mirror of
https://github.com/RPCS3/llvm.git
synced 2024-12-02 08:46:37 +00:00
Rewrite the SDep class, and simplify some of the related code.
The Cost field is removed. It was only being used in a very limited way, to indicate when the scheduler should attempt to protect a live register, and it isn't really needed to do that. If we ever want the scheduler to start inserting copies in non-prohibitive situations, we'll have to rethink some things anyway. A Latency field is added. Instead of giving each node a single fixed latency, each edge can have its own latency. This will eventually be used to model various micro-architecture properties more accurately. The PointerIntPair class and an internal union are now used, which reduce the overall size. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@60806 91177308-0d34-0410-b5e6-96231b3b80d8
This commit is contained in:
parent
5a45bf1b48
commit
54e4c36a73
@ -20,6 +20,7 @@
|
||||
#include "llvm/ADT/BitVector.h"
|
||||
#include "llvm/ADT/GraphTraits.h"
|
||||
#include "llvm/ADT/SmallVector.h"
|
||||
#include "llvm/ADT/PointerIntPair.h"
|
||||
|
||||
namespace llvm {
|
||||
struct SUnit;
|
||||
@ -39,20 +40,174 @@ namespace llvm {
|
||||
class TargetRegisterClass;
|
||||
template<class Graph> class GraphWriter;
|
||||
|
||||
/// SDep - Scheduling dependency. It keeps track of dependent nodes,
|
||||
/// cost of the depdenency, etc.
|
||||
struct SDep {
|
||||
SUnit *Dep; // Dependent - either a predecessor or a successor.
|
||||
unsigned Reg; // If non-zero, this dep is a physreg dependency.
|
||||
int Cost; // Cost of the dependency.
|
||||
bool isCtrl : 1; // True iff it's a control dependency.
|
||||
bool isArtificial : 1; // True iff it's an artificial ctrl dep added
|
||||
// during sched that may be safely deleted if
|
||||
// necessary.
|
||||
bool isAntiDep : 1; // True iff it's an anti-dependency (on a physical
|
||||
// register.
|
||||
SDep(SUnit *d, unsigned r, int t, bool c, bool a, bool anti)
|
||||
: Dep(d), Reg(r), Cost(t), isCtrl(c), isArtificial(a), isAntiDep(anti) {}
|
||||
/// SDep - Scheduling dependency. This represents one direction of an
|
||||
/// edge in the scheduling DAG.
|
||||
class SDep {
|
||||
public:
|
||||
/// Kind - These are the different kinds of scheduling dependencies.
|
||||
enum Kind {
|
||||
Data, ///< Regular data dependence (aka true-dependence).
|
||||
Anti, ///< A register anti-dependedence (aka WAR).
|
||||
Output, ///< A register output-dependence (aka WAW).
|
||||
Order ///< Any other ordering dependency.
|
||||
};
|
||||
|
||||
private:
|
||||
/// Dep - A pointer to the depending/depended-on SUnit, and an enum
|
||||
/// indicating the kind of the dependency.
|
||||
PointerIntPair<SUnit *, 2, Kind> Dep;
|
||||
|
||||
/// Contents - A union discriminated by the dependence kind.
|
||||
union {
|
||||
/// Reg - For Data, Anti, and Output dependencies, the associated
|
||||
/// register. For Data dependencies that don't currently have a register
|
||||
/// assigned, this is set to zero.
|
||||
unsigned Reg;
|
||||
|
||||
/// Order - Additional information about Order dependencies.
|
||||
struct {
|
||||
/// isNormalMemory - True if both sides of the dependence
|
||||
/// access memory in non-volatile and fully modeled ways.
|
||||
bool isNormalMemory : 1;
|
||||
|
||||
/// isMustAlias - True if both sides of the dependence are known to
|
||||
/// access the same memory.
|
||||
bool isMustAlias : 1;
|
||||
|
||||
/// isArtificial - True if this is an artificial dependency, meaning
|
||||
/// it is not necessary for program correctness, and may be safely
|
||||
/// deleted if necessary.
|
||||
bool isArtificial : 1;
|
||||
} Order;
|
||||
} Contents;
|
||||
|
||||
/// Latency - The time associated with this edge. Often this is just
|
||||
/// the value of the Latency field of the predecessor, however advanced
|
||||
/// models may provide additional information about specific edges.
|
||||
unsigned Latency;
|
||||
|
||||
public:
|
||||
/// SDep - Construct a null SDep. This is only for use by container
|
||||
/// classes which require default constructors. SUnits may not
|
||||
/// have null SDep edges.
|
||||
SDep() : Dep(0, Data) {}
|
||||
|
||||
/// SDep - Construct an SDep with the specified values.
|
||||
SDep(SUnit *S, Kind kind, unsigned latency = 1, unsigned Reg = 0,
|
||||
bool isNormalMemory = false, bool isMustAlias = false,
|
||||
bool isArtificial = false)
|
||||
: Dep(S, kind), Contents(), Latency(latency) {
|
||||
switch (kind) {
|
||||
case Anti:
|
||||
case Output:
|
||||
assert(Reg != 0 &&
|
||||
"SDep::Anti and SDep::Output must use a non-zero Reg!");
|
||||
// fall through
|
||||
case Data:
|
||||
assert(!isMustAlias && "isMustAlias only applies with SDep::Order!");
|
||||
assert(!isArtificial && "isArtificial only applies with SDep::Order!");
|
||||
Contents.Reg = Reg;
|
||||
break;
|
||||
case Order:
|
||||
assert(Reg == 0 && "Reg given for non-register dependence!");
|
||||
Contents.Order.isNormalMemory = isNormalMemory;
|
||||
Contents.Order.isMustAlias = isMustAlias;
|
||||
Contents.Order.isArtificial = isArtificial;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
bool operator==(const SDep &Other) const {
|
||||
if (Dep != Other.Dep) return false;
|
||||
switch (Dep.getInt()) {
|
||||
case Data:
|
||||
case Anti:
|
||||
case Output:
|
||||
return Contents.Reg == Other.Contents.Reg;
|
||||
case Order:
|
||||
return Contents.Order.isNormalMemory ==
|
||||
Other.Contents.Order.isNormalMemory &&
|
||||
Contents.Order.isMustAlias == Other.Contents.Order.isMustAlias &&
|
||||
Contents.Order.isArtificial == Other.Contents.Order.isArtificial;
|
||||
}
|
||||
assert(0 && "Invalid dependency kind!");
|
||||
return false;
|
||||
}
|
||||
|
||||
bool operator!=(const SDep &Other) const {
|
||||
return !operator==(Other);
|
||||
}
|
||||
|
||||
/// getLatency - Return the latency value for this edge, which roughly
|
||||
/// means the minimum number of cycles that must elapse between the
|
||||
/// predecessor and the successor, given that they have this edge
|
||||
/// between them.
|
||||
unsigned getLatency() const {
|
||||
return Latency;
|
||||
}
|
||||
|
||||
//// getSUnit - Return the SUnit to which this edge points.
