mirror of
https://github.com/RPCS3/llvm.git
synced 2024-11-30 23:21:04 +00:00
[LVI] Move LVILatticeVal class to separate header file (NFC).
Summary: This allows sharing the lattice value code between LVI and SCCP (D36656). It also adds a `satisfiesPredicate` function, used by D36656. Reviewers: davide, sanjoy, efriedma Reviewed By: sanjoy Subscribers: mgorny, llvm-commits Differential Revision: https://reviews.llvm.org/D37591 git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@314411 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
c4a1886529
commit
5133f6fc61
250
include/llvm/Analysis/ValueLattice.h
Normal file
250
include/llvm/Analysis/ValueLattice.h
Normal file
@ -0,0 +1,250 @@
|
||||
//===- ValueLattice.h - Value constraint analysis ---------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#ifndef LLVM_ANALYSIS_VALUELATTICE_H
|
||||
#define LLVM_ANALYSIS_VALUELATTICE_H
|
||||
|
||||
#include "llvm/IR/ConstantRange.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
// ValueLatticeElement
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// This class represents lattice values for constants.
|
||||
///
|
||||
/// FIXME: This is basically just for bringup, this can be made a lot more rich
|
||||
/// in the future.
|
||||
///
|
||||
|
||||
namespace llvm {
|
||||
class ValueLatticeElement {
|
||||
enum ValueLatticeElementTy {
|
||||
/// This Value has no known value yet. As a result, this implies the
|
||||
/// producing instruction is dead. Caution: We use this as the starting
|
||||
/// state in our local meet rules. In this usage, it's taken to mean
|
||||
/// "nothing known yet".
|
||||
undefined,
|
||||
|
||||
/// This Value has a specific constant value. (For constant integers,
|
||||
/// constantrange is used instead. Integer typed constantexprs can appear
|
||||
/// as constant.)
|
||||
constant,
|
||||
|
||||
/// This Value is known to not have the specified value. (For constant
|
||||
/// integers, constantrange is used instead. As above, integer typed
|
||||
/// constantexprs can appear here.)
|
||||
notconstant,
|
||||
|
||||
/// The Value falls within this range. (Used only for integer typed values.)
|
||||
constantrange,
|
||||
|
||||
/// We can not precisely model the dynamic values this value might take.
|
||||
overdefined
|
||||
};
|
||||
|
||||
/// Val: This stores the current lattice value along with the Constant* for
|
||||
/// the constant if this is a 'constant' or 'notconstant' value.
|
||||
ValueLatticeElementTy Tag;
|
||||
Constant *Val;
|
||||
ConstantRange Range;
|
||||
|
||||
public:
|
||||
ValueLatticeElement() : Tag(undefined), Val(nullptr), Range(1, true) {}
|
||||
|
||||
static ValueLatticeElement get(Constant *C) {
|
||||
ValueLatticeElement Res;
|
||||
if (!isa<UndefValue>(C))
|
||||
Res.markConstant(C);
|
||||
return Res;
|
||||
}
|
||||
static ValueLatticeElement getNot(Constant *C) {
|
||||
ValueLatticeElement Res;
|
||||
if (!isa<UndefValue>(C))
|
||||
Res.markNotConstant(C);
|
||||
return Res;
|
||||
}
|
||||
static ValueLatticeElement getRange(ConstantRange CR) {
|
||||
ValueLatticeElement Res;
|
||||
Res.markConstantRange(std::move(CR));
|
||||
return Res;
|
||||
}
|
||||
static ValueLatticeElement getOverdefined() {
|
||||
ValueLatticeElement Res;
|
||||
Res.markOverdefined();
|
||||
return Res;
|
||||
}
|
||||
|
||||
bool isUndefined() const { return Tag == undefined; }
|
||||
bool isConstant() const { return Tag == constant; }
|
||||
bool isNotConstant() const { return Tag == notconstant; }
|
||||
bool isConstantRange() const { return Tag == constantrange; }
|
||||
bool isOverdefined() const { return Tag == overdefined; }
|
||||
|
||||
Constant *getConstant() const {
|
||||
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
||||
return Val;
|
||||
}
|
||||
|
||||
Constant *getNotConstant() const {
|
||||
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
|
||||
return Val;
|
||||
}
|
||||
|
||||
const ConstantRange &getConstantRange() const {
|
||||
assert(isConstantRange() &&
|
||||
"Cannot get the constant-range of a non-constant-range!");
|
||||
return Range;
|
||||
}
|
||||
|
||||
Optional<APInt> asConstantInteger() const {
|
||||
if (isConstant() && isa<ConstantInt>(Val)) {
|
||||
return cast<ConstantInt>(Val)->getValue();
|
||||
} else if (isConstantRange() && Range.isSingleElement()) {
|
||||
return *Range.getSingleElement();
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
private:
|
||||
void markOverdefined() {
|
||||
if (isOverdefined())
|
||||
return;
|
||||
Tag = overdefined;
|
||||
}
|
||||
|
||||
void markConstant(Constant *V) {
|
||||
assert(V && "Marking constant with NULL");
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
markConstantRange(ConstantRange(CI->getValue()));
|
||||
return;
|
||||
}
|
||||
if (isa<UndefValue>(V))
|
||||
return;
|
||||
|
||||
assert((!isConstant() || getConstant() == V) &&
|
||||
"Marking constant with different value");
|
||||
assert(isUndefined());
|
||||
Tag = constant;
|
||||
Val = V;
|
||||
}
|
||||
|
||||
void markNotConstant(Constant *V) {
|
||||
assert(V && "Marking constant with NULL");
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
markConstantRange(ConstantRange(CI->getValue() + 1, CI->getValue()));
|
||||
return;
|
||||
}
|
||||
if (isa<UndefValue>(V))
|
||||
return;
|
||||
|
||||
assert((!isConstant() || getConstant() != V) &&
|
||||
"Marking constant !constant with same value");
|
||||
assert((!isNotConstant() || getNotConstant() == V) &&
|
||||
"Marking !constant with different value");
|
||||
assert(isUndefined() || isConstant());
|
||||
Tag = notconstant;
|
||||
Val = V;
|
||||
}
|
||||
|
||||
void markConstantRange(ConstantRange NewR) {
|
||||
if (isConstantRange()) {
|
||||
if (NewR.isEmptySet())
|
||||
markOverdefined();
|
||||
else {
|
||||
Range = std::move(NewR);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
assert(isUndefined());
|
||||
if (NewR.isEmptySet())
|
||||
markOverdefined();
|
||||
else {
|
||||
Tag = constantrange;
|
||||
Range = std::move(NewR);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
/// Updates this object to approximate both this object and RHS. Returns
|
||||
/// true if this object has been changed.
|
||||
bool mergeIn(const ValueLatticeElement &RHS, const DataLayout &DL) {
|
||||
if (RHS.isUndefined() || isOverdefined())
|
||||
return false;
|
||||
if (RHS.isOverdefined()) {
|
||||
markOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (isUndefined()) {
|
||||
*this = RHS;
|
||||
return !RHS.isUndefined();
|
||||
}
|
||||
|
||||
if (isConstant()) {
|
||||
if (RHS.isConstant() && Val == RHS.Val)
|
||||
return false;
|
||||
markOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (isNotConstant()) {
|
||||
if (RHS.isNotConstant() && Val == RHS.Val)
|
||||
return false;
|
||||
markOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
assert(isConstantRange() && "New ValueLattice type?");
|
||||
if (!RHS.isConstantRange()) {
|
||||
// We can get here if we've encountered a constantexpr of integer type
|
||||
// and merge it with a constantrange.
|
||||
markOverdefined();
|
||||
return true;
|
||||
}
|
||||
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
|
||||
if (NewR.isFullSet())
|
||||
markOverdefined();
|
||||
else
|
||||
markConstantRange(std::move(NewR));
|
||||
return true;
|
||||
}
|
||||
|
||||
ConstantInt *getConstantInt() const {
|
||||
assert(isConstant() && isa<ConstantInt>(getConstant()) &&
|
||||
"No integer constant");
|
||||
return cast<ConstantInt>(getConstant());
|
||||
}
|
||||
|
||||
bool satisfiesPredicate(CmpInst::Predicate Pred,
|
||||
const ValueLatticeElement &Other) const {
|
||||
// TODO: share with LVI getPredicateResult.
