[SystemZ] Add patterns to load a constant into a high word (IIHF)

Similar to low words, we can use the shorter LLIHL and LLIHH if it turns
out that the other half of the GR64 isn't live.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@191750 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Richard Sandiford 2013-10-01 13:02:28 +00:00
parent 441aeddd56
commit 4c8feae136
8 changed files with 116 additions and 5 deletions

View File

@ -62,6 +62,11 @@ namespace SystemZMC {
inline unsigned getRegAsGR32(unsigned Reg) {
return GR32Regs[getFirstReg(Reg)];
}
// Return the given register as a high GR32.
inline unsigned getRegAsGRH32(unsigned Reg) {
return GRH32Regs[getFirstReg(Reg)];
}
}
MCCodeEmitter *createSystemZMCCodeEmitter(const MCInstrInfo &MCII,

View File

@ -82,6 +82,12 @@ void SystemZAsmPrinter::EmitInstruction(const MachineInstr *MI) {
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::IIHF64:
LoweredMI = MCInstBuilder(SystemZ::IIHF)
.addReg(SystemZMC::getRegAsGRH32(MI->getOperand(0).getReg()))
.addImm(MI->getOperand(2).getImm());
break;
case SystemZ::RISBHH:
case SystemZ::RISBHL:
LoweredMI = lowerRIEfLow(MI, SystemZ::RISBHG);

View File

@ -1349,6 +1349,12 @@ class Pseudo<dag outs, dag ins, list<dag> pattern>
let isCodeGenOnly = 1;
}
// Like UnaryRI, but expanded after RA depending on the choice of register.
class UnaryRIPseudo<SDPatternOperator operator, RegisterOperand cls,
Immediate imm>
: Pseudo<(outs cls:$R1), (ins imm:$I2),
[(set cls:$R1, (operator imm:$I2))]>;
// Like UnaryRXY, but expanded after RA depending on the choice of registers.
class UnaryRXYPseudo<string key, SDPatternOperator operator,
RegisterOperand cls, bits<5> bytes,

View File

@ -91,6 +91,22 @@ void SystemZInstrInfo::splitAdjDynAlloc(MachineBasicBlock::iterator MI) const {
OffsetMO.setImm(Offset);
}
// MI is an RI-style pseudo instruction. Replace it with LowOpcode
// if the first operand is a low GR32 and HighOpcode if the first operand
// is a high GR32. ConvertHigh is true if LowOpcode takes a signed operand
// and HighOpcode takes an unsigned 32-bit operand. In those cases,
// MI has the same kind of operand as LowOpcode, so needs to be converted
// if HighOpcode is used.
void SystemZInstrInfo::expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
unsigned HighOpcode,
bool ConvertHigh) const {
unsigned Reg = MI->getOperand(0).getReg();
bool IsHigh = isHighReg(Reg);
MI->setDesc(get(IsHigh ? HighOpcode : LowOpcode));
if (IsHigh && ConvertHigh)
MI->getOperand(1).setImm(uint32_t(MI->getOperand(1).getImm()));
}
// MI is an RXY-style pseudo instruction. Replace it with LowOpcode
// if the first operand is a low GR32 and HighOpcode if the first operand
// is a high GR32.
@ -857,6 +873,14 @@ SystemZInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
expandRXYPseudo(MI, SystemZ::ST, SystemZ::STFH);
return true;
case SystemZ::LHIMux:
expandRIPseudo(MI, SystemZ::LHI, SystemZ::IIHF, true);
return true;
case SystemZ::IIFMux:
expandRIPseudo(MI, SystemZ::IILF, SystemZ::IIHF, false);
return true;
case SystemZ::ADJDYNALLOC:
splitAdjDynAlloc(MI);
return true;

View File

@ -116,6 +116,8 @@ class SystemZInstrInfo : public SystemZGenInstrInfo {
void splitMove(MachineBasicBlock::iterator MI, unsigned NewOpcode) const;
void splitAdjDynAlloc(MachineBasicBlock::iterator MI) const;
void expandRIPseudo(MachineInstr *MI, unsigned LowOpcode,
unsigned HighOpcode, bool ConvertHigh) const;
void expandRXYPseudo(MachineInstr *MI, unsigned LowOpcode,
unsigned HighOpcode) const;
void expandZExtPseudo(MachineInstr *MI, unsigned LowOpcode,

View File

@ -278,7 +278,10 @@ let Uses = [CC] in {
// Immediate moves.
let neverHasSideEffects = 1, isAsCheapAsAMove = 1, isMoveImm = 1,
isReMaterializable = 1 in {
// 16-bit sign-extended immediates.
// 16-bit sign-extended immediates. LHIMux expands to LHI or IIHF,
// deopending on the choice of register.
def LHIMux : UnaryRIPseudo<bitconvert, GRX32, imm32sx16>,
Requires<[FeatureHighWord]>;
def LHI : UnaryRI<"lhi", 0xA78, bitconvert, GR32, imm32sx16>;
def LGHI : UnaryRI<"lghi", 0xA79, bitconvert, GR64, imm64sx16>;
@ -636,16 +639,20 @@ def IIHH : BinaryRI<"iihh", 0xA50, inserthh, GR64, imm64hh16>;
// full-width move. (We use IILF rather than something like LLILF
// for 32-bit moves because IILF leaves the upper 32 bits of the
// GR64 unchanged.)
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in
let isAsCheapAsAMove = 1, isMoveImm = 1, isReMaterializable = 1 in {
def IIFMux : UnaryRIPseudo<bitconvert, GRX32, uimm32>,
Requires<[FeatureHighWord]>;
def IILF : UnaryRIL<"iilf", 0xC09, bitconvert, GR32, uimm32>;
def IIHF : UnaryRIL<"iihf", 0xC08, bitconvert, GRH32, uimm32>;
}
def IILF64 : BinaryAliasRIL<insertlf, GR64, imm64lf32>;
def IIHF : BinaryRIL<"iihf", 0xC08, inserthf, GR64, imm64hf32>;
def IIHF64 : BinaryAliasRIL<inserthf, GR64, imm64hf32>;
// An alternative model of inserthf, with the first operand being
// a zero-extended value.
def : Pat<(or (zext32 GR32:$src), imm64hf32:$imm),
(IIHF (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
imm64hf32:$imm)>;
(IIHF64 (INSERT_SUBREG (i64 (IMPLICIT_DEF)), GR32:$src, subreg_l32),
imm64hf32:$imm)>;
//===----------------------------------------------------------------------===//
// Addition