|
||||
SUnit *getSUnit() const {
|
||||
return Dep.getPointer();
|
||||
}
|
||||
|
||||
//// setSUnit - Assign the SUnit to which this edge points.
|
||||
void setSUnit(SUnit *SU) {
|
||||
Dep.setPointer(SU);
|
||||
}
|
||||
|
||||
/// getKind - Return an enum value representing the kind of the dependence.
|
||||
Kind getKind() const {
|
||||
return Dep.getInt();
|
||||
}
|
||||
|
||||
/// isCtrl - Shorthand for getKind() != SDep::Data.
|
||||
bool isCtrl() const {
|
||||
return getKind() != Data;
|
||||
}
|
||||
|
||||
/// isArtificial - Test if this is an Order dependence that is marked
|
||||
/// as "artificial", meaning it isn't necessary for correctness.
|
||||
bool isArtificial() const {
|
||||
return getKind() == Order && Contents.Order.isArtificial;
|
||||
}
|
||||
|
||||
/// isMustAlias - Test if this is an Order dependence that is marked
|
||||
/// as "must alias", meaning that the SUnits at either end of the edge
|
||||
/// have a memory dependence on a known memory location.
|
||||
bool isMustAlias() const {
|
||||
return getKind() == Order && Contents.Order.isMustAlias;
|
||||
}
|
||||
|
||||
/// isAssignedRegDep - Test if this is a Data dependence that is
|
||||
/// associated with a register.
|
||||
bool isAssignedRegDep() const {
|
||||
return getKind() == Data && Contents.Reg != 0;
|
||||
}
|
||||
|
||||
/// getReg - Return the register associated with this edge. This is
|
||||
/// only valid on Data, Anti, and Output edges. On Data edges, this
|
||||
/// value may be zero, meaning there is no associated register.
|
||||
unsigned getReg() const {
|
||||
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
||||
"getReg called on non-register dependence edge!");
|
||||
return Contents.Reg;
|
||||
}
|
||||
|
||||
/// setReg - Assign the associated register for this edge. This is
|
||||
/// only valid on Data, Anti, and Output edges. On Anti and Output
|
||||
/// edges, this value must not be zero. On Data edges, the value may
|
||||
/// be zero, which would mean that no specific register is associated
|
||||
/// with this edge.
|
||||
void setReg(unsigned Reg) {
|
||||
assert((getKind() == Data || getKind() == Anti || getKind() == Output) &&
|
||||
"setReg called on non-register dependence edge!");
|
||||
assert((getKind() != Anti || Reg != 0) &&
|
||||
"SDep::Anti edge cannot use the zero register!");
|
||||
assert((getKind() != Output || Reg != 0) &&
|
||||
"SDep::Output edge cannot use the zero register!");
|
||||
Contents.Reg = Reg;
|
||||
}
|
||||
};
|
||||
|
||||
/// SUnit - Scheduling unit. This is a node in the scheduling DAG.
|
||||
@ -77,8 +232,8 @@ namespace llvm {
|
||||
unsigned NodeNum; // Entry # of node in the node vector.
|
||||
unsigned NodeQueueId; // Queue id of node.
|
||||
unsigned short Latency; // Node latency.
|
||||
short NumPreds; // # of non-control preds.
|
||||
short NumSuccs; // # of non-control sucss.
|
||||
short NumPreds; // # of SDep::Data preds.
|
||||
short NumSuccs; // # of SDep::Data sucss.
|
||||
short NumPredsLeft; // # of preds not scheduled.
|
||||
short NumSuccsLeft; // # of succs not scheduled.
|
||||
bool isTwoAddress : 1; // Is a two-address instruction.
|
||||
@ -142,21 +297,23 @@ namespace llvm {
|
||||
return Instr;
|
||||
}
|
||||
|
||||
/// addPred - This adds the specified node as a pred of the current node if
|
||||
/// addPred - This adds the specified edge as a pred of the current node if
|
||||
/// not already. It also adds the current node as a successor of the
|
||||
/// specified node. This returns true if this is a new pred.
|
||||
bool addPred(SUnit *N, bool isCtrl, bool isArtificial,
|
||||
unsigned PhyReg = 0, int Cost = 1, bool isAntiDep = false) {
|
||||
bool addPred(const SDep &D) {
|
||||
// If this node already has this depenence, don't add a redundant one.
|
||||
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
|
||||
if (Preds[i].Dep == N &&
|
||||
Preds[i].isCtrl == isCtrl &&
|
||||
Preds[i].isArtificial == isArtificial &&
|
||||
Preds[i].isAntiDep == isAntiDep)
|
||||
if (Preds[i] == D)
|
||||
return false;
|
||||
Preds.push_back(SDep(N, PhyReg, Cost, isCtrl, isArtificial, isAntiDep));
|
||||
N->Succs.push_back(SDep(this, PhyReg, Cost, isCtrl,
|
||||
isArtificial, isAntiDep));
|
||||
if (!isCtrl) {
|
||||
// Add a pred to this SUnit.
|
||||
Preds.push_back(D);
|
||||
// Now add a corresponding succ to N.
|
||||
SDep P = D;
|
||||
P.setSUnit(this);
|
||||
SUnit *N = D.getSUnit();
|
||||
N->Succs.push_back(P);
|
||||
// Update the bookkeeping.
|
||||
if (D.getKind() == SDep::Data) {
|
||||
++NumPreds;
|
||||
++N->NumSuccs;
|
||||
}
|
||||
@ -167,26 +324,31 @@ namespace llvm {
|
||||
return true;
|
||||
}
|
||||
|
||||
bool removePred(SUnit *N, bool isCtrl, bool isArtificial, bool isAntiDep) {
|
||||
/// removePred - This removes the specified edge as a pred of the current
|
||||
/// node if it exists. It also removes the current node as a successor of
|
||||
/// the specified node. This returns true if the edge existed and was
|
||||
/// removed.
|
||||
bool removePred(const SDep &D) {
|
||||
// Find the matching predecessor.
|
||||
for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Dep == N &&
|
||||
I->isCtrl == isCtrl &&
|
||||
I->isArtificial == isArtificial &&
|
||||
I->isAntiDep == isAntiDep) {
|
||||
if (*I == D) {
|
||||
bool FoundSucc = false;
|
||||
// Find the corresponding successor in N.
