mirror of
https://github.com/RPCS3/llvm.git
synced 2024-11-30 23:21:04 +00:00
[X86] Avoid folding scalar loads into unary sse intrinsics
Not folding these cases tends to avoid partial register updates: sqrtss (%eax), %xmm0 Has a partial update of %xmm0, while movss (%eax), %xmm0 sqrtss %xmm0, %xmm0 Has a clobber of the high lanes immediately before the partial update, avoiding a potential stall. Given this, we only want to fold when optimizing for size. This is consistent with the patterns we already have for some of the fp/int converts, and in X86InstrInfo::foldMemoryOperandImpl() Differential Revision: http://reviews.llvm.org/D15741 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256671 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
7b8bd88d45
commit
4f73c42797
@ -1466,6 +1466,8 @@ def SSE_CVT_SD2SI : OpndItins<
|
||||
IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
|
||||
>;
|
||||
|
||||
// FIXME: We probably want to match the rm form only when optimizing for
|
||||
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
|
||||
multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
|
||||
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
|
||||
string asm, OpndItins itins> {
|
||||
@ -1489,6 +1491,8 @@ let hasSideEffects = 0 in {
|
||||
}
|
||||
}
|
||||
|
||||
// FIXME: We probably want to match the rm form only when optimizing for
|
||||
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
|
||||
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
|
||||
X86MemOperand x86memop, string asm> {
|
||||
let hasSideEffects = 0, Predicates = [UseAVX] in {
|
||||
@ -1626,6 +1630,8 @@ def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
|
||||
// Conversion Instructions Intrinsics - Match intrinsics which expect MM
|
||||
// and/or XMM operand(s).
|
||||
|
||||
// FIXME: We probably want to match the rm form only when optimizing for
|
||||
// size, to avoid false depenendecies (see sse_fp_unop_s for details)
|
||||
multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
|
||||
Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
|
||||
string asm, OpndItins itins> {
|
||||
@ -3387,9 +3393,18 @@ multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
|
||||
def : Pat<(Intr (load addr:$src)),
|
||||
(vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
|
||||
addr:$src), VR128))>;
|
||||
def : Pat<(Intr mem_cpat:$src),
|
||||
(!cast<Instruction>(NAME#Suffix##m_Int)
|
||||
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
|
||||
}
|
||||
// We don't want to fold scalar loads into these instructions unless
|
||||
// optimizing for size. This is because the folded instruction will have a
|
||||
// partial register update, while the unfolded sequence will not, e.g.
|
||||
// movss mem, %xmm0
|
||||
// rcpss %xmm0, %xmm0
|
||||
// which has a clobber before the rcp, vs.
|
||||
// rcpss mem, %xmm0
|
||||
let Predicates = [target, OptForSize] in {
|
||||
def : Pat<(Intr mem_cpat:$src),
|
||||
(!cast<Instruction>(NAME#Suffix##m_Int)
|
||||
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
|
||||
}
|
||||
}
|
||||
|
||||
@ -3420,28 +3435,37 @@ multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
|
||||
}
|
||||
}
|
||||
|
||||
// We don't want to fold scalar loads into these instructions unless
|
||||
// optimizing for size. This is because the folded instruction will have a
|
||||
// partial register update, while the unfolded sequence will not, e.g.
|
||||
// vmovss mem, %xmm0
|
||||
// vrcpss %xmm0, %xmm0, %xmm0
|
||||
// which has a clobber before the rcp, vs.
|
||||
// vrcpss mem, %xmm0, %xmm0
|
||||
// TODO: In theory, we could fold the load, and avoid the stall caused by
|
||||
// the partial register store, either in ExeDepFix or with smarter RA.
|
||||
let Predicates = [UseAVX] in {
|
||||
def : Pat<(OpNode RC:$src), (!cast<Instruction>("V"#NAME#Suffix##r)
|
||||
(ScalarVT (IMPLICIT_DEF)), RC:$src)>;
|
||||
|
||||
def : Pat<(vt (OpNode mem_cpat:$src)),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
|
||||
mem_cpat:$src)>;
|
||||
|
||||
}
|
||||
let Predicates = [HasAVX] in {
|
||||
def : Pat<(Intr VR128:$src),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##r_Int) (vt (IMPLICIT_DEF)),
|
||||
VR128:$src)>;
|
||||
|
||||
def : Pat<(Intr mem_cpat:$src),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m_Int)
|
||||
}
|
||||
let Predicates = [HasAVX, OptForSize] in {
|
||||
def : Pat<(Intr mem_cpat:$src),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m_Int)
|
||||
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
|
||||
}
|
||||
let Predicates = [UseAVX, OptForSize] in
|
||||
def : Pat<(ScalarVT (OpNode (load addr:$src))),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
|
||||
addr:$src)>;
|
||||
let Predicates = [UseAVX, OptForSize] in {
|
||||
def : Pat<(ScalarVT (OpNode (load addr:$src))),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
|
||||
addr:$src)>;
|
||||
def : Pat<(vt (OpNode mem_cpat:$src)),
|
||||
(!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
|
||||
mem_cpat:$src)>;
|
||||
}
|
||||
}
|
||||
|
||||
/// sse1_fp_unop_p - SSE1 unops in packed form.