|
||||
|
||||
if (isUndefined() || Other.isUndefined())
|
||||
return true;
|
||||
|
||||
if (isConstant() && Other.isConstant() && Pred == CmpInst::FCMP_OEQ)
|
||||
return getConstant() == Other.getConstant();
|
||||
|
||||
// Integer constants are represented as ConstantRanges with single
|
||||
// elements.
|
||||
if (!isConstantRange() || !Other.isConstantRange())
|
||||
return false;
|
||||
|
||||
const auto &CR = getConstantRange();
|
||||
const auto &OtherCR = Other.getConstantRange();
|
||||
return ConstantRange::makeSatisfyingICmpRegion(Pred, OtherCR).contains(CR);
|
||||
}
|
||||
};
|
||||
|
||||
raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val);
|
||||
|
||||
} // end namespace llvm
|
||||
#endif
|
@ -81,6 +81,7 @@ add_llvm_library(LLVMAnalysis
|
||||
TypeBasedAliasAnalysis.cpp
|
||||
TypeMetadataUtils.cpp
|
||||
ScopedNoAliasAA.cpp
|
||||
ValueLattice.cpp
|
||||
ValueTracking.cpp
|
||||
VectorUtils.cpp
|
||||
|
||||
|
@ -20,6 +20,7 @@
|
||||
#include "llvm/Analysis/InstructionSimplify.h"
|
||||
#include "llvm/Analysis/TargetLibraryInfo.h"
|
||||
#include "llvm/Analysis/ValueTracking.h"
|
||||
#include "llvm/Analysis/ValueLattice.h"
|
||||
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
||||
#include "llvm/IR/CFG.h"
|
||||
#include "llvm/IR/ConstantRange.h"
|
||||
@ -60,234 +61,10 @@ namespace llvm {
|
||||
|
||||
AnalysisKey LazyValueAnalysis::Key;
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
// LVILatticeVal
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
/// This is the information tracked by LazyValueInfo for each value.
|
||||
///
|
||||
/// FIXME: This is basically just for bringup, this can be made a lot more rich
|
||||
/// in the future.
|
||||
///
|
||||
namespace {
|
||||
class LVILatticeVal {
|
||||
enum LatticeValueTy {
|
||||
/// This Value has no known value yet. As a result, this implies the
|
||||
/// producing instruction is dead. Caution: We use this as the starting
|
||||
/// state in our local meet rules. In this usage, it's taken to mean
|
||||
/// "nothing known yet".
|
||||
undefined,
|
||||
|
||||
/// This Value has a specific constant value. (For constant integers,
|
||||
/// constantrange is used instead. Integer typed constantexprs can appear
|
||||
/// as constant.)
|
||||
constant,
|
||||
|
||||
/// This Value is known to not have the specified value. (For constant
|
||||
/// integers, constantrange is used instead. As above, integer typed
|
||||
/// constantexprs can appear here.)
|
||||
notconstant,
|
||||
|
||||
/// The Value falls within this range. (Used only for integer typed values.)
|
||||
constantrange,
|
||||
|
||||
/// We can not precisely model the dynamic values this value might take.
|
||||
overdefined
|
||||
};
|
||||
|
||||
/// Val: This stores the current lattice value along with the Constant* for
|
||||
/// the constant if this is a 'constant' or 'notconstant' value.
|
||||
LatticeValueTy Tag;
|
||||
Constant *Val;
|
||||
ConstantRange Range;
|
||||
|
||||
public:
|
||||
LVILatticeVal() : Tag(undefined), Val(nullptr), Range(1, true) {}
|
||||
|
||||
static LVILatticeVal get(Constant *C) {
|
||||
LVILatticeVal Res;
|
||||
if (!isa<UndefValue>(C))
|
||||
Res.markConstant(C);
|
||||
return Res;
|
||||
}
|
||||
static LVILatticeVal getNot(Constant *C) {
|
||||
LVILatticeVal Res;
|
||||
if (!isa<UndefValue>(C))
|
||||
Res.markNotConstant(C);
|
||||
return Res;
|
||||
}
|
||||
static LVILatticeVal getRange(ConstantRange CR) {
|
||||
LVILatticeVal Res;
|
||||
Res.markConstantRange(std::move(CR));
|
||||
return Res;
|
||||
}
|
||||
static LVILatticeVal getOverdefined() {
|
||||
LVILatticeVal Res;
|
||||
Res.markOverdefined();
|
||||
return Res;
|
||||
}
|
||||
|
||||
bool isUndefined() const { return Tag == undefined; }
|
||||
bool isConstant() const { return Tag == constant; }
|
||||
bool isNotConstant() const { return Tag == notconstant; }
|
||||
bool isConstantRange() const { return Tag == constantrange; }
|
||||
bool isOverdefined() const { return Tag == overdefined; }
|
||||
|
||||
Constant *getConstant() const {
|
||||
assert(isConstant() && "Cannot get the constant of a non-constant!");
|
||||
return Val;
|
||||
}
|
||||
|
||||
Constant *getNotConstant() const {
|
||||
assert(isNotConstant() && "Cannot get the constant of a non-notconstant!");
|
||||
return Val;
|
||||
}
|
||||
|
||||
const ConstantRange &getConstantRange() const {
|
||||
assert(isConstantRange() &&
|
||||
"Cannot get the constant-range of a non-constant-range!");
|
||||
return Range;
|
||||
}
|
||||
|
||||
Optional<APInt> asConstantInteger() const {
|
||||
if (isConstant() && isa<ConstantInt>(Val)) {
|
||||
return cast<ConstantInt>(Val)->getValue();
|
||||
} else if (isConstantRange() && Range.isSingleElement()) {
|
||||
return *Range.getSingleElement();
|
||||
}
|
||||
return None;
|
||||
}
|
||||
|
||||
private:
|
||||
void markOverdefined() {
|
||||
if (isOverdefined())
|
||||
return;
|
||||
Tag = overdefined;
|
||||
}
|
||||
|
||||
void markConstant(Constant *V) {
|
||||
assert(V && "Marking constant with NULL");
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
markConstantRange(ConstantRange(CI->getValue()));
|
||||
return;
|
||||
}
|
||||
if (isa<UndefValue>(V))
|
||||
return;
|
||||
|
||||
assert((!isConstant() || getConstant() == V) &&
|
||||
"Marking constant with different value");
|
||||
assert(isUndefined());
|
||||
Tag = constant;
|
||||
Val = V;
|
||||
}
|
||||
|
||||
void markNotConstant(Constant *V) {
|
||||
assert(V && "Marking constant with NULL");
|
||||
if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
|
||||
markConstantRange(ConstantRange(CI->getValue()+1, CI->getValue()));
|
||||
return;
|
||||
}
|
||||
if (isa<UndefValue>(V))
|
||||
return;
|
||||
|
||||
assert((!isConstant() || getConstant() != V) &&
|
||||
"Marking constant !constant with same value");
|
||||
assert((!isNotConstant() || getNotConstant() == V) &&
|
||||
"Marking !constant with different value");
|
||||
assert(isUndefined() || isConstant());
|
||||
Tag = notconstant;
|
||||
Val = V;
|
||||
}
|
||||
|
||||
void markConstantRange(ConstantRange NewR) {
|
||||
if (isConstantRange()) {
|
||||
if (NewR.isEmptySet())
|
||||
markOverdefined();
|
||||
else {
|
||||
Range = std::move(NewR);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
assert(isUndefined());
|
||||
if (NewR.isEmptySet())
|
||||
markOverdefined();
|
||||
else {
|
||||
Tag = constantrange;
|
||||
Range = std::move(NewR);
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
|
||||
/// Merge the specified lattice value into this one, updating this
|
||||
/// one and returning true if anything changed.
|
||||
void mergeIn(const LVILatticeVal &RHS, const DataLayout &DL) {
|
||||
if (RHS.isUndefined() || isOverdefined())
|
||||
return;
|
||||
if (RHS.isOverdefined()) {
|
||||
markOverdefined();
|
||||
return;
|
||||
}
|
||||
|
||||
if (isUndefined()) {
|
||||
*this = RHS;
|
||||
return;
|
||||
}
|
||||
|
||||
if (isConstant()) {
|
||||
if (RHS.isConstant() && Val == RHS.Val)
|
||||
return;
|
||||
markOverdefined();
|
||||
return;
|
||||
}
|
||||
|
||||
if (isNotConstant()) {
|
||||
if (RHS.isNotConstant() && Val == RHS.Val)
|
||||
return;
|
||||
markOverdefined();
|
||||
return;
|
||||
}
|
||||
|
||||
assert(isConstantRange() && "New LVILattice type?");
|
||||
if (!RHS.isConstantRange()) {
|
||||
// We can get here if we've encountered a constantexpr of integer type
|
||||
// and merge it with a constantrange.