|
||||
SDep P = D;
|
||||
P.setSUnit(this);
|
||||
SUnit *N = D.getSUnit();
|
||||
for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(),
|
||||
EE = N->Succs.end(); II != EE; ++II)
|
||||
if (II->Dep == this &&
|
||||
II->isCtrl == isCtrl && II->isArtificial == isArtificial &&
|
||||
II->isAntiDep == isAntiDep) {
|
||||
if (*II == P) {
|
||||
FoundSucc = true;
|
||||
N->Succs.erase(II);
|
||||
break;
|
||||
}
|
||||
assert(FoundSucc && "Mismatching preds / succs lists!");
|
||||
Preds.erase(I);
|
||||
if (!isCtrl) {
|
||||
// Update the bookkeeping;
|
||||
if (D.getKind() == SDep::Data) {
|
||||
--NumPreds;
|
||||
--N->NumSuccs;
|
||||
}
|
||||
@ -201,14 +363,14 @@ namespace llvm {
|
||||
|
||||
bool isPred(SUnit *N) {
|
||||
for (unsigned i = 0, e = (unsigned)Preds.size(); i != e; ++i)
|
||||
if (Preds[i].Dep == N)
|
||||
if (Preds[i].getSUnit() == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
bool isSucc(SUnit *N) {
|
||||
for (unsigned i = 0, e = (unsigned)Succs.size(); i != e; ++i)
|
||||
if (Succs[i].Dep == N)
|
||||
if (Succs[i].getSUnit() == N)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
@ -366,7 +528,7 @@ namespace llvm {
|
||||
}
|
||||
|
||||
pointer operator*() const {
|
||||
return Node->Preds[Operand].Dep;
|
||||
return Node->Preds[Operand].getSUnit();
|
||||
}
|
||||
pointer operator->() const { return operator*(); }
|
||||
|
||||
@ -385,8 +547,13 @@ namespace llvm {
|
||||
|
||||
unsigned getOperand() const { return Operand; }
|
||||
const SUnit *getNode() const { return Node; }
|
||||
bool isCtrlDep() const { return Node->Preds[Operand].isCtrl; }
|
||||
bool isArtificialDep() const { return Node->Preds[Operand].isArtificial; }
|
||||
/// isCtrlDep - Test if this is not an SDep::Data dependence.
|
||||
bool isCtrlDep() const {
|
||||
return Node->Preds[Operand].isCtrl();
|
||||
}
|
||||
bool isArtificialDep() const {
|
||||
return Node->Preds[Operand].isArtificial();
|
||||
}
|
||||
};
|
||||
|
||||
template <> struct GraphTraits<SUnit*> {
|
||||
|
@ -18,22 +18,6 @@
|
||||
#include "llvm/CodeGen/ScheduleDAG.h"
|
||||
|
||||
namespace llvm {
|
||||
struct SUnit;
|
||||
class MachineConstantPool;
|
||||
class MachineFunction;
|
||||
class MachineModuleInfo;
|
||||
class MachineRegisterInfo;
|
||||
class MachineInstr;
|
||||
class TargetRegisterInfo;
|
||||
class ScheduleDAG;
|
||||
class SelectionDAG;
|
||||
class SelectionDAGISel;
|
||||
class TargetInstrInfo;
|
||||
class TargetInstrDesc;
|
||||
class TargetLowering;
|
||||
class TargetMachine;
|
||||
class TargetRegisterClass;
|
||||
|
||||
class ScheduleDAGInstrs : public ScheduleDAG {
|
||||
public:
|
||||
ScheduleDAGInstrs(MachineBasicBlock *bb,
|
||||
|
@ -20,22 +20,6 @@
|
||||
#include "llvm/ADT/SmallSet.h"
|
||||
|
||||
namespace llvm {
|
||||
struct SUnit;
|
||||
class MachineConstantPool;
|
||||
class MachineFunction;
|
||||
class MachineModuleInfo;
|
||||
class MachineRegisterInfo;
|
||||
class MachineInstr;
|
||||
class TargetRegisterInfo;
|
||||
class ScheduleDAG;
|
||||
class SelectionDAG;
|
||||
class SelectionDAGISel;
|
||||
class TargetInstrInfo;
|
||||
class TargetInstrDesc;
|
||||
class TargetLowering;
|
||||
class TargetMachine;
|
||||
class TargetRegisterClass;
|
||||
|
||||
/// HazardRecognizer - This determines whether or not an instruction can be
|
||||
/// issued this cycle, and whether or not a noop needs to be inserted to handle
|
||||
/// the hazard.
|
||||
|
@ -57,14 +57,13 @@ int LatencyPriorityQueue::CalcLatency(const SUnit &SU) {
|
||||
unsigned MaxSuccLatency = 0;
|
||||
for (SUnit::const_succ_iterator I = Cur->Succs.begin(),E = Cur->Succs.end();
|
||||
I != E; ++I) {
|
||||
int SuccLatency = Latencies[I->Dep->NodeNum];
|
||||
int SuccLatency = Latencies[I->getSUnit()->NodeNum];
|
||||
if (SuccLatency == -1) {
|
||||
AllDone = false;
|
||||
WorkList.push_back(I->Dep);
|
||||
WorkList.push_back(I->getSUnit());
|
||||
} else {
|
||||
// This assumes that there's no delay for reusing registers.
|
||||
unsigned NewLatency =
|
||||
SuccLatency + ((I->isCtrl && I->Reg != 0) ? 1 : CurLatency);
|
||||
unsigned NewLatency = SuccLatency + CurLatency;
|
||||
MaxSuccLatency = std::max(MaxSuccLatency, NewLatency);
|
||||
}
|
||||
}
|
||||
@ -99,7 +98,7 @@ void LatencyPriorityQueue::CalculatePriorities() {
|
||||
Latency = SU->Latency + SuccLat;
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
WorkList.push_back(std::make_pair(I->Dep, Latency));
|
||||
WorkList.push_back(std::make_pair(I->getSUnit(), Latency));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -110,7 +109,7 @@ SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
|
||||
SUnit *OnlyAvailablePred = 0;
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit &Pred = *I->Dep;
|
||||
SUnit &Pred = *I->getSUnit();
|
||||
if (!Pred.isScheduled) {
|
||||
// We found an available, but not scheduled, predecessor. If it's the
|
||||
// only one we have found, keep track of it... otherwise give up.
|
||||
@ -129,7 +128,7 @@ void LatencyPriorityQueue::push_impl(SUnit *SU) {
|
||||
unsigned NumNodesBlocking = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
if (getSingleUnscheduledPred(I->Dep) == SU)
|
||||
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
|
||||
++NumNodesBlocking;
|
||||
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
|
||||
|
||||
@ -144,7 +143,7 @@ void LatencyPriorityQueue::push_impl(SUnit *SU) {
|
||||
void LatencyPriorityQueue::ScheduledNode(SUnit *SU) {
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
AdjustPriorityOfUnscheduledPreds(I->Dep);
|
||||
AdjustPriorityOfUnscheduledPreds(I->getSUnit());
|
||||
}
|
||||
|
||||
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
||||
|
@ -78,7 +78,7 @@ namespace {
|
||||
void Schedule();
|
||||
|
||||
private:
|
||||
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
||||
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
bool BreakAntiDependencies();
|
||||
@ -160,12 +160,13 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
SUnit *SU = &SUnits[*I];
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P) {
|
||||
SUnit *PredSU = P->Dep;
|
||||
SUnit *PredSU = P->getSUnit();
|
||||
// This assumes that there's no delay for reusing registers.
