Revert: "[Reassociate] Add initial support for vector instructions."

This reverts revision 232190 due to buildbot failure reported on clang-hexagon-elf
for test arm64_vtst.c.  To be investigated.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@232196 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
Robert Lougher 2015-03-13 19:20:46 +00:00
parent 99db0c8856
commit 52a1ca5306
2 changed files with 58 additions and 200 deletions

View File

@ -321,8 +321,10 @@ unsigned Reassociate::getRank(Value *V) {
// If this is a not or neg instruction, do not count it for rank. This
// assures us that X and ~X will have the same rank.
if (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
!BinaryOperator::isFNeg(I))
Type *Ty = V->getType();
if ((!Ty->isIntegerTy() && !Ty->isFloatingPointTy()) ||
(!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
!BinaryOperator::isFNeg(I)))
++Rank;
DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
@ -349,7 +351,7 @@ void Reassociate::canonicalizeOperands(Instruction *I) {
static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
if (S1->getType()->isIntegerTy())
return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
else {
BinaryOperator *Res =
@ -361,7 +363,7 @@ static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
if (S1->getType()->isIntegerTy())
return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
else {
BinaryOperator *Res =
@ -373,7 +375,7 @@ static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
Instruction *InsertBefore, Value *FlagsOp) {
if (S1->getType()->isIntOrIntVectorTy())
if (S1->getType()->isIntegerTy())
return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
else {
BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
@ -386,8 +388,8 @@ static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
///
static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
Type *Ty = Neg->getType();
Constant *NegOne = Ty->isIntOrIntVectorTy() ?
ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
Constant *NegOne = Ty->isIntegerTy() ? ConstantInt::getAllOnesValue(Ty)
: ConstantFP::get(Ty, -1.0);
BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
@ -870,7 +872,7 @@ void Reassociate::RewriteExprTree(BinaryOperator *I,
Constant *Undef = UndefValue::get(I->getType());
NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
Undef, Undef, "", I);
if (NewOp->getType()->isFPOrFPVectorTy())
if (NewOp->getType()->isFloatingPointTy())
NewOp->setFastMathFlags(I->getFastMathFlags());
} else {
NewOp = NodesToRewrite.pop_back_val();
@ -1518,8 +1520,8 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
// Insert a new multiply.
Type *Ty = TheOp->getType();
Constant *C = Ty->isIntOrIntVectorTy() ?
ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
Constant *C = Ty->isIntegerTy() ? ConstantInt::get(Ty, NumFound)
: ConstantFP::get(Ty, NumFound);
Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
// Now that we have inserted a multiply, optimize it. This allows us to
@ -1659,7 +1661,7 @@ Value *Reassociate::OptimizeAdd(Instruction *I,
// from an expression will drop a use of maxocc, and this can cause
// RemoveFactorFromExpression on successive values to behave differently.
Instruction *DummyInst =
I->getType()->isIntOrIntVectorTy()
I->getType()->isIntegerTy()
? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
: BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
@ -1790,7 +1792,7 @@ static Value *buildMultiplyTree(IRBuilder<> &Builder,
Value *LHS = Ops.pop_back_val();
do {
if (LHS->getType()->isIntOrIntVectorTy())
if (LHS->getType()->isIntegerTy())
LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
else
LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
@ -2088,9 +2090,8 @@ void Reassociate::OptimizeInst(Instruction *I) {
if (I->isCommutative())
canonicalizeOperands(I);
// TODO: We should optimize vector Xor instructions, but they are
// currently unsupported.
if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
// Don't optimize vector instructions.
if (I->getType()->isVectorTy())
return;
// Don't optimize floating point instructions that don't have unsafe algebra.
@ -2169,6 +2170,9 @@ void Reassociate::OptimizeInst(Instruction *I) {
}
void Reassociate::ReassociateExpression(BinaryOperator *I) {
assert(!I->getType()->isVectorTy() &&
"Reassociation of vector instructions is not supported.");
// First, walk the expression tree, linearizing the tree, collecting the
// operand information.