|
||||
|
@ -2,17 +2,19 @@
|
||||
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+sse2 < %s | FileCheck %s --check-prefix=SSE
|
||||
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+avx < %s | FileCheck %s --check-prefix=AVX
|
||||
|
||||
; Verify that we're folding the load into the math instruction.
|
||||
; Verify we fold loads into unary sse intrinsics only when optimizing for size
|
||||
|
||||
define float @rcpss(float* %a) {
|
||||
; SSE-LABEL: rcpss:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: rcpss (%rdi), %xmm0
|
||||
; SSE-NEXT: movss (%rdi), %xmm0
|
||||
; SSE-NEXT: rcpss %xmm0, %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: rcpss:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vrcpss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: vmovss (%rdi), %xmm0
|
||||
; AVX-NEXT: vrcpss %xmm0, %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
@ -24,12 +26,14 @@ define float @rcpss(float* %a) {
|
||||
define float @rsqrtss(float* %a) {
|
||||
; SSE-LABEL: rsqrtss:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: rsqrtss (%rdi), %xmm0
|
||||
; SSE-NEXT: movss (%rdi), %xmm0
|
||||
; SSE-NEXT: rsqrtss %xmm0, %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: rsqrtss:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vrsqrtss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: vmovss (%rdi), %xmm0
|
||||
; AVX-NEXT: vrsqrtss %xmm0, %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
@ -41,12 +45,14 @@ define float @rsqrtss(float* %a) {
|
||||
define float @sqrtss(float* %a) {
|
||||
; SSE-LABEL: sqrtss:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: sqrtss (%rdi), %xmm0
|
||||
; SSE-NEXT: movss (%rdi), %xmm0
|
||||
; SSE-NEXT: sqrtss %xmm0, %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: sqrtss:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vsqrtss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: vmovss (%rdi), %xmm0
|
||||
; AVX-NEXT: vsqrtss %xmm0, %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
@ -58,11 +64,81 @@ define float @sqrtss(float* %a) {
|
||||
define double @sqrtsd(double* %a) {
|
||||
; SSE-LABEL: sqrtsd:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: sqrtsd (%rdi), %xmm0
|
||||
; SSE-NEXT: movsd (%rdi), %xmm0
|
||||
; SSE-NEXT: sqrtsd %xmm0, %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: sqrtsd:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vmovsd (%rdi), %xmm0
|
||||
; AVX-NEXT: vsqrtsd %xmm0, %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load double, double* %a
|
||||
%ins = insertelement <2 x double> undef, double %ld, i32 0
|
||||
%res = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %ins)
|
||||
%ext = extractelement <2 x double> %res, i32 0
|
||||
ret double %ext
|
||||
}
|
||||
|
||||
define float @rcpss_size(float* %a) optsize {
|
||||
; SSE-LABEL: rcpss_size:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: rcpss (%rdi), %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: rcpss_size:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vrcpss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
%res = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %ins)
|
||||
%ext = extractelement <4 x float> %res, i32 0
|
||||
ret float %ext
|
||||
}
|
||||
|
||||
define float @rsqrtss_size(float* %a) optsize {
|
||||
; SSE-LABEL: rsqrtss_size:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: rsqrtss (%rdi), %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: rsqrtss_size:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vrsqrtss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
%res = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %ins)
|
||||
%ext = extractelement <4 x float> %res, i32 0
|
||||
ret float %ext
|
||||
}
|
||||
|
||||
define float @sqrtss_size(float* %a) optsize{
|
||||
; SSE-LABEL: sqrtss_size:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: sqrtss (%rdi), %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: sqrtss_size:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vsqrtss (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load float, float* %a
|
||||
%ins = insertelement <4 x float> undef, float %ld, i32 0
|
||||
%res = tail call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %ins)
|
||||
%ext = extractelement <4 x float> %res, i32 0
|
||||
ret float %ext
|
||||
}
|
||||
|
||||
define double @sqrtsd_size(double* %a) optsize {
|
||||
; SSE-LABEL: sqrtsd_size:
|
||||
; SSE: # BB#0:
|
||||
; SSE-NEXT: sqrtsd (%rdi), %xmm0
|
||||
; SSE-NEXT: retq
|
||||
;
|
||||
; AVX-LABEL: sqrtsd_size:
|
||||
; AVX: # BB#0:
|
||||
; AVX-NEXT: vsqrtsd (%rdi), %xmm0, %xmm0
|
||||
; AVX-NEXT: retq
|
||||
%ld = load double, double* %a
|
||||
@ -72,9 +148,7 @@ define double @sqrtsd(double* %a) {
|
||||
ret double %ext
|
||||
}
|
||||
|
||||
|
||||
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
|
||||
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
|
||||
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
|
||||
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user