|
||||
unsigned PredLatency = (P->isCtrl && P->Reg != 0) ? 1 : PredSU->Latency;
|
||||
unsigned PredLatency = P->getLatency();
|
||||
unsigned PredTotalLatency = PredSU->CycleBound + PredLatency;
|
||||
if (SU->CycleBound < PredTotalLatency ||
|
||||
(SU->CycleBound == PredTotalLatency && !P->isAntiDep)) {
|
||||
(SU->CycleBound == PredTotalLatency &&
|
||||
P->getKind() == SDep::Anti)) {
|
||||
SU->CycleBound = PredTotalLatency;
|
||||
CriticalPath[*I] = &*P;
|
||||
}
|
||||
@ -195,13 +196,13 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
BitVector AllocatableSet = TRI->getAllocatableSet(*MF);
|
||||
DenseMap<MachineInstr *, unsigned> CriticalAntiDeps;
|
||||
for (SUnit *SU = Max; CriticalPath[SU->NodeNum];
|
||||
SU = CriticalPath[SU->NodeNum]->Dep) {
|
||||
SU = CriticalPath[SU->NodeNum]->getSUnit()) {
|
||||
SDep *Edge = CriticalPath[SU->NodeNum];
|
||||
SUnit *NextSU = Edge->Dep;
|
||||
unsigned AntiDepReg = Edge->Reg;
|
||||
SUnit *NextSU = Edge->getSUnit();
|
||||
// Only consider anti-dependence edges.
|
||||
if (!Edge->isAntiDep)
|
||||
if (Edge->getKind() != SDep::Anti)
|
||||
continue;
|
||||
unsigned AntiDepReg = Edge->getReg();
|
||||
assert(AntiDepReg != 0 && "Anti-dependence on reg0?");
|
||||
// Don't break anti-dependencies on non-allocatable registers.
|
||||
if (!AllocatableSet.test(AntiDepReg))
|
||||
@ -213,9 +214,9 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
// break it.
|
||||
for (SUnit::pred_iterator P = SU->Preds.begin(), PE = SU->Preds.end();
|
||||
P != PE; ++P)
|
||||
if (P->Dep == NextSU ?
|
||||
(!P->isAntiDep || P->Reg != AntiDepReg) :
|
||||
(!P->isCtrl && !P->isAntiDep && P->Reg == AntiDepReg)) {
|
||||
if (P->getSUnit() == NextSU ?
|
||||
(P->getKind() != SDep::Anti || P->getReg() != AntiDepReg) :
|
||||
(P->getKind() == SDep::Data && P->getReg() == AntiDepReg)) {
|
||||
AntiDepReg = 0;
|
||||
break;
|
||||
}
|
||||
@ -539,7 +540,8 @@ bool SchedulePostRATDList::BreakAntiDependencies() {
|
||||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
||||
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
||||
void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
||||
SUnit *SuccSU = SuccEdge->getSUnit();
|
||||
--SuccSU->NumPredsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -554,14 +556,7 @@ void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
||||
// Compute how many cycles it will be before this actually becomes
|
||||
// available. This is the max of the start time of all predecessors plus
|
||||
// their latencies.
|
||||
// If this is a token edge, we don't need to wait for the latency of the
|
||||
// preceeding instruction (e.g. a long-latency load) unless there is also
|
||||
// some other data dependence.
|
||||
unsigned PredDoneCycle = SU->Cycle;
|
||||
if (!isChain)
|
||||
PredDoneCycle += SU->Latency;
|
||||
else if (SU->Latency)
|
||||
PredDoneCycle += 1;
|
||||
unsigned PredDoneCycle = SU->Cycle + SuccEdge->getLatency();
|
||||
SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
|
||||
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
@ -582,7 +577,7 @@ void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
ReleaseSucc(SU, I->Dep, I->isCtrl);
|
||||
ReleaseSucc(SU, &*I);
|
||||
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue.ScheduledNode(SU);
|
||||
@ -616,7 +611,7 @@ void SchedulePostRATDList::ListScheduleTopDown() {
|
||||
PendingQueue.pop_back();
|
||||
--i; --e;
|
||||
} else {
|
||||
assert(PendingQueue[i]->CycleBound > CurCycle && "Negative latency?");
|
||||
assert(PendingQueue[i]->CycleBound > CurCycle && "Non-positive latency?");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -67,7 +67,7 @@ void ScheduleDAG::CalculateDepths() {
|
||||
// So, just iterate over all predecessors and take the longest path
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
unsigned PredDepth = I->Dep->Depth;
|
||||
unsigned PredDepth = I->getSUnit()->Depth;
|
||||
if (PredDepth+1 > SUDepth) {
|
||||
SUDepth = PredDepth + 1;
|
||||
}
|
||||
@ -78,7 +78,7 @@ void ScheduleDAG::CalculateDepths() {
|
||||
// Update degrees of all nodes depending on current SUnit
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
SUnit *SU = I->getSUnit();
|
||||
if (!--SU->Depth)
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the longest path for the node can be computed now
|
||||
@ -122,7 +122,7 @@ void ScheduleDAG::CalculateHeights() {
|
||||
// So, just iterate over all successors and take the longest path
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
unsigned SuccHeight = I->Dep->Height;
|
||||
unsigned SuccHeight = I->getSUnit()->Height;
|
||||
if (SuccHeight+1 > SUHeight) {
|
||||
SUHeight = SuccHeight + 1;
|
||||
}
|
||||
@ -133,7 +133,7 @@ void ScheduleDAG::CalculateHeights() {
|
||||
// Update degrees of all nodes depending on current SUnit
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
SUnit *SU = I->getSUnit();
|
||||
if (!--SU->Height)
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the longest path for the node can be computed now
|
||||
@ -183,12 +183,16 @@ void SUnit::dumpAll(const ScheduleDAG *G) const {
|
||||
cerr << " Predecessors:\n";
|
||||
for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
cerr << " ch #";
|
||||
else
|
||||
cerr << " val #";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
||||
if (I->isArtificial)
|
||||
cerr << " ";
|
||||
switch (I->getKind()) {
|
||||
case SDep::Data: cerr << "val "; break;
|
||||
case SDep::Anti: cerr << "anti"; break;
|
||||
case SDep::Output: cerr << "out "; break;
|
||||
case SDep::Order: cerr << "ch "; break;
|
||||
}
|
||||
cerr << "#";
|
||||
cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
|
||||
if (I->isArtificial())
|
||||
cerr << " *";
|
||||
cerr << "\n";
|
||||
}
|
||||
@ -197,12 +201,16 @@ void SUnit::dumpAll(const ScheduleDAG *G) const {
|
||||
cerr << " Successors:\n";
|
||||
for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
cerr << " ch #";
|
||||
else
|
||||
cerr << " val #";
|
||||
cerr << I->Dep << " - SU(" << I->Dep->NodeNum << ")";
|
||||
if (I->isArtificial)
|
||||
cerr << " ";
|
||||
switch (I->getKind()) {
|
||||
case SDep::Data: cerr << "val "; break;
|
||||
case SDep::Anti: cerr << "anti"; break;
|
||||
case SDep::Output: cerr << "out "; break;
|
||||
case SDep::Order: cerr << "ch "; break;
|
||||
}
|
||||
cerr << "#";
|
||||
cerr << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")";
|
||||
if (I->isArtificial())
|
||||
cerr << " *";
|
||||
cerr << "\n";
|
||||
}
|
||||
@ -324,7 +332,7 @@ void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
|
||||
Allocate(SU->NodeNum, --Id);
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
SUnit *SU = I->Dep;
|
||||
SUnit *SU = I->getSUnit();
|
||||
if (!--Node2Index[SU->NodeNum])
|
||||
// If all dependencies of the node are processed already,
|
||||
// then the node can be computed now.