|
||||
markOverdefined();
|
||||
return;
|
||||
}
|
||||
ConstantRange NewR = Range.unionWith(RHS.getConstantRange());
|
||||
if (NewR.isFullSet())
|
||||
markOverdefined();
|
||||
else
|
||||
markConstantRange(std::move(NewR));
|
||||
}
|
||||
};
|
||||
|
||||
} // end anonymous namespace.
|
||||
|
||||
namespace llvm {
|
||||
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val)
|
||||
LLVM_ATTRIBUTE_USED;
|
||||
raw_ostream &operator<<(raw_ostream &OS, const LVILatticeVal &Val) {
|
||||
if (Val.isUndefined())
|
||||
return OS << "undefined";
|
||||
if (Val.isOverdefined())
|
||||
return OS << "overdefined";
|
||||
|
||||
if (Val.isNotConstant())
|
||||
return OS << "notconstant<" << *Val.getNotConstant() << '>';
|
||||
if (Val.isConstantRange())
|
||||
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
|
||||
<< Val.getConstantRange().getUpper() << '>';
|
||||
return OS << "constant<" << *Val.getConstant() << '>';
|
||||
}
|
||||
}
|
||||
|
||||
/// Returns true if this lattice value represents at most one possible value.
|
||||
/// This is as precise as any lattice value can get while still representing
|
||||
/// reachable code.
|
||||
static bool hasSingleValue(const LVILatticeVal &Val) {
|
||||
static bool hasSingleValue(const ValueLatticeElement &Val) {
|
||||
if (Val.isConstantRange() &&
|
||||
Val.getConstantRange().isSingleElement())
|
||||
// Integer constants are single element ranges
|
||||
@ -312,7 +89,8 @@ static bool hasSingleValue(const LVILatticeVal &Val) {
|
||||
/// contradictory. If this happens, we return some valid lattice value so as
|
||||
/// not confuse the rest of LVI. Ideally, we'd always return Undefined, but
|
||||
/// we do not make this guarantee. TODO: This would be a useful enhancement.
|
||||
static LVILatticeVal intersect(const LVILatticeVal &A, const LVILatticeVal &B) {
|
||||
static ValueLatticeElement intersect(const ValueLatticeElement &A,
|
||||
const ValueLatticeElement &B) {
|
||||
// Undefined is the strongest state. It means the value is known to be along
|
||||
// an unreachable path.
|
||||
if (A.isUndefined())
|
||||
@ -344,7 +122,7 @@ static LVILatticeVal intersect(const LVILatticeVal &A, const LVILatticeVal &B) {
|
||||
// Note: An empty range is implicitly converted to overdefined internally.
|
||||
// TODO: We could instead use Undefined here since we've proven a conflict
|
||||
// and thus know this path must be unreachable.
|
||||
return LVILatticeVal::getRange(std::move(Range));
|
||||
return ValueLatticeElement::getRange(std::move(Range));
|
||||
}
|
||||
|
||||
//===----------------------------------------------------------------------===//
|
||||
@ -382,7 +160,7 @@ namespace {
|
||||
struct ValueCacheEntryTy {
|
||||
ValueCacheEntryTy(Value *V, LazyValueInfoCache *P) : Handle(V, P) {}
|
||||
LVIValueHandle Handle;
|
||||
SmallDenseMap<PoisoningVH<BasicBlock>, LVILatticeVal, 4> BlockVals;
|
||||
SmallDenseMap<PoisoningVH<BasicBlock>, ValueLatticeElement, 4> BlockVals;
|
||||
};
|
||||
|
||||
/// This tracks, on a per-block basis, the set of values that are
|
||||
@ -400,7 +178,8 @@ namespace {
|
||||
|
||||
|
||||
public:
|
||||
void insertResult(Value *Val, BasicBlock *BB, const LVILatticeVal &Result) {
|
||||
void insertResult(Value *Val, BasicBlock *BB,
|
||||
const ValueLatticeElement &Result) {
|
||||
SeenBlocks.insert(BB);
|
||||
|
||||
// Insert over-defined values into their own cache to reduce memory
|
||||
@ -438,16 +217,16 @@ namespace {
|
||||
return I->second->BlockVals.count(BB);
|
||||
}
|
||||
|
||||
LVILatticeVal getCachedValueInfo(Value *V, BasicBlock *BB) const {
|
||||
ValueLatticeElement getCachedValueInfo(Value *V, BasicBlock *BB) const {
|
||||
if (isOverdefined(V, BB))
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
|
||||
auto I = ValueCache.find_as(V);
|
||||
if (I == ValueCache.end())
|
||||
return LVILatticeVal();
|
||||
return ValueLatticeElement();
|
||||
auto BBI = I->second->BlockVals.find(BB);
|
||||
if (BBI == I->second->BlockVals.end())
|
||||
return LVILatticeVal();
|
||||
return ValueLatticeElement();
|
||||
return BBI->second;
|
||||
}
|
||||
|
||||
@ -624,26 +403,29 @@ namespace {
|
||||
const DataLayout &DL; ///< A mandatory DataLayout
|
||||
DominatorTree *DT; ///< An optional DT pointer.
|
||||
|
||||
LVILatticeVal getBlockValue(Value *Val, BasicBlock *BB);
|
||||
ValueLatticeElement getBlockValue(Value *Val, BasicBlock *BB);
|
||||
bool getEdgeValue(Value *V, BasicBlock *F, BasicBlock *T,
|
||||
LVILatticeVal &Result, Instruction *CxtI = nullptr);
|
||||
ValueLatticeElement &Result, Instruction *CxtI = nullptr);
|
||||
bool hasBlockValue(Value *Val, BasicBlock *BB);
|
||||
|
||||
// These methods process one work item and may add more. A false value
|
||||
// returned means that the work item was not completely processed and must
|
||||
// be revisited after going through the new items.
|
||||
bool solveBlockValue(Value *Val, BasicBlock *BB);
|
||||
bool solveBlockValueImpl(LVILatticeVal &Res, Value *Val, BasicBlock *BB);
|
||||
bool solveBlockValueNonLocal(LVILatticeVal &BBLV, Value *Val, BasicBlock *BB);
|
||||
bool solveBlockValuePHINode(LVILatticeVal &BBLV, PHINode *PN, BasicBlock *BB);
|
||||
bool solveBlockValueSelect(LVILatticeVal &BBLV, SelectInst *S,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueBinaryOp(LVILatticeVal &BBLV, BinaryOperator *BBI,
|
||||
bool solveBlockValueImpl(ValueLatticeElement &Res, Value *Val,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueNonLocal(ValueLatticeElement &BBLV, Value *Val,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueCast(LVILatticeVal &BBLV, CastInst *CI,
|
||||
bool solveBlockValuePHINode(ValueLatticeElement &BBLV, PHINode *PN,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueSelect(ValueLatticeElement &BBLV, SelectInst *S,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueBinaryOp(ValueLatticeElement &BBLV, BinaryOperator *BBI,
|
||||
BasicBlock *BB);
|
||||
bool solveBlockValueCast(ValueLatticeElement &BBLV, CastInst *CI,
|
||||
BasicBlock *BB);
|
||||
void intersectAssumeOrGuardBlockValueConstantRange(Value *Val,
|
||||
LVILatticeVal &BBLV,
|
||||
ValueLatticeElement &BBLV,
|
||||
Instruction *BBI);
|
||||
|
||||
void solve();
|
||||
@ -651,18 +433,19 @@ namespace {
|
||||
public:
|
||||
/// This is the query interface to determine the lattice
|
||||
/// value for the specified Value* at the end of the specified block.
|
||||
LVILatticeVal getValueInBlock(Value *V, BasicBlock *BB,
|
||||
Instruction *CxtI = nullptr);
|
||||
ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB,
|
||||
Instruction *CxtI = nullptr);
|
||||
|
||||
/// This is the query interface to determine the lattice
|
||||
/// value for the specified Value* at the specified instruction (generally
|
||||
/// from an assume intrinsic).