View File

@ -58,6 +58,7 @@ SystemZShortenInst::SystemZShortenInst(const SystemZTargetMachine &tm)
for (unsigned I = 0; I < 16; ++I) {
LowGPRs[SystemZMC::GR32Regs[I]] |= 1 << I;
LowGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
HighGPRs[SystemZMC::GRH32Regs[I]] |= 1 << I;
HighGPRs[SystemZMC::GR64Regs[I]] |= 1 << I;
if (unsigned GR128 = SystemZMC::GR128Regs[I]) {
LowGPRs[GR128] |= 3 << I;
@ -122,6 +123,9 @@ bool SystemZShortenInst::processBlock(MachineBasicBlock *MBB) {
if (Opcode == SystemZ::IILF)
Changed |= shortenIIF(MI, LowGPRs, LiveHigh, SystemZ::LLILL,
SystemZ::LLILH);
else if (Opcode == SystemZ::IIHF)
Changed |= shortenIIF(MI, HighGPRs, LiveLow, SystemZ::LLIHL,
SystemZ::LLIHH);
unsigned UsedLow = 0;
unsigned UsedHigh = 0;
for (MachineInstr::mop_iterator MOI = MI.operands_begin(),

View File

@ -230,3 +230,60 @@ define i32 @f10(i16 %val1, i16 %val2) {
%ext4 = zext i16 %val4 to i32
ret i32 %ext4
}
; Test loads of 16-bit constants into mixtures of high and low registers.
define void @f11() {
; CHECK-LABEL: f11:
; CHECK-DAG: iihf [[REG1:%r[0-5]]], 4294934529
; CHECK-DAG: lhi [[REG2:%r[0-5]]], -32768
; CHECK-DAG: llihl [[REG3:%r[0-5]]], 32766
; CHECK-DAG: lhi [[REG4:%r[0-5]]], 32767
; CHECK: blah [[REG1]], [[REG2]], [[REG3]], [[REG4]]
; CHECK: br %r14
call void asm sideeffect "blah $0, $1, $2, $3",
"h,r,h,r"(i32 -32767, i32 -32768,
i32 32766, i32 32767)
ret void
}
; Test loads of unsigned constants into mixtures of high and low registers.
; For stepc, we expect the h and r operands to be paired by the register
; allocator. It doesn't really matter which comes first: LLILL/IIHF would
; be just as good.
define void @f12() {
; CHECK-LABEL: f12:
; CHECK-DAG: llihl [[REG1:%r[0-5]]], 32768
; CHECK-DAG: llihl [[REG2:%r[0-5]]], 65535
; CHECK-DAG: llihh [[REG3:%r[0-5]]], 1
; CHECK-DAG: llihh [[REG4:%r[0-5]]], 65535
; CHECK: stepa [[REG1]], [[REG2]], [[REG3]], [[REG4]]
; CHECK-DAG: llill [[REG1:%r[0-5]]], 32769
; CHECK-DAG: llill [[REG2:%r[0-5]]], 65534
; CHECK-DAG: llilh [[REG3:%r[0-5]]], 2
; CHECK-DAG: llilh [[REG4:%r[0-5]]], 65534
; CHECK: stepb [[REG1]], [[REG2]], [[REG3]], [[REG4]]
; CHECK-DAG: llihl [[REG1:%r[0-5]]], 32770
; CHECK-DAG: iilf [[REG1]], 65533
; CHECK-DAG: llihh [[REG2:%r[0-5]]], 4
; CHECK-DAG: iilf [[REG2]], 524288
; CHECK: stepc [[REG1]], [[REG1]], [[REG2]], [[REG2]]
; CHECK-DAG: iihf [[REG1:%r[0-5]]], 3294967296
; CHECK-DAG: iilf [[REG2:%r[0-5]]], 4294567296
; CHECK-DAG: iihf [[REG3:%r[0-5]]], 1000000000
; CHECK-DAG: iilf [[REG4:%r[0-5]]], 400000
; CHECK: stepd [[REG1]], [[REG2]], [[REG3]], [[REG4]]
; CHECK: br %r14
call void asm sideeffect "stepa $0, $1, $2, $3",
"h,h,h,h"(i32 32768, i32 65535,
i32 65536, i32 -65536)
call void asm sideeffect "stepb $0, $1, $2, $3",
"r,r,r,r"(i32 32769, i32 65534,
i32 131072, i32 -131072)
call void asm sideeffect "stepc $0, $1, $2, $3",
"h,r,h,r"(i32 32770, i32 65533,
i32 262144, i32 524288)
call void asm sideeffect "stepd $0, $1, $2, $3",
"h,r,h,r"(i32 -1000000000, i32 -400000,
i32 1000000000, i32 400000)
ret void
}