|
||||
@ -340,7 +348,7 @@ void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
|
||||
SUnit *SU = &SUnits[i];
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
assert(Node2Index[SU->NodeNum] > Node2Index[I->Dep->NodeNum] &&
|
||||
assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
|
||||
"Wrong topological sorting");
|
||||
}
|
||||
}
|
||||
@ -386,14 +394,14 @@ void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
|
||||
WorkList.pop_back();
|
||||
Visited.set(SU->NodeNum);
|
||||
for (int I = SU->Succs.size()-1; I >= 0; --I) {
|
||||
int s = SU->Succs[I].Dep->NodeNum;
|
||||
int s = SU->Succs[I].getSUnit()->NodeNum;
|
||||
if (Node2Index[s] == UpperBound) {
|
||||
HasLoop = true;
|
||||
return;
|
||||
}
|
||||
// Visit successors if not already and in affected region.
|
||||
if (!Visited.test(s) && Node2Index[s] < UpperBound) {
|
||||
WorkList.push_back(SU->Succs[I].Dep);
|
||||
WorkList.push_back(SU->Succs[I].getSUnit());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -434,7 +442,8 @@ bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
|
||||
return true;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (I->Cost < 0 && IsReachable(TargetSU, I->Dep))
|
||||
if (I->isAssignedRegDep() &&
|
||||
IsReachable(TargetSU, I->getSUnit()))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
@ -40,31 +40,31 @@ void ScheduleDAG::EmitCrossRCCopy(SUnit *SU,
|
||||
DenseMap<SUnit*, unsigned> &VRBaseMap) {
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue; // ignore chain preds
|
||||
if (I->Dep->CopyDstRC) {
|
||||
if (I->isCtrl()) continue; // ignore chain preds
|
||||
if (I->getSUnit()->CopyDstRC) {
|
||||
// Copy to physical register.
|
||||
DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->Dep);
|
||||
DenseMap<SUnit*, unsigned>::iterator VRI = VRBaseMap.find(I->getSUnit());
|
||||
assert(VRI != VRBaseMap.end() && "Node emitted out of order - late");
|
||||
// Find the destination physical register.
|
||||
unsigned Reg = 0;
|
||||
for (SUnit::const_succ_iterator II = SU->Succs.begin(),
|
||||
EE = SU->Succs.end(); II != EE; ++II) {
|
||||
if (I->Reg) {
|
||||
Reg = I->Reg;
|
||||
if (I->getReg()) {
|
||||
Reg = I->getReg();
|
||||
break;
|
||||
}
|
||||
}
|
||||
assert(I->Reg && "Unknown physical register!");
|
||||
assert(I->getReg() && "Unknown physical register!");
|
||||
TII->copyRegToReg(*BB, BB->end(), Reg, VRI->second,
|
||||
SU->CopyDstRC, SU->CopySrcRC);
|
||||
} else {
|
||||
// Copy from physical register.
|
||||
assert(I->Reg && "Unknown physical register!");
|
||||
assert(I->getReg() && "Unknown physical register!");
|
||||
unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
|
||||
bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
|
||||
isNew = isNew; // Silence compiler warning.
|
||||
assert(isNew && "Node emitted out of order - early");
|
||||
TII->copyRegToReg(*BB, BB->end(), VRBase, I->Reg,
|
||||
TII->copyRegToReg(*BB, BB->end(), VRBase, I->getReg(),
|
||||
SU->CopyDstRC, SU->CopySrcRC);
|
||||
}
|
||||
break;
|
||||
|
@ -30,7 +30,6 @@ ScheduleDAGInstrs::ScheduleDAGInstrs(MachineBasicBlock *bb,
|
||||
void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
SUnits.clear();
|
||||
SUnits.reserve(BB->size());
|
||||
int Cost = 1; // FIXME
|
||||
|
||||
// We build scheduling units by walking a block's instruction list from bottom
|
||||
// to top.
|
||||
@ -63,6 +62,9 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
MachineInstr *MI = prior(MII);
|
||||
SUnit *SU = NewSUnit(MI);
|
||||
|
||||
// Assign the Latency field of SU using target-provided information.
|
||||
ComputeLatency(SU);
|
||||
|
||||
// Add register-based dependencies (data, anti, and output).
|
||||
for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
|
||||
const MachineOperand &MO = MI->getOperand(j);
|
||||
@ -74,28 +76,27 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
std::vector<SUnit *> &UseList = Uses[Reg];
|
||||
SUnit *&Def = Defs[Reg];
|
||||
// Optionally add output and anti dependencies.
|
||||
// TODO: Using a latency of 1 here assumes there's no cost for
|
||||
// reusing registers.
|
||||
SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
|
||||
if (Def && Def != SU)
|
||||
Def->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false,
|
||||
/*PhyReg=*/Reg, Cost, /*isAntiDep=*/MO.isUse());
|
||||
Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/Reg));
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
SUnit *&Def = Defs[*Alias];
|
||||
if (Def && Def != SU)
|
||||
Def->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false,
|
||||
/*PhyReg=*/*Alias, Cost, /*isAntiDep=*/MO.isUse());
|
||||
Def->addPred(SDep(SU, Kind, /*Latency=*/1, /*Reg=*/ *Alias));
|
||||
}
|
||||
|
||||
if (MO.isDef()) {
|
||||
// Add any data dependencies.
|
||||
for (unsigned i = 0, e = UseList.size(); i != e; ++i)
|
||||
if (UseList[i] != SU)
|
||||
UseList[i]->addPred(SU, /*isCtrl=*/false, /*isArtificial=*/false,
|
||||
/*PhysReg=*/Reg, Cost);
|
||||
UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, Reg));
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
|
||||
std::vector<SUnit *> &UseList = Uses[*Alias];
|
||||
for (unsigned i = 0, e = UseList.size(); i != e; ++i)
|
||||
if (UseList[i] != SU)
|
||||
UseList[i]->addPred(SU, /*isCtrl=*/false, /*isArtificial=*/false,
|
||||
/*PhysReg=*/*Alias, Cost);
|
||||
UseList[i]->addPred(SDep(SU, SDep::Data, SU->Latency, *Alias));
|
||||
}
|
||||
|
||||
UseList.clear();
|
||||
@ -117,20 +118,20 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
// This is the conservative case. Add dependencies on all memory
|
||||
// references.