SmallVector<RepeatedValue, 8> Tree;

View File

@ -1,192 +1,46 @@
; RUN: opt < %s -reassociate -S | FileCheck %s
; Check that a*c+b*c is turned into (a+b)*c
define <4 x float> @test1(<4 x float> %a, <4 x float> %b, <4 x float> %c) {
; CHECK-LABEL: @test1
; CHECK-NEXT: %tmp = fadd fast <4 x float> %b, %a
; CHECK-NEXT: %tmp1 = fmul fast <4 x float> %tmp, %c
; CHECK-NEXT: ret <4 x float> %tmp1
; Canonicalize operands, but don't optimize floating point vector operations.
define <4 x float> @test1() {
; CHECK-LABEL: test1
; CHECK-NEXT: %tmp1 = fsub fast <4 x float> zeroinitializer, zeroinitializer
; CHECK-NEXT: %tmp2 = fmul fast <4 x float> %tmp1, zeroinitializer
%mul = fmul fast <4 x float> %a, %c
%mul1 = fmul fast <4 x float> %b, %c
%add = fadd fast <4 x float> %mul, %mul1
ret <4 x float> %add
%tmp1 = fsub fast <4 x float> zeroinitializer, zeroinitializer
%tmp2 = fmul fast <4 x float> zeroinitializer, %tmp1
ret <4 x float> %tmp2
}
; Check that a*a*b+a*a*c is turned into a*(a*(b+c)).
define <2 x float> @test2(<2 x float> %a, <2 x float> %b, <2 x float> %c) {
; CHECK-LABEL: @test2
; CHECK-NEXT: fadd fast <2 x float> %c, %b
; CHECK-NEXT: fmul fast <2 x float> %a, %tmp2
; CHECK-NEXT: fmul fast <2 x float> %tmp3, %a
; CHECK-NEXT: ret <2 x float>
; Commute integer vector operations.
define <2 x i32> @test2(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test2
; CHECK-NEXT: %tmp1 = add <2 x i32> %x, %y
; CHECK-NEXT: %tmp2 = add <2 x i32> %x, %y
; CHECK-NEXT: %tmp3 = add <2 x i32> %tmp1, %tmp2
%t0 = fmul fast <2 x float> %a, %b
%t1 = fmul fast <2 x float> %a, %t0
%t2 = fmul fast <2 x float> %a, %c
%t3 = fmul fast <2 x float> %a, %t2
%t4 = fadd fast <2 x float> %t1, %t3
ret <2 x float> %t4
%tmp1 = add <2 x i32> %x, %y
%tmp2 = add <2 x i32> %y, %x
%tmp3 = add <2 x i32> %tmp1, %tmp2
ret <2 x i32> %tmp3
}
; Check that a*b+a*c+d is turned into a*(b+c)+d.
define <2 x double> @test3(<2 x double> %a, <2 x double> %b, <2 x double> %c, <2 x double> %d) {
; CHECK-LABEL: @test3
; CHECK-NEXT: fadd fast <2 x double> %c, %b
; CHECK-NEXT: fmul fast <2 x double> %tmp, %a
; CHECK-NEXT: fadd fast <2 x double> %tmp1, %d
; CHECK-NEXT: ret <2 x double>
define <2 x i32> @test3(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test3
; CHECK-NEXT: %tmp1 = mul <2 x i32> %x, %y
; CHECK-NEXT: %tmp2 = mul <2 x i32> %x, %y
; CHECK-NEXT: %tmp3 = mul <2 x i32> %tmp1, %tmp2
%t0 = fmul fast <2 x double> %a, %b
%t1 = fmul fast <2 x double> %a, %c
%t2 = fadd fast <2 x double> %t1, %d
%t3 = fadd fast <2 x double> %t0, %t2
ret <2 x double> %t3
%tmp1 = mul <2 x i32> %x, %y
%tmp2 = mul <2 x i32> %y, %x
%tmp3 = mul <2 x i32> %tmp1, %tmp2
ret <2 x i32> %tmp3
}
; No fast-math.
define <2 x float> @test4(<2 x float> %A) {
; CHECK-LABEL: @test4
; CHECK-NEXT: %X = fadd <2 x float> %A, <float 1.000000e+00, float 1.000000e+00>
; CHECK-NEXT: %Y = fadd <2 x float> %A, <float 1.000000e+00, float 1.000000e+00>
; CHECK-NEXT: %R = fsub <2 x float> %X, %Y
; CHECK-NEXT: ret <2 x float> %R
%X = fadd <2 x float> %A, < float 1.000000e+00, float 1.000000e+00 >
%Y = fadd <2 x float> %A, < float 1.000000e+00, float 1.000000e+00 >
%R = fsub <2 x float> %X, %Y
ret <2 x float> %R
}
; Check 47*X + 47*X -> 94*X.