|
||||
LVILatticeVal getValueAt(Value *V, Instruction *CxtI);
|
||||
ValueLatticeElement getValueAt(Value *V, Instruction *CxtI);
|
||||
|
||||
/// This is the query interface to determine the lattice
|
||||
/// value for the specified Value* that is true on the specified edge.
|
||||
LVILatticeVal getValueOnEdge(Value *V, BasicBlock *FromBB,BasicBlock *ToBB,
|
||||
Instruction *CxtI = nullptr);
|
||||
ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB,
|
||||
BasicBlock *ToBB,
|
||||
Instruction *CxtI = nullptr);
|
||||
|
||||
/// Complete flush all previously computed values
|
||||
void clear() {
|
||||
@ -713,7 +496,7 @@ void LazyValueInfoImpl::solve() {
|
||||
while (!StartingStack.empty()) {
|
||||
std::pair<BasicBlock *, Value *> &e = StartingStack.back();
|
||||
TheCache.insertResult(e.second, e.first,
|
||||
LVILatticeVal::getOverdefined());
|
||||
ValueLatticeElement::getOverdefined());
|
||||
StartingStack.pop_back();
|
||||
}
|
||||
BlockValueSet.clear();
|
||||
@ -749,15 +532,16 @@ bool LazyValueInfoImpl::hasBlockValue(Value *Val, BasicBlock *BB) {
|
||||
return TheCache.hasCachedValueInfo(Val, BB);
|
||||
}
|
||||
|
||||
LVILatticeVal LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB) {
|
||||
ValueLatticeElement LazyValueInfoImpl::getBlockValue(Value *Val,
|
||||
BasicBlock *BB) {
|
||||
// If already a constant, there is nothing to compute.
|
||||
if (Constant *VC = dyn_cast<Constant>(Val))
|
||||
return LVILatticeVal::get(VC);
|
||||
return ValueLatticeElement::get(VC);
|
||||
|
||||
return TheCache.getCachedValueInfo(Val, BB);
|
||||
}
|
||||
|
||||
static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
|
||||
static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) {
|
||||
switch (BBI->getOpcode()) {
|
||||
default: break;
|
||||
case Instruction::Load:
|
||||
@ -765,12 +549,13 @@ static LVILatticeVal getFromRangeMetadata(Instruction *BBI) {
|
||||
case Instruction::Invoke:
|
||||
if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range))
|
||||
if (isa<IntegerType>(BBI->getType())) {
|
||||
return LVILatticeVal::getRange(getConstantRangeFromMetadata(*Ranges));
|
||||
return ValueLatticeElement::getRange(
|
||||
getConstantRangeFromMetadata(*Ranges));
|
||||
}
|
||||
break;
|
||||
};
|
||||
// Nothing known - will be intersected with other facts
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
|
||||
@ -790,7 +575,7 @@ bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
|
||||
|
||||
// Hold off inserting this value into the Cache in case we have to return
|
||||
// false and come back later.
|
||||
LVILatticeVal Res;
|
||||
ValueLatticeElement Res;
|
||||
if (!solveBlockValueImpl(Res, Val, BB))
|
||||
// Work pushed, will revisit
|
||||
return false;
|
||||
@ -799,7 +584,7 @@ bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValueImpl(LVILatticeVal &Res,
|
||||
bool LazyValueInfoImpl::solveBlockValueImpl(ValueLatticeElement &Res,
|
||||
Value *Val, BasicBlock *BB) {
|
||||
|
||||
Instruction *BBI = dyn_cast<Instruction>(Val);
|
||||
@ -823,7 +608,7 @@ bool LazyValueInfoImpl::solveBlockValueImpl(LVILatticeVal &Res,
|
||||
// That is unfortunate.
|
||||
PointerType *PT = dyn_cast<PointerType>(BBI->getType());
|
||||
if (PT && isKnownNonZero(BBI, DL)) {
|
||||
Res = LVILatticeVal::getNot(ConstantPointerNull::get(PT));
|
||||
Res = ValueLatticeElement::getNot(ConstantPointerNull::get(PT));
|
||||
return true;
|
||||
}
|
||||
if (BBI->getType()->isIntegerTy()) {
|
||||
@ -890,9 +675,9 @@ static bool isObjectDereferencedInBlock(Value *Val, BasicBlock *BB) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
||||
bool LazyValueInfoImpl::solveBlockValueNonLocal(ValueLatticeElement &BBLV,
|
||||
Value *Val, BasicBlock *BB) {
|
||||
LVILatticeVal Result; // Start Undefined.
|
||||
ValueLatticeElement Result; // Start Undefined.
|
||||
|
||||
// If this is the entry block, we must be asking about an argument. The
|
||||
// value is overdefined.
|
||||
@ -903,9 +688,9 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
||||
if (Val->getType()->isPointerTy() &&
|
||||
(isKnownNonZero(Val, DL) || isObjectDereferencedInBlock(Val, BB))) {
|
||||
PointerType *PTy = cast<PointerType>(Val->getType());
|
||||
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
|
||||
Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
|
||||
} else {
|
||||
Result = LVILatticeVal::getOverdefined();
|
||||
Result = ValueLatticeElement::getOverdefined();
|
||||
}
|
||||
BBLV = Result;
|
||||
return true;
|
||||
@ -921,7 +706,7 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
||||
// canonicalizing to make this true rather than relying on this happy
|
||||
// accident.
|
||||
for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
|
||||
LVILatticeVal EdgeResult;
|
||||
ValueLatticeElement EdgeResult;
|
||||
if (!getEdgeValue(Val, *PI, BB, EdgeResult))
|
||||
// Explore that input, then return here
|
||||
return false;
|
||||
@ -938,7 +723,7 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
||||
if (Val->getType()->isPointerTy() &&
|
||||
isObjectDereferencedInBlock(Val, BB)) {
|
||||
PointerType *PTy = cast<PointerType>(Val->getType());
|
||||
Result = LVILatticeVal::getNot(ConstantPointerNull::get(PTy));
|
||||
Result = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy));
|
||||
}
|
||||
|
||||
BBLV = Result;
|
||||
@ -952,9 +737,9 @@ bool LazyValueInfoImpl::solveBlockValueNonLocal(LVILatticeVal &BBLV,
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
|
||||
PHINode *PN, BasicBlock *BB) {
|
||||
LVILatticeVal Result; // Start Undefined.
|
||||
bool LazyValueInfoImpl::solveBlockValuePHINode(ValueLatticeElement &BBLV,
|
||||
PHINode *PN, BasicBlock *BB) {
|
||||
ValueLatticeElement Result; // Start Undefined.
|
||||
|
||||
// Loop over all of our predecessors, merging what we know from them into
|
||||
// result. See the comment about the chosen traversal order in
|
||||
@ -962,7 +747,7 @@ bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
|
||||
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
|
||||
BasicBlock *PhiBB = PN->getIncomingBlock(i);
|
||||
Value *PhiVal = PN->getIncomingValue(i);
|
||||
LVILatticeVal EdgeResult;
|
||||
ValueLatticeElement EdgeResult;
|
||||
// Note that we can provide PN as the context value to getEdgeValue, even
|
||||
// though the results will be cached, because PN is the value being used as
|
||||
// the cache key in the caller.
|
||||
@ -989,13 +774,13 @@ bool LazyValueInfoImpl::solveBlockValuePHINode(LVILatticeVal &BBLV,
|
||||
return true;
|
||||
}
|
||||
|
||||
static LVILatticeVal getValueFromCondition(Value *Val, Value *Cond,
|
||||
bool isTrueDest = true);
|
||||
static ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
|
||||
bool isTrueDest = true);
|
||||
|
||||
// If we can determine a constraint on the value given conditions assumed by
|
||||
// the program, intersect those constraints with BBLV
|
||||
void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
|
||||
Value *Val, LVILatticeVal &BBLV, Instruction *BBI) {
|
||||
Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) {
|
||||
BBI = BBI ? BBI : dyn_cast<Instruction>(Val);
|
||||
if (!BBI)
|
||||
return;
|
||||
@ -1024,35 +809,35 @@ void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange(
|
||||
}
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
|
||||
SelectInst *SI, BasicBlock *BB) {
|
||||
bool LazyValueInfoImpl::solveBlockValueSelect(ValueLatticeElement &BBLV,
|
||||
SelectInst *SI, BasicBlock *BB) {
|
||||
|
||||
// Recurse on our inputs if needed
|
||||
if (!hasBlockValue(SI->getTrueValue(), BB)) {
|
||||
if (pushBlockValue(std::make_pair(BB, SI->getTrueValue())))
|
||||
return false;
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
LVILatticeVal TrueVal = getBlockValue(SI->getTrueValue(), BB);
|
||||
ValueLatticeElement TrueVal = getBlockValue(SI->getTrueValue(), BB);
|
||||
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
|
||||
// extra slots in the table if we can.