|
||||
if (Chain)
|
||||
Chain->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
Chain = SU;
|
||||
for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
|
||||
PendingLoads[k]->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
PendingLoads[k]->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
PendingLoads.clear();
|
||||
for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
|
||||
E = MemDefs.end(); I != E; ++I) {
|
||||
I->second->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
I->second->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
I->second = SU;
|
||||
}
|
||||
for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
|
||||
MemUses.begin(), E = MemUses.end(); I != E; ++I) {
|
||||
for (unsigned i = 0, e = I->second.size(); i != e; ++i)
|
||||
I->second[i]->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
I->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
I->second.clear();
|
||||
}
|
||||
// See if it is known to just have a single memory reference.
|
||||
@ -156,7 +157,8 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
// Handle the def in MemDefs, if there is one.
|
||||
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
|
||||
if (I != MemDefs.end()) {
|
||||
I->second->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
||||
/*isNormalMemory=*/true));
|
||||
I->second = SU;
|
||||
} else {
|
||||
MemDefs[V] = SU;
|
||||
@ -166,12 +168,13 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
MemUses.find(V);
|
||||
if (J != MemUses.end()) {
|
||||
for (unsigned i = 0, e = J->second.size(); i != e; ++i)
|
||||
J->second[i]->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
J->second[i]->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
||||
/*isNormalMemory=*/true));
|
||||
J->second.clear();
|
||||
}
|
||||
// Add a general dependence too, if needed.
|
||||
if (Chain)
|
||||
Chain->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
} else
|
||||
// Treat all other stores conservatively.
|
||||
goto new_chain;
|
||||
@ -186,13 +189,14 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
const Value *V = MI->memoperands_begin()->getValue();
|
||||
std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
|
||||
if (I != MemDefs.end())
|
||||
I->second->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
I->second->addPred(SDep(SU, SDep::Order, SU->Latency, /*Reg=*/0,
|
||||
/*isNormalMemory=*/true));
|
||||
MemUses[V].push_back(SU);
|
||||
|
||||
// Add a general dependence too, if needed.
|
||||
if (Chain && (!ChainMMO ||
|
||||
(ChainMMO->isStore() || ChainMMO->isVolatile())))
|
||||
Chain->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
} else if (MI->hasVolatileMemoryRef()) {
|
||||
// Treat volatile loads conservatively. Note that this includes
|
||||
// cases where memoperand information is unavailable.
|
||||
@ -200,7 +204,7 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
} else {
|
||||
// A normal load. Just depend on the general chain.
|
||||
if (Chain)
|
||||
Chain->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
Chain->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
PendingLoads.push_back(SU);
|
||||
}
|
||||
}
|
||||
@ -208,12 +212,9 @@ void ScheduleDAGInstrs::BuildSchedUnits() {
|
||||
// Add chain edges from the terminator to ensure that all the work of the
|
||||
// block is completed before any control transfers.
|
||||
if (Terminator && SU->Succs.empty())
|
||||
Terminator->addPred(SU, /*isCtrl=*/true, /*isArtificial=*/false);
|
||||
Terminator->addPred(SDep(SU, SDep::Order, SU->Latency));
|
||||
if (TID.isTerminator() || MI->isLabel())
|
||||
Terminator = SU;
|
||||
|
||||
// Assign the Latency field of SU using target-provided information.
|
||||
ComputeLatency(SU);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -77,18 +77,20 @@ public:
|
||||
|
||||
void Schedule();
|
||||
|
||||
/// AddPred - This adds the specified node X as a predecessor of
|
||||
/// the current node Y if not already.
|
||||
/// AddPred - adds a predecessor edge to SUnit SU.
|
||||
/// This returns true if this is a new predecessor.
|
||||
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isArtificial,
|
||||
unsigned PhyReg = 0, int Cost = 1);
|
||||
bool AddPred(SUnit *SU, const SDep &D) {
|
||||
return SU->addPred(D);
|
||||
}
|
||||
|
||||
/// RemovePred - This removes the specified node N from the predecessors of
|
||||
/// the current node M.
|
||||
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial);
|
||||
/// RemovePred - removes a predecessor edge from SUnit SU.
|
||||
/// This returns true if an edge was removed.
|
||||
bool RemovePred(SUnit *SU, const SDep &D) {
|
||||
return SU->removePred(D);
|
||||
}
|
||||
|
||||
private:
|
||||
void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
|
||||
void ReleasePred(SUnit *SU, SDep *PredEdge);
|
||||
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
||||
SUnit *CopyAndMoveSuccessors(SUnit*);
|
||||
void InsertCCCopiesAndMoveSuccs(SUnit*, unsigned,
|
||||
@ -125,7 +127,8 @@ void ScheduleDAGFast::Schedule() {
|
||||
|
||||
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
||||
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGFast::ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain) {
|
||||
void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
|
||||
SUnit *PredSU = PredEdge->getSUnit();
|
||||
--PredSU->NumSuccsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -156,16 +159,16 @@ void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
// Bottom up: release predecessors
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
ReleasePred(SU, I->Dep, I->isCtrl);
|
||||
if (I->Cost < 0) {
|
||||
ReleasePred(SU, &*I);
|
||||
if (I->isAssignedRegDep()) {
|
||||
// This is a physical register dependency and it's impossible or
|
||||
// expensive to copy the register. Make sure nothing that can
|
||||
// clobber the register is scheduled between the predecessor and
|
||||
// this node.
|
||||
if (!LiveRegDefs[I->Reg]) {
|
||||
if (!LiveRegDefs[I->getReg()]) {
|
||||
++NumLiveRegs;
|
||||
LiveRegDefs[I->Reg] = I->Dep;
|
||||
LiveRegCycles[I->Reg] = CurCycle;
|
||||
LiveRegDefs[I->getReg()] = I->getSUnit();
|
||||
LiveRegCycles[I->getReg()] = CurCycle;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -173,14 +176,14 @@ void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
// Release all the implicit physical register defs that are live.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
|
||||
if (I->isAssignedRegDep()) {
|
||||
if (LiveRegCycles[I->getReg()] == I->getSUnit()->Cycle) {
|
||||
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
||||
assert(LiveRegDefs[I->Reg] == SU &&
|
||||
assert(LiveRegDefs[I->getReg()] == SU &&
|
||||
"Physical register dependency violated?");
|
||||
--NumLiveRegs;
|
||||
LiveRegDefs[I->Reg] = NULL;
|
||||
LiveRegCycles[I->Reg] = 0;
|
||||
LiveRegDefs[I->getReg()] = NULL;
|
||||
LiveRegCycles[I->getReg()] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -188,19 +191,6 @@ void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
SU->isScheduled = true;
|
||||
}
|
||||
|
||||
/// AddPred - adds an edge from SUnit X to SUnit Y.
|
||||
bool ScheduleDAGFast::AddPred(SUnit *Y, SUnit *X, bool isCtrl,
|
||||
bool isArtificial, unsigned PhyReg, int Cost) {
|
||||
return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
|
||||
}
|
||||
|
||||
/// RemovePred - This removes the specified node N from the predecessors of
|
||||
/// the current node M.
|
||||
bool ScheduleDAGFast::RemovePred(SUnit *M, SUnit *N,
|
||||
bool isCtrl, bool isArtificial) {
|
||||
return M->removePred(N, isCtrl, isArtificial, false);
|
||||
}
|
||||
|
||||
/// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
|
||||
/// successors to the newly created node.