define <2 x float> @test5(<2 x float> %X) {
; CHECK-LABEL: @test5
; CHECK-NEXT: fmul fast <2 x float> %X, <float 9.400000e+01, float 9.400000e+01>
; CHECK-NEXT: ret <2 x float>
%Y = fmul fast <2 x float> %X, <float 4.700000e+01, float 4.700000e+01>
%Z = fadd fast <2 x float> %Y, %Y
ret <2 x float> %Z
}
; Check X+X+X -> 3*X.
define <2 x float> @test6(<2 x float> %X) {
; CHECK-LABEL: @test6
; CHECK-NEXT: fmul fast <2 x float> %X, <float 3.000000e+00, float 3.000000e+00>
; CHECK-NEXT: ret <2 x float>
%Y = fadd fast <2 x float> %X ,%X
%Z = fadd fast <2 x float> %Y, %X
ret <2 x float> %Z
}
; Check 127*W+50*W -> 177*W.
define <2 x double> @test7(<2 x double> %W) {
; CHECK-LABEL: @test7
; CHECK-NEXT: fmul fast <2 x double> %W, <double 1.770000e+02, double 1.770000e+02>
; CHECK-NEXT: ret <2 x double>
%X = fmul fast <2 x double> %W, <double 127.0, double 127.0>
%Y = fmul fast <2 x double> %W, <double 50.0, double 50.0>
%Z = fadd fast <2 x double> %Y, %X
ret <2 x double> %Z
}
; Check X*12*12 -> X*144.
define <2 x float> @test8(<2 x float> %arg) {
; CHECK-LABEL: @test8
; CHECK: fmul fast <2 x float> %arg, <float 1.440000e+02, float 1.440000e+02>
; CHECK-NEXT: ret <2 x float> %tmp2
%tmp1 = fmul fast <2 x float> <float 1.200000e+01, float 1.200000e+01>, %arg
%tmp2 = fmul fast <2 x float> %tmp1, <float 1.200000e+01, float 1.200000e+01>
ret <2 x float> %tmp2
}
; Check (b+(a+1234))+-a -> b+1234.
define <2 x double> @test9(<2 x double> %b, <2 x double> %a) {
; CHECK-LABEL: @test9
; CHECK: fadd fast <2 x double> %b, <double 1.234000e+03, double 1.234000e+03>
; CHECK-NEXT: ret <2 x double>
%1 = fadd fast <2 x double> %a, <double 1.234000e+03, double 1.234000e+03>
%2 = fadd fast <2 x double> %b, %1
%3 = fsub fast <2 x double> <double 0.000000e+00, double 0.000000e+00>, %a
%4 = fadd fast <2 x double> %2, %3
ret <2 x double> %4
}
; Check -(-(z*40)*a) -> a*40*z.
define <2 x float> @test10(<2 x float> %a, <2 x float> %b, <2 x float> %z) {
; CHECK-LABEL: @test10
; CHECK: fmul fast <2 x float> %a, <float 4.000000e+01, float 4.000000e+01>
; CHECK-NEXT: fmul fast <2 x float> %e, %z
; CHECK-NEXT: ret <2 x float>
%d = fmul fast <2 x float> %z, <float 4.000000e+01, float 4.000000e+01>
%c = fsub fast <2 x float> <float 0.000000e+00, float 0.000000e+00>, %d
%e = fmul fast <2 x float> %a, %c
%f = fsub fast <2 x float> <float 0.000000e+00, float 0.000000e+00>, %e
ret <2 x float> %f
}
; Check x*y+y*x -> x*y*2.
define <2 x double> @test11(<2 x double> %x, <2 x double> %y) {
; CHECK-LABEL: @test11
; CHECK-NEXT: %factor = fmul fast <2 x double> %y, <double 2.000000e+00, double 2.000000e+00>
; CHECK-NEXT: %tmp1 = fmul fast <2 x double> %factor, %x
; CHECK-NEXT: ret <2 x double> %tmp1
%1 = fmul fast <2 x double> %x, %y
%2 = fmul fast <2 x double> %y, %x
%3 = fadd fast <2 x double> %1, %2
ret <2 x double> %3
}
; FIXME: shifts should be converted to mul to assist further reassociation.