|
||||
if (TrueVal.isOverdefined()) {
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
if (!hasBlockValue(SI->getFalseValue(), BB)) {
|
||||
if (pushBlockValue(std::make_pair(BB, SI->getFalseValue())))
|
||||
return false;
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
LVILatticeVal FalseVal = getBlockValue(SI->getFalseValue(), BB);
|
||||
ValueLatticeElement FalseVal = getBlockValue(SI->getFalseValue(), BB);
|
||||
// If we hit overdefined, don't ask more queries. We want to avoid poisoning
|
||||
// extra slots in the table if we can.
|
||||
if (FalseVal.isOverdefined()) {
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1080,7 +865,7 @@ bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
|
||||
return TrueCR.umax(FalseCR);
|
||||
};
|
||||
}();
|
||||
BBLV = LVILatticeVal::getRange(ResultCR);
|
||||
BBLV = ValueLatticeElement::getRange(ResultCR);
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1123,7 +908,7 @@ bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
|
||||
m_ConstantInt(CIAdded)))) {
|
||||
auto ResNot = addConstants(CIBase, CIAdded);
|
||||
FalseVal = intersect(FalseVal,
|
||||
LVILatticeVal::getNot(ResNot));
|
||||
ValueLatticeElement::getNot(ResNot));
|
||||
}
|
||||
break;
|
||||
case ICmpInst::ICMP_NE:
|
||||
@ -1131,27 +916,27 @@ bool LazyValueInfoImpl::solveBlockValueSelect(LVILatticeVal &BBLV,
|
||||
m_ConstantInt(CIAdded)))) {
|
||||
auto ResNot = addConstants(CIBase, CIAdded);
|
||||
TrueVal = intersect(TrueVal,
|
||||
LVILatticeVal::getNot(ResNot));
|
||||
ValueLatticeElement::getNot(ResNot));
|
||||
}
|
||||
break;
|
||||
};
|
||||
}
|
||||
}
|
||||
|
||||
LVILatticeVal Result; // Start Undefined.
|
||||
ValueLatticeElement Result; // Start Undefined.
|
||||
Result.mergeIn(TrueVal, DL);
|
||||
Result.mergeIn(FalseVal, DL);
|
||||
BBLV = Result;
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
|
||||
bool LazyValueInfoImpl::solveBlockValueCast(ValueLatticeElement &BBLV,
|
||||
CastInst *CI,
|
||||
BasicBlock *BB) {
|
||||
if (!CI->getOperand(0)->getType()->isSized()) {
|
||||
// Without knowing how wide the input is, we can't analyze it in any useful
|
||||
// way.
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1168,7 +953,7 @@ bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
|
||||
// Unhandled instructions are overdefined.
|
||||
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
||||
<< "' - overdefined (unknown cast).\n");
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -1184,7 +969,7 @@ bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
|
||||
DL.getTypeSizeInBits(CI->getOperand(0)->getType());
|
||||
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
|
||||
if (hasBlockValue(CI->getOperand(0), BB)) {
|
||||
LVILatticeVal LHSVal = getBlockValue(CI->getOperand(0), BB);
|
||||
ValueLatticeElement LHSVal = getBlockValue(CI->getOperand(0), BB);
|
||||
intersectAssumeOrGuardBlockValueConstantRange(CI->getOperand(0), LHSVal,
|
||||
CI);
|
||||
if (LHSVal.isConstantRange())
|
||||
@ -1196,14 +981,14 @@ bool LazyValueInfoImpl::solveBlockValueCast(LVILatticeVal &BBLV,
|
||||
// NOTE: We're currently limited by the set of operations that ConstantRange
|
||||
// can evaluate symbolically. Enhancing that set will allows us to analyze
|
||||
// more definitions.
|
||||
BBLV = LVILatticeVal::getRange(LHSRange.castOp(CI->getOpcode(),
|
||||
ResultBitWidth));
|
||||
BBLV = ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(),
|
||||
ResultBitWidth));
|
||||
return true;
|
||||
}
|
||||
|
||||
bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
|
||||
BinaryOperator *BO,
|
||||
BasicBlock *BB) {
|
||||
bool LazyValueInfoImpl::solveBlockValueBinaryOp(ValueLatticeElement &BBLV,
|
||||
BinaryOperator *BO,
|
||||
BasicBlock *BB) {
|
||||
|
||||
assert(BO->getOperand(0)->getType()->isSized() &&
|
||||
"all operands to binary operators are sized");
|
||||
@ -1226,7 +1011,7 @@ bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
|
||||
// Unhandled instructions are overdefined.
|
||||
DEBUG(dbgs() << " compute BB '" << BB->getName()
|
||||
<< "' - overdefined (unknown binary operator).\n");
|
||||
BBLV = LVILatticeVal::getOverdefined();
|
||||
BBLV = ValueLatticeElement::getOverdefined();
|
||||
return true;
|
||||
};
|
||||
|
||||
@ -1242,7 +1027,7 @@ bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
|
||||
DL.getTypeSizeInBits(BO->getOperand(0)->getType());
|
||||
ConstantRange LHSRange = ConstantRange(OperandBitWidth);
|
||||
if (hasBlockValue(BO->getOperand(0), BB)) {
|
||||
LVILatticeVal LHSVal = getBlockValue(BO->getOperand(0), BB);
|
||||
ValueLatticeElement LHSVal = getBlockValue(BO->getOperand(0), BB);
|
||||
intersectAssumeOrGuardBlockValueConstantRange(BO->getOperand(0), LHSVal,
|
||||
BO);
|
||||
if (LHSVal.isConstantRange())
|
||||
@ -1256,12 +1041,12 @@ bool LazyValueInfoImpl::solveBlockValueBinaryOp(LVILatticeVal &BBLV,
|
||||
// can evaluate symbolically. Enhancing that set will allows us to analyze
|
||||
// more definitions.
|
||||
Instruction::BinaryOps BinOp = BO->getOpcode();
|
||||
BBLV = LVILatticeVal::getRange(LHSRange.binaryOp(BinOp, RHSRange));
|
||||
BBLV = ValueLatticeElement::getRange(LHSRange.binaryOp(BinOp, RHSRange));
|
||||
return true;
|
||||
}
|
||||
|
||||
static LVILatticeVal getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
|
||||
bool isTrueDest) {
|
||||
static ValueLatticeElement getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
|
||||
bool isTrueDest) {
|
||||
Value *LHS = ICI->getOperand(0);
|
||||
Value *RHS = ICI->getOperand(1);
|
||||
CmpInst::Predicate Predicate = ICI->getPredicate();
|
||||
@ -1271,14 +1056,14 @@ static LVILatticeVal getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
|
||||
// We know that V has the RHS constant if this is a true SETEQ or
|
||||
// false SETNE.
|
||||
if (isTrueDest == (Predicate == ICmpInst::ICMP_EQ))
|
||||
return LVILatticeVal::get(cast<Constant>(RHS));
|
||||
return ValueLatticeElement::get(cast<Constant>(RHS));
|
||||
else
|
||||
return LVILatticeVal::getNot(cast<Constant>(RHS));
|
||||
return ValueLatticeElement::getNot(cast<Constant>(RHS));
|
||||
}
|
||||
}
|
||||
|
||||
if (!Val->getType()->isIntegerTy())
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
|
||||
// Use ConstantRange::makeAllowedICmpRegion in order to determine the possible
|
||||
// range of Val guaranteed by the condition. Recognize comparisons in the from
|
||||
@ -1317,19 +1102,19 @@ static LVILatticeVal getValueFromICmpCondition(Value *Val, ICmpInst *ICI,
|
||||
if (Offset) // Apply the offset from above.