|
||||
SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
@ -277,65 +267,66 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
LoadSU->Height = SU->Height;
|
||||
}
|
||||
|
||||
SUnit *ChainPred = NULL;
|
||||
SDep ChainPred;
|
||||
SmallVector<SDep, 4> ChainSuccs;
|
||||
SmallVector<SDep, 4> LoadPreds;
|
||||
SmallVector<SDep, 4> NodePreds;
|
||||
SmallVector<SDep, 4> NodeSuccs;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
ChainPred = I->Dep;
|
||||
else if (I->Dep->getNode() && I->Dep->getNode()->isOperandOf(LoadNode))
|
||||
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false, false));
|
||||
if (I->isCtrl())
|
||||
ChainPred = *I;
|
||||
else if (I->getSUnit()->getNode() &&
|
||||
I->getSUnit()->getNode()->isOperandOf(LoadNode))
|
||||
LoadPreds.push_back(*I);
|
||||
else
|
||||
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false, false));
|
||||
NodePreds.push_back(*I);
|
||||
}
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
||||
I->isCtrl, I->isArtificial, I->isAntiDep));
|
||||
if (I->isCtrl())
|
||||
ChainSuccs.push_back(*I);
|
||||
else
|
||||
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
||||
I->isCtrl, I->isArtificial, I->isAntiDep));
|
||||
NodeSuccs.push_back(*I);
|
||||
}
|
||||
|
||||
if (ChainPred) {
|
||||
RemovePred(SU, ChainPred, true, false);
|
||||
if (ChainPred.getSUnit()) {
|
||||
RemovePred(SU, ChainPred);
|
||||
if (isNewLoad)
|
||||
AddPred(LoadSU, ChainPred, true, false);
|
||||
AddPred(LoadSU, ChainPred);
|
||||
}
|
||||
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
|
||||
SDep *Pred = &LoadPreds[i];
|
||||
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
|
||||
const SDep &Pred = LoadPreds[i];
|
||||
RemovePred(SU, Pred);
|
||||
if (isNewLoad) {
|
||||
AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
|
||||
Pred->Reg, Pred->Cost);
|
||||
AddPred(LoadSU, Pred);
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
|
||||
SDep *Pred = &NodePreds[i];
|
||||
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
|
||||
AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
|
||||
Pred->Reg, Pred->Cost);
|
||||
const SDep &Pred = NodePreds[i];
|
||||
RemovePred(SU, Pred);
|
||||
AddPred(NewSU, Pred);
|
||||
}
|
||||
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
|
||||
SDep *Succ = &NodeSuccs[i];
|
||||
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
|
||||
AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isArtificial,
|
||||
Succ->Reg, Succ->Cost);
|
||||
SDep D = NodeSuccs[i];
|
||||
SUnit *SuccDep = D.getSUnit();
|
||||
D.setSUnit(SU);
|
||||
RemovePred(SuccDep, D);
|
||||
D.setSUnit(NewSU);
|
||||
AddPred(SuccDep, D);
|
||||
}
|
||||
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
|
||||
SDep *Succ = &ChainSuccs[i];
|
||||
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
|
||||
SDep D = ChainSuccs[i];
|
||||
SUnit *SuccDep = D.getSUnit();
|
||||
D.setSUnit(SU);
|
||||
RemovePred(SuccDep, D);
|
||||
if (isNewLoad) {
|
||||
AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isArtificial,
|
||||
Succ->Reg, Succ->Cost);
|
||||
D.setSUnit(LoadSU);
|
||||
AddPred(SuccDep, D);
|
||||
}
|
||||
}
|
||||
if (isNewLoad) {
|
||||
AddPred(NewSU, LoadSU, false, false);
|
||||
AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
|
||||
}
|
||||
|
||||
++NumUnfolds;
|
||||
@ -353,28 +344,30 @@ SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
// New SUnit has the exact same predecessors.
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (!I->isArtificial) {
|
||||
AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
|
||||
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
|
||||
if (!I->isArtificial()) {
|
||||
AddPred(NewSU, *I);
|
||||
NewSU->Depth = std::max(NewSU->Depth, I->getSUnit()->Depth+1);
|
||||
}
|
||||
|
||||
// Only copy scheduled successors. Cut them from old node's successor
|
||||
// list and move them over.
|
||||
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
||||
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isArtificial)
|
||||
if (I->isArtificial())
|
||||
continue;
|
||||
if (I->Dep->isScheduled) {
|
||||
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
|
||||
AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
|
||||
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU->isScheduled) {
|
||||
NewSU->Height = std::max(NewSU->Height, SuccSU->Height+1);
|
||||
SDep D = *I;
|
||||
D.setSUnit(NewSU);
|
||||
AddPred(SuccSU, D);
|
||||
D.setSUnit(SU);
|
||||
DelDeps.push_back(std::make_pair(SuccSU, D));
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
||||
SUnit *Succ = DelDeps[i].first;
|
||||
bool isCtrl = DelDeps[i].second;
|
||||
RemovePred(Succ, SU, isCtrl, false);
|
||||
RemovePred(DelDeps[i].first, DelDeps[i].second);
|
||||
}
|
||||
|
||||
++NumDups;
|
||||
@ -397,24 +390,25 @@ void ScheduleDAGFast::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
|
||||
|
||||
// Only copy scheduled successors. Cut them from old node's successor
|
||||
// list and move them over.
|
||||
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
||||
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isArtificial)
|
||||
if (I->isArtificial())
|
||||
continue;
|
||||
if (I->Dep->isScheduled) {
|
||||
AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
|
||||
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU->isScheduled) {
|
||||
SDep D = *I;
|
||||
D.setSUnit(CopyToSU);
|
||||
AddPred(SuccSU, D);
|
||||
DelDeps.push_back(std::make_pair(SuccSU, *I));
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
||||
SUnit *Succ = DelDeps[i].first;
|
||||
bool isCtrl = DelDeps[i].second;
|
||||
RemovePred(Succ, SU, isCtrl, false);
|
||||
RemovePred(DelDeps[i].first, DelDeps[i].second);
|
||||
}
|
||||
|
||||
AddPred(CopyFromSU, SU, false, false, Reg, -1);
|
||||
AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
|
||||
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
|
||||
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
|
||||
|
||||
Copies.push_back(CopyFromSU);
|
||||
Copies.push_back(CopyToSU);
|
||||
@ -451,15 +445,15 @@ bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
|
||||
// If this node would clobber any "live" register, then it's not ready.
