsignedVersion();
|
||||
Value *IndVar = Rewriter.GetOrInsertCanonicalInductionVariable(L,LargestType);
|
||||
Value *IndVar = Rewriter.getOrInsertCanonicalInductionVariable(L,LargestType);
|
||||
++NumInserted;
|
||||
Changed = true;
|
||||
|
||||
@ -440,7 +680,7 @@ void IndVarSimplify::runOnLoop(Loop *L) {
|
||||
std::map<unsigned, Value*> InsertedSizes;
|
||||
while (!IndVars.empty()) {
|
||||
PHINode *PN = IndVars.back().first;
|
||||
Value *NewVal = Rewriter.ExpandCodeFor(IndVars.back().second, InsertPt,
|
||||
Value *NewVal = Rewriter.expandCodeFor(IndVars.back().second, InsertPt,
|
||||
PN->getType());
|
||||
std::string Name = PN->getName();
|
||||
PN->setName("");
|
||||
@ -465,7 +705,7 @@ void IndVarSimplify::runOnLoop(Loop *L) {
|
||||
!I->use_empty() &&
|
||||
!Rewriter.isInsertedInstruction(I)) {
|
||||
SCEVHandle SH = SE->getSCEV(I);
|
||||
Value *V = Rewriter.ExpandCodeFor(SH, I, I->getType());
|
||||
Value *V = Rewriter.expandCodeFor(SH, I, I->getType());
|
||||
if (V != I) {
|
||||
if (isa<Instruction>(V)) {
|
||||
std::string Name = I->getName();
|
||||
|
Loading…
Reference in New Issue
Block a user