|
||||
TrueValues = TrueValues.subtract(Offset->getValue());
|
||||
|
||||
return LVILatticeVal::getRange(std::move(TrueValues));
|
||||
return ValueLatticeElement::getRange(std::move(TrueValues));
|
||||
}
|
||||
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
}
|
||||
|
||||
static LVILatticeVal
|
||||
static ValueLatticeElement
|
||||
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
|
||||
DenseMap<Value*, LVILatticeVal> &Visited);
|
||||
DenseMap<Value*, ValueLatticeElement> &Visited);
|
||||
|
||||
static LVILatticeVal
|
||||
static ValueLatticeElement
|
||||
getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
|
||||
DenseMap<Value*, LVILatticeVal> &Visited) {
|
||||
DenseMap<Value*, ValueLatticeElement> &Visited) {
|
||||
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond))
|
||||
return getValueFromICmpCondition(Val, ICI, isTrueDest);
|
||||
|
||||
@ -1340,16 +1125,16 @@ getValueFromConditionImpl(Value *Val, Value *Cond, bool isTrueDest,
|
||||
BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond);
|
||||
if (!BO || (isTrueDest && BO->getOpcode() != BinaryOperator::And) ||
|
||||
(!isTrueDest && BO->getOpcode() != BinaryOperator::Or))
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
|
||||
auto RHS = getValueFromCondition(Val, BO->getOperand(0), isTrueDest, Visited);
|
||||
auto LHS = getValueFromCondition(Val, BO->getOperand(1), isTrueDest, Visited);
|
||||
return intersect(RHS, LHS);
|
||||
}
|
||||
|
||||
static LVILatticeVal
|
||||
static ValueLatticeElement
|
||||
getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
|
||||
DenseMap<Value*, LVILatticeVal> &Visited) {
|
||||
DenseMap<Value*, ValueLatticeElement> &Visited) {
|
||||
auto I = Visited.find(Cond);
|
||||
if (I != Visited.end())
|
||||
return I->second;
|
||||
@ -1359,9 +1144,10 @@ getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest,
|
||||
return Result;
|
||||
}
|
||||
|
||||
LVILatticeVal getValueFromCondition(Value *Val, Value *Cond, bool isTrueDest) {
|
||||
ValueLatticeElement getValueFromCondition(Value *Val, Value *Cond,
|
||||
bool isTrueDest) {
|
||||
assert(Cond && "precondition");
|
||||
DenseMap<Value*, LVILatticeVal> Visited;
|
||||
DenseMap<Value*, ValueLatticeElement> Visited;
|
||||
return getValueFromCondition(Val, Cond, isTrueDest, Visited);
|
||||
}
|
||||
|
||||
@ -1382,9 +1168,9 @@ static bool isOperationFoldable(User *Usr) {
|
||||
// of its operands Op is an integer constant OpConstVal. If so, return it as an
|
||||
// lattice value range with a single element or otherwise return an overdefined
|
||||
// lattice value.
|
||||
static LVILatticeVal constantFoldUser(User *Usr, Value *Op,
|
||||
const APInt &OpConstVal,
|
||||
const DataLayout &DL) {
|
||||
static ValueLatticeElement constantFoldUser(User *Usr, Value *Op,
|
||||
const APInt &OpConstVal,
|
||||
const DataLayout &DL) {
|
||||
assert(isOperationFoldable(Usr) && "Precondition");
|
||||
Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal);
|
||||
// Check if Usr can be simplified to a constant.
|
||||
@ -1393,7 +1179,7 @@ static LVILatticeVal constantFoldUser(User *Usr, Value *Op,
|
||||
if (auto *C = dyn_cast_or_null<ConstantInt>(
|
||||
SimplifyCastInst(CI->getOpcode(), OpConst,
|
||||
CI->getDestTy(), DL))) {
|
||||
return LVILatticeVal::getRange(ConstantRange(C->getValue()));
|
||||
return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
|
||||
}
|
||||
} else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) {
|
||||
bool Op0Match = BO->getOperand(0) == Op;
|
||||
@ -1404,17 +1190,17 @@ static LVILatticeVal constantFoldUser(User *Usr, Value *Op,
|
||||
Value *RHS = Op1Match ? OpConst : BO->getOperand(1);
|
||||
if (auto *C = dyn_cast_or_null<ConstantInt>(
|
||||
SimplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) {
|
||||
return LVILatticeVal::getRange(ConstantRange(C->getValue()));
|
||||
return ValueLatticeElement::getRange(ConstantRange(C->getValue()));
|
||||
}
|
||||
}
|
||||
return LVILatticeVal::getOverdefined();
|
||||
return ValueLatticeElement::getOverdefined();
|
||||
}
|
||||
|
||||
/// \brief Compute the value of Val on the edge BBFrom -> BBTo. Returns false if
|
||||
/// Val is not constrained on the edge. Result is unspecified if return value
|
||||
/// is false.
|
||||
static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
BasicBlock *BBTo, LVILatticeVal &Result) {
|
||||
BasicBlock *BBTo, ValueLatticeElement &Result) {
|
||||
// TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we
|
||||
// know that v != 0.
|
||||
if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) {
|
||||
@ -1430,7 +1216,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
// If V is the condition of the branch itself, then we know exactly what
|
||||
// it is.
|
||||
if (Condition == Val) {
|
||||
Result = LVILatticeVal::get(ConstantInt::get(
|
||||
Result = ValueLatticeElement::get(ConstantInt::get(
|
||||
Type::getInt1Ty(Val->getContext()), isTrueDest));
|
||||
return true;
|
||||
}
|
||||
@ -1468,7 +1254,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
// br i1 %Condition, label %then, label %else
|
||||
for (unsigned i = 0; i < Usr->getNumOperands(); ++i) {
|
||||
Value *Op = Usr->getOperand(i);
|
||||
LVILatticeVal OpLatticeVal =
|
||||
ValueLatticeElement OpLatticeVal =
|
||||
getValueFromCondition(Op, Condition, isTrueDest);
|
||||
if (Optional<APInt> OpConst = OpLatticeVal.asConstantInteger()) {
|
||||
Result = constantFoldUser(Usr, Op, OpConst.getValue(), DL);
|
||||
@ -1511,7 +1297,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
if (ValUsesConditionAndMayBeFoldable) {
|
||||
User *Usr = cast<User>(Val);
|
||||
const DataLayout &DL = BBTo->getModule()->getDataLayout();
|
||||
LVILatticeVal EdgeLatticeVal =
|
||||
ValueLatticeElement EdgeLatticeVal =
|
||||
constantFoldUser(Usr, Condition, CaseValue, DL);
|
||||
if (EdgeLatticeVal.isOverdefined())
|
||||
return false;
|
||||
@ -1529,7 +1315,7 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
} else if (Case.getCaseSuccessor() == BBTo)
|
||||
EdgesVals = EdgesVals.unionWith(EdgeVal);
|
||||
}
|
||||
Result = LVILatticeVal::getRange(std::move(EdgesVals));
|
||||
Result = ValueLatticeElement::getRange(std::move(EdgesVals));
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
@ -1538,19 +1324,20 @@ static bool getEdgeValueLocal(Value *Val, BasicBlock *BBFrom,
|
||||
/// \brief Compute the value of Val on the edge BBFrom -> BBTo or the value at
|
||||
/// the basic block if the edge does not constrain Val.
|
||||
bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
|
||||
BasicBlock *BBTo, LVILatticeVal &Result,
|
||||
BasicBlock *BBTo,
|
||||
ValueLatticeElement &Result,
|
||||
Instruction *CxtI) {
|
||||
// If already a constant, there is nothing to compute.
|
||||
if (Constant *VC = dyn_cast<Constant>(Val)) {
|
||||
Result = LVILatticeVal::get(VC);
|
||||
Result = ValueLatticeElement::get(VC);
|
||||
return true;
|
||||
}
|
||||
|
||||
LVILatticeVal LocalResult;
|
||||
ValueLatticeElement LocalResult;
|
||||
if (!getEdgeValueLocal(Val, BBFrom, BBTo, LocalResult))
|
||||
// If we couldn't constrain the value on the edge, LocalResult doesn't
|
||||
// provide any information.
|
||||
LocalResult = LVILatticeVal::getOverdefined();
|
||||
LocalResult = ValueLatticeElement::getOverdefined();
|
||||
|
||||
if (hasSingleValue(LocalResult)) {
|
||||
// Can't get any more precise here
|
||||
@ -1567,7 +1354,7 @@ bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
|
||||
}
|
||||
|
||||
// Try to intersect ranges of the BB and the constraint on the edge.