define <2 x i64> @test12(<2 x i64> %b, <2 x i64> %c) {
; CHECK-LABEL: @test12
; CHECK-NEXT: %mul = mul <2 x i64> %c, %b
; CHECK-NEXT: %shl = shl <2 x i64> %mul, <i64 5, i64 5>
; CHECK-NEXT: ret <2 x i64> %shl
%mul = mul <2 x i64> %c, %b
%shl = shl <2 x i64> %mul, <i64 5, i64 5>
ret <2 x i64> %shl
}
; FIXME: expressions with a negative const should be canonicalized to assist
; further reassociation.
; We would expect (-5*b)+a -> a-(5*b) but only the constant operand is commuted.
define <4 x float> @test13(<4 x float> %a, <4 x float> %b) {
; CHECK-LABEL: @test13
; CHECK-NEXT: %mul = fmul fast <4 x float> %b, <float -5.000000e+00, float -5.000000e+00, float -5.000000e+00, float -5.000000e+00>
; CHECK-NEXT: %add = fadd fast <4 x float> %mul, %a
; CHECK-NEXT: ret <4 x float> %add
%mul = fmul fast <4 x float> <float -5.000000e+00, float -5.000000e+00, float -5.000000e+00, float -5.000000e+00>, %b
%add = fadd fast <4 x float> %mul, %a
ret <4 x float> %add
}
; Break up subtract to assist further reassociation.
; Check a+b-c -> a+b+-c.
define <2 x i64> @test14(<2 x i64> %a, <2 x i64> %b, <2 x i64> %c) {
; CHECK-LABEL: @test14
; CHECK-NEXT: %add = add <2 x i64> %b, %a
; CHECK-NEXT: %c.neg = sub <2 x i64> zeroinitializer, %c
; CHECK-NEXT: %sub = add <2 x i64> %add, %c.neg
; CHECK-NEXT: ret <2 x i64> %sub
%add = add <2 x i64> %b, %a
%sub = sub <2 x i64> %add, %c
ret <2 x i64> %sub
}
define <2 x i32> @test15(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test15
; CHECK-NEXT: %tmp3 = and <2 x i32> %y, %x
; CHECK-NEXT: ret <2 x i32> %tmp3
define <2 x i32> @test4(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test4
; CHECK-NEXT: %tmp1 = and <2 x i32> %x, %y
; CHECK-NEXT: %tmp2 = and <2 x i32> %x, %y
; CHECK-NEXT: %tmp3 = and <2 x i32> %tmp1, %tmp2
%tmp1 = and <2 x i32> %x, %y
%tmp2 = and <2 x i32> %y, %x
@ -194,10 +48,11 @@ define <2 x i32> @test15(<2 x i32> %x, <2 x i32> %y) {
ret <2 x i32> %tmp3
}
define <2 x i32> @test16(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test16
; CHECK-NEXT: %tmp3 = or <2 x i32> %y, %x
; CHECK-NEXT: ret <2 x i32> %tmp3
define <2 x i32> @test5(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test5
; CHECK-NEXT: %tmp1 = or <2 x i32> %x, %y
; CHECK-NEXT: %tmp2 = or <2 x i32> %x, %y
; CHECK-NEXT: %tmp3 = or <2 x i32> %tmp1, %tmp2
%tmp1 = or <2 x i32> %x, %y
%tmp2 = or <2 x i32> %y, %x
@ -205,9 +60,8 @@ define <2 x i32> @test16(<2 x i32> %x, <2 x i32> %y) {
ret <2 x i32> %tmp3
}
; FIXME: Optimize vector xor. Currently only commute operands.
define <2 x i32> @test17(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test17
define <2 x i32> @test6(<2 x i32> %x, <2 x i32> %y) {
; CHECK-LABEL: test6
; CHECK-NEXT: %tmp1 = xor <2 x i32> %x, %y
; CHECK-NEXT: %tmp2 = xor <2 x i32> %x, %y
; CHECK-NEXT: %tmp3 = xor <2 x i32> %tmp1, %tmp2