|
||||
LVILatticeVal InBlock = getBlockValue(Val, BBFrom);
|
||||
ValueLatticeElement InBlock = getBlockValue(Val, BBFrom);
|
||||
intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock,
|
||||
BBFrom->getTerminator());
|
||||
// We can use the context instruction (generically the ultimate instruction
|
||||
@ -1584,8 +1371,8 @@ bool LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom,
|
||||
return true;
|
||||
}
|
||||
|
||||
LVILatticeVal LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
|
||||
Instruction *CxtI) {
|
||||
ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
|
||||
Instruction *CxtI) {
|
||||
DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '"
|
||||
<< BB->getName() << "'\n");
|
||||
|
||||
@ -1594,21 +1381,21 @@ LVILatticeVal LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB,
|
||||
pushBlockValue(std::make_pair(BB, V));
|
||||
solve();
|
||||
}
|
||||
LVILatticeVal Result = getBlockValue(V, BB);
|
||||
ValueLatticeElement Result = getBlockValue(V, BB);
|
||||
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
|
||||
|
||||
DEBUG(dbgs() << " Result = " << Result << "\n");
|
||||
return Result;
|
||||
}
|
||||
|
||||
LVILatticeVal LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
|
||||
ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
|
||||
DEBUG(dbgs() << "LVI Getting value " << *V << " at '"
|
||||
<< CxtI->getName() << "'\n");
|
||||
|
||||
if (auto *C = dyn_cast<Constant>(V))
|
||||
return LVILatticeVal::get(C);
|
||||
return ValueLatticeElement::get(C);
|
||||
|
||||
LVILatticeVal Result = LVILatticeVal::getOverdefined();
|
||||
ValueLatticeElement Result = ValueLatticeElement::getOverdefined();
|
||||
if (auto *I = dyn_cast<Instruction>(V))
|
||||
Result = getFromRangeMetadata(I);
|
||||
intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI);
|
||||
@ -1617,13 +1404,13 @@ LVILatticeVal LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) {
|
||||
return Result;
|
||||
}
|
||||
|
||||
LVILatticeVal LazyValueInfoImpl::
|
||||
ValueLatticeElement LazyValueInfoImpl::
|
||||
getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB,
|
||||
Instruction *CxtI) {
|
||||
DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '"
|
||||
<< FromBB->getName() << "' to '" << ToBB->getName() << "'\n");
|
||||
|
||||
LVILatticeVal Result;
|
||||
ValueLatticeElement Result;
|
||||
if (!getEdgeValue(V, FromBB, ToBB, Result, CxtI)) {
|
||||
solve();
|
||||
bool WasFastQuery = getEdgeValue(V, FromBB, ToBB, Result, CxtI);
|
||||
@ -1703,7 +1490,8 @@ bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA,
|
||||
|
||||
void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); }
|
||||
|
||||
LazyValueInfo LazyValueAnalysis::run(Function &F, FunctionAnalysisManager &FAM) {
|
||||
LazyValueInfo LazyValueAnalysis::run(Function &F,
|
||||
FunctionAnalysisManager &FAM) {
|
||||
auto &AC = FAM.getResult<AssumptionAnalysis>(F);
|
||||
auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
|
||||
auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
|
||||
@ -1732,7 +1520,7 @@ Constant *LazyValueInfo::getConstant(Value *V, BasicBlock *BB,
|
||||
return nullptr;
|
||||
|
||||
const DataLayout &DL = BB->getModule()->getDataLayout();
|
||||
LVILatticeVal Result =
|
||||
ValueLatticeElement Result =
|
||||
getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
|
||||
|
||||
if (Result.isConstant())
|
||||
@ -1750,7 +1538,7 @@ ConstantRange LazyValueInfo::getConstantRange(Value *V, BasicBlock *BB,
|
||||
assert(V->getType()->isIntegerTy());
|
||||
unsigned Width = V->getType()->getIntegerBitWidth();
|
||||
const DataLayout &DL = BB->getModule()->getDataLayout();
|
||||
LVILatticeVal Result =
|
||||
ValueLatticeElement Result =
|
||||
getImpl(PImpl, AC, &DL, DT).getValueInBlock(V, BB, CxtI);
|
||||
if (Result.isUndefined())
|
||||
return ConstantRange(Width, /*isFullSet=*/false);
|
||||
@ -1769,7 +1557,7 @@ Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB,
|
||||
BasicBlock *ToBB,
|
||||
Instruction *CxtI) {
|
||||
const DataLayout &DL = FromBB->getModule()->getDataLayout();
|
||||
LVILatticeVal Result =
|
||||
ValueLatticeElement Result =
|
||||
getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
|
||||
|
||||
if (Result.isConstant())
|
||||
@ -1788,7 +1576,7 @@ ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
|
||||
Instruction *CxtI) {
|
||||
unsigned Width = V->getType()->getIntegerBitWidth();
|
||||
const DataLayout &DL = FromBB->getModule()->getDataLayout();
|
||||
LVILatticeVal Result =
|
||||
ValueLatticeElement Result =
|
||||
getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
|
||||
|
||||
if (Result.isUndefined())
|
||||
@ -1802,11 +1590,9 @@ ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V,
|
||||
return ConstantRange(Width, /*isFullSet=*/true);
|
||||
}
|
||||
|
||||
static LazyValueInfo::Tristate getPredicateResult(unsigned Pred, Constant *C,
|
||||
const LVILatticeVal &Val,
|
||||
const DataLayout &DL,
|
||||
TargetLibraryInfo *TLI) {
|
||||
|
||||
static LazyValueInfo::Tristate
|
||||
getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val,
|
||||
const DataLayout &DL, TargetLibraryInfo *TLI) {
|
||||
// If we know the value is a constant, evaluate the conditional.
|
||||
Constant *Res = nullptr;
|
||||
if (Val.isConstant()) {
|
||||
@ -1876,7 +1662,7 @@ LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C,
|
||||
BasicBlock *FromBB, BasicBlock *ToBB,
|
||||
Instruction *CxtI) {
|
||||
const DataLayout &DL = FromBB->getModule()->getDataLayout();
|
||||
LVILatticeVal Result =
|
||||
ValueLatticeElement Result =
|
||||
getImpl(PImpl, AC, &DL, DT).getValueOnEdge(V, FromBB, ToBB, CxtI);
|
||||
|
||||
return getPredicateResult(Pred, C, Result, DL, TLI);
|
||||
@ -1897,7 +1683,7 @@ LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C,
|
||||
else if (Pred == ICmpInst::ICMP_NE)
|
||||
return LazyValueInfo::True;
|
||||
}
|
||||
LVILatticeVal Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
|
||||
ValueLatticeElement Result = getImpl(PImpl, AC, &DL, DT).getValueAt(V, CxtI);
|
||||
Tristate Ret = getPredicateResult(Pred, C, Result, DL, TLI);
|
||||
if (Ret != Unknown)
|
||||
return Ret;
|
||||
@ -2011,7 +1797,7 @@ void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot(
|
||||
// Find if there are latticevalues defined for arguments of the function.
|
||||
auto *F = BB->getParent();
|
||||
for (auto &Arg : F->args()) {
|
||||
LVILatticeVal Result = LVIImpl->getValueInBlock(
|
||||
ValueLatticeElement Result = LVIImpl->getValueInBlock(
|
||||
const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB));
|
||||
if (Result.isUndefined())
|
||||
continue;
|
||||
@ -2036,7 +1822,7 @@ void LazyValueInfoAnnotatedWriter::emitInstructionAnnot(
|
||||
auto printResult = [&](const BasicBlock *BB) {
|
||||
if (!BlocksContainingLVI.insert(BB).second)
|
||||
return;
|
||||
LVILatticeVal Result = LVIImpl->getValueInBlock(
|
||||
ValueLatticeElement Result = LVIImpl->getValueInBlock(
|
||||
const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB));
|
||||
OS << "; LatticeVal for: '" << *I << "' in BB: '";
|
||||
BB->printAsOperand(OS, false);
|
||||
|
26
lib/Analysis/ValueLattice.cpp
Normal file
26
lib/Analysis/ValueLattice.cpp
Normal file
@ -0,0 +1,26 @@
|
||||
//===- ValueLattice.cpp - Value constraint analysis -------------*- C++ -*-===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/ValueLattice.h"
|
||||
|
||||
namespace llvm {
|
||||
raw_ostream &operator<<(raw_ostream &OS, const ValueLatticeElement &Val) {
|
||||
if (Val.isUndefined())
|
||||
return OS << "undefined";
|
||||
if (Val.isOverdefined())
|
||||
return OS << "overdefined";
|
||||
|
||||
if (Val.isNotConstant())
|
||||
return OS << "notconstant<" << *Val.getNotConstant() << ">";
|
||||
if (Val.isConstantRange())
|
||||
return OS << "constantrange<" << Val.getConstantRange().getLower() << ", "
|
||||
<< Val.getConstantRange().getUpper() << ">";
|
||||
return OS << "constant<" << *Val.getConstant() << ">";
|
||||
}
|
||||
} // end namespace llvm
|
@ -14,6 +14,7 @@ add_llvm_unittest(AnalysisTests
|
||||
CFGTest.cpp
|
||||
CGSCCPassManagerTest.cpp
|
||||
GlobalsModRefTest.cpp
|
||||
ValueLatticeTest.cpp
|
||||
LazyCallGraphTest.cpp
|
||||
LoopInfoTest.cpp
|
||||
MemoryBuiltinsTest.cpp
|
||||
|
148
unittests/Analysis/ValueLatticeTest.cpp
Normal file
148
unittests/Analysis/ValueLatticeTest.cpp
Normal file
@ -0,0 +1,148 @@
|
||||
//===- ValueLatticeTest.cpp - ScalarEvolution unit tests --------------===//
|
||||
//
|
||||
// The LLVM Compiler Infrastructure
|
||||
//
|
||||
// This file is distributed under the University of Illinois Open Source
|
||||
// License. See LICENSE.TXT for details.
|
||||
//
|
||||
//===----------------------------------------------------------------------===//
|
||||
|
||||
#include "llvm/Analysis/ValueLattice.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/IR/ConstantRange.h"
|
||||
#include "llvm/IR/Constants.h"
|
||||
#include "llvm/IR/IRBuilder.h"
|
||||
#include "llvm/IR/LLVMContext.h"
|
||||
#include "llvm/IR/Module.h"
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
namespace llvm {
|
||||
namespace {
|
||||
|
||||
// We use this fixture to ensure that we clean up ScalarEvolution before
|
||||
// deleting the PassManager.
|
||||
class ValueLatticeTest : public testing::Test {
|
||||
protected:
|
||||
LLVMContext Context;
|
||||
Module M;
|
||||
|
||||
ValueLatticeTest() : M("", Context) {}
|
||||
};
|
||||
|
||||
TEST_F(ValueLatticeTest, ValueLatticeGetters) {
|
||||
auto I32Ty = IntegerType::get(Context, 32);
|
||||
auto *C1 = ConstantInt::get(I32Ty, 1);
|
||||
|
||||
EXPECT_TRUE(ValueLatticeElement::get(C1).isConstantRange());
|
||||
EXPECT_TRUE(
|
||||
ValueLatticeElement::getRange({C1->getValue()}).isConstantRange());
|
||||
EXPECT_TRUE(ValueLatticeElement::getOverdefined().isOverdefined());
|
||||
|
||||
auto FloatTy = Type::getFloatTy(Context);
|
||||
auto *C2 = ConstantFP::get(FloatTy, 1.1);
|
||||
EXPECT_TRUE(ValueLatticeElement::get(C2).isConstant());
|
||||
EXPECT_TRUE(ValueLatticeElement::getNot(C2).isNotConstant());
|
||||
}
|
||||
|
||||
TEST_F(ValueLatticeTest, MergeIn) {
|
||||
auto I32Ty = IntegerType::get(Context, 32);
|
||||
auto *C1 = ConstantInt::get(I32Ty, 1);
|
||||
|
||||
// Merge to lattice values with equal integer constant.
|
||||
auto LV1 = ValueLatticeElement::get(C1);
|
||||
LV1.mergeIn(ValueLatticeElement::get(C1), M.getDataLayout());
|
||||
EXPECT_TRUE(LV1.isConstantRange());
|
||||
EXPECT_EQ(LV1.asConstantInteger().getValue().getLimitedValue(), 1U);
|
||||
|
||||
// Merge LV1 with different integer constant.
|
||||
LV1.mergeIn(ValueLatticeElement::get(ConstantInt::get(I32Ty, 99)),
|
||||
M.getDataLayout());
|
||||
EXPECT_TRUE(LV1.isConstantRange());
|
||||
EXPECT_EQ(LV1.getConstantRange().getLower().getLimitedValue(), 1U);
|
||||
EXPECT_EQ(LV1.getConstantRange().getUpper().getLimitedValue(), 100U);
|
||||
|
||||
// Merge LV1 in undefined value.
|
||||
ValueLatticeElement LV2;
|
||||
LV2.mergeIn(LV1, M.getDataLayout());
|
||||
EXPECT_TRUE(LV1.isConstantRange());
|
||||
EXPECT_EQ(LV1.getConstantRange().getLower().getLimitedValue(), 1U);
|
||||
EXPECT_EQ(LV1.getConstantRange().getUpper().getLimitedValue(), 100U);
|
||||
EXPECT_TRUE(LV2.isConstantRange());
|
||||
EXPECT_EQ(LV2.getConstantRange().getLower().getLimitedValue(), 1U);
|
||||
EXPECT_EQ(LV2.getConstantRange().getUpper().getLimitedValue(), 100U);
|
||||
|
||||
// Merge with overdefined.
|
||||
LV1.mergeIn(ValueLatticeElement::getOverdefined(), M.getDataLayout());
|
||||
EXPECT_TRUE(LV1.isOverdefined());
|
||||
}
|
||||
|
||||
TEST_F(ValueLatticeTest, satisfiesPredicateIntegers) {
|
||||
auto I32Ty = IntegerType::get(Context, 32);
|
||||
auto *C1 = ConstantInt::get(I32Ty, 1);
|
||||
auto LV1 = ValueLatticeElement::get(C1);
|
||||
|
||||
// Check satisfiesPredicate for equal integer constants.
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_EQ, LV1));
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SGE, LV1));
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLE, LV1));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_NE, LV1));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SLT, LV1));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGT, LV1));
|
||||
|
||||
auto LV2 =
|
||||
ValueLatticeElement::getRange({APInt(32, 10, true), APInt(32, 20, true)});
|
||||
// Check satisfiesPredicate with distinct integer ranges.
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLT, LV2));
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_SLE, LV2));
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::ICMP_NE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_EQ, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::ICMP_SGT, LV2));
|
||||
|
||||
auto LV3 =
|
||||
ValueLatticeElement::getRange({APInt(32, 15, true), APInt(32, 19, true)});
|
||||
// Check satisfiesPredicate with a subset integer ranges.
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SLT, LV3));
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SLE, LV3));
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_NE, LV3));
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_EQ, LV3));
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SGE, LV3));
|
||||
EXPECT_FALSE(LV2.satisfiesPredicate(CmpInst::ICMP_SGT, LV3));
|
||||
|
||||
auto LV4 =
|
||||
ValueLatticeElement::getRange({APInt(32, 15, true), APInt(32, 25, true)});
|
||||
// Check satisfiesPredicate with overlapping integer ranges.
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SLT, LV4));
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SLE, LV4));
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_NE, LV4));
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_EQ, LV4));
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SGE, LV4));
|
||||
EXPECT_FALSE(LV3.satisfiesPredicate(CmpInst::ICMP_SGT, LV4));
|
||||
}
|
||||
|
||||
TEST_F(ValueLatticeTest, satisfiesPredicateFloat) {
|
||||
auto FloatTy = IntegerType::getFloatTy(Context);
|
||||
auto *C1 = ConstantFP::get(FloatTy, 1.0);
|
||||
auto LV1 = ValueLatticeElement::get(C1);
|
||||
auto LV2 = ValueLatticeElement::get(C1);
|
||||
|
||||
// Check satisfiesPredicate for equal floating point constants.
|
||||
EXPECT_TRUE(LV1.satisfiesPredicate(CmpInst::FCMP_OEQ, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_ONE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLT, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGT, LV2));
|
||||
|
||||
LV1.mergeIn(ValueLatticeElement::get(ConstantFP::get(FloatTy, 2.2)),
|
||||
M.getDataLayout());
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OEQ, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_ONE, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OLT, LV2));
|
||||
EXPECT_FALSE(LV1.satisfiesPredicate(CmpInst::FCMP_OGT, LV2));
|
||||
}
|
||||
|
||||
} // end anonymous namespace
|
||||
} // end namespace llvm
|
Loading…
Reference in New Issue
Block a user