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
unsigned Reg = I->Reg;
|
||||
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
|
||||
if (I->isAssignedRegDep()) {
|
||||
unsigned Reg = I->getReg();
|
||||
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
|
||||
if (RegAdded.insert(Reg))
|
||||
LRegs.push_back(Reg);
|
||||
}
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg);
|
||||
*Alias; ++Alias)
|
||||
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
|
||||
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
|
||||
if (RegAdded.insert(*Alias))
|
||||
LRegs.push_back(*Alias);
|
||||
}
|
||||
@ -550,14 +544,18 @@ void ScheduleDAGFast::ListScheduleBottomUp() {
|
||||
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
|
||||
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
|
||||
<< " to SU #" << Copies.front()->NodeNum << "\n";
|
||||
AddPred(TrySU, Copies.front(), true, true);
|
||||
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isNormalMemory=*/false,
|
||||
/*isMustAlias=*/false, /*isArtificial=*/true));
|
||||
NewDef = Copies.back();
|
||||
}
|
||||
|
||||
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
|
||||
<< " to SU #" << TrySU->NodeNum << "\n";
|
||||
LiveRegDefs[Reg] = NewDef;
|
||||
AddPred(NewDef, TrySU, true, true);
|
||||
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isNormalMemory=*/false,
|
||||
/*isMustAlias=*/false, /*isArtificial=*/true));
|
||||
TrySU->isAvailable = false;
|
||||
CurSU = NewDef;
|
||||
}
|
||||
|
@ -78,7 +78,7 @@ public:
|
||||
void Schedule();
|
||||
|
||||
private:
|
||||
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
||||
void ReleaseSucc(SUnit *SU, const SDep &D);
|
||||
void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
|
||||
void ListScheduleTopDown();
|
||||
};
|
||||
@ -107,7 +107,8 @@ void ScheduleDAGList::Schedule() {
|
||||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the PendingQueue if the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
||||
void ScheduleDAGList::ReleaseSucc(SUnit *SU, const SDep &D) {
|
||||
SUnit *SuccSU = D.getSUnit();
|
||||
--SuccSU->NumPredsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -121,14 +122,7 @@ void ScheduleDAGList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
||||
|
||||
// Compute the cycle when this SUnit actually becomes available. This
|
||||
// is the max of the start time of all predecessors plus their latencies.
|
||||
// If this is a token edge, we don't need to wait for the latency of the
|
||||
// preceeding instruction (e.g. a long-latency load) unless there is also
|
||||
// some other data dependence.
|
||||
unsigned PredDoneCycle = SU->Cycle;
|
||||
if (!isChain)
|
||||
PredDoneCycle += SU->Latency;
|
||||
else if (SU->Latency)
|
||||
PredDoneCycle += 1;
|
||||
unsigned PredDoneCycle = SU->Cycle + SU->Latency;
|
||||
SuccSU->CycleBound = std::max(SuccSU->CycleBound, PredDoneCycle);
|
||||
|
||||
if (SuccSU->NumPredsLeft == 0) {
|
||||
@ -149,7 +143,7 @@ void ScheduleDAGList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
// Top down: release successors.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
ReleaseSucc(SU, I->Dep, I->isCtrl);
|
||||
ReleaseSucc(SU, *I);
|
||||
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
|
@ -98,27 +98,26 @@ public:
|
||||
return Topo.WillCreateCycle(SU, TargetSU);
|
||||
}
|
||||
|
||||
/// AddPred - This adds the specified node X as a predecessor of
|
||||
/// the current node Y if not already.
|
||||
/// AddPred - adds a predecessor edge to SUnit SU.
|
||||
/// This returns true if this is a new predecessor.
|
||||
/// Updates the topological ordering if required.
|
||||
bool AddPred(SUnit *Y, SUnit *X, bool isCtrl, bool isArtificial,
|
||||
unsigned PhyReg = 0, int Cost = 1) {
|
||||
Topo.AddPred(Y, X);
|
||||
return Y->addPred(X, isCtrl, isArtificial, PhyReg, Cost);
|
||||
bool AddPred(SUnit *SU, const SDep &D) {
|
||||
Topo.AddPred(SU, D.getSUnit());
|
||||
return SU->addPred(D);
|
||||
}
|
||||
|
||||
/// RemovePred - This removes the specified node N from the predecessors of
|
||||
/// the current node M. Updates the topological ordering if required.
|
||||
bool RemovePred(SUnit *M, SUnit *N, bool isCtrl, bool isArtificial) {
|
||||
Topo.RemovePred(M, N);
|
||||
return M->removePred(N, isCtrl, isArtificial, false);
|
||||
/// RemovePred - removes a predecessor edge from SUnit SU.
|
||||
/// This returns true if an edge was removed.
|
||||
/// Updates the topological ordering if required.
|
||||
bool RemovePred(SUnit *SU, const SDep &D) {
|
||||
Topo.RemovePred(SU, D.getSUnit());
|
||||
return SU->removePred(D);
|
||||
}
|
||||
|
||||
private:
|
||||
void ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain);
|
||||
void ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain);
|
||||
void CapturePred(SUnit*, SUnit*, bool);
|
||||
void ReleasePred(SUnit *SU, SDep *PredEdge);
|
||||
void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
|
||||
void CapturePred(SDep *PredEdge);
|
||||
void ScheduleNodeBottomUp(SUnit*, unsigned);
|
||||
void ScheduleNodeTopDown(SUnit*, unsigned);
|
||||
void UnscheduleNodeBottomUp(SUnit*);
|
||||
@ -235,8 +234,8 @@ void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
||||
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (!I->isCtrl)
|
||||
OperandSeen.insert(I->Dep->OrigNode);
|
||||
if (!I->isCtrl())
|
||||
OperandSeen.insert(I->getSUnit()->OrigNode);
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -247,7 +246,8 @@ void ScheduleDAGRRList::CommuteNodesToReducePressure() {
|
||||
|
||||
/// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
|
||||
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGRRList::ReleasePred(SUnit *SU, SUnit *PredSU, bool isChain) {
|
||||
void ScheduleDAGRRList::ReleasePred(SUnit *SU, SDep *PredEdge) {
|
||||
SUnit *PredSU = PredEdge->getSUnit();
|
||||
--PredSU->NumSuccsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -278,16 +278,16 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
// Bottom up: release predecessors
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
ReleasePred(SU, I->Dep, I->isCtrl);
|
||||
if (I->Cost < 0) {
|
||||
ReleasePred(SU, &*I);
|
||||
if (I->isAssignedRegDep()) {
|
||||
// This is a physical register dependency and it's impossible or
|
||||
// expensive to copy the register. Make sure nothing that can
|
||||
// clobber the register is scheduled between the predecessor and
|
||||
// this node.
|
||||
if (!LiveRegDefs[I->Reg]) {
|
||||
if (!LiveRegDefs[I->getReg()]) {
|
||||
++NumLiveRegs;
|
||||
LiveRegDefs[I->Reg] = I->Dep;
|
||||
LiveRegCycles[I->Reg] = CurCycle;
|
||||
LiveRegDefs[I->getReg()] = I->getSUnit();
|
||||
LiveRegCycles[I->getReg()] = CurCycle;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -295,14 +295,14 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
// Release all the implicit physical register defs that are live.
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
if (LiveRegCycles[I->Reg] == I->Dep->Cycle) {
|
||||
if (I->isAssignedRegDep()) {
|
||||
if (LiveRegCycles[I->getReg()] == I->getSUnit()->Cycle) {
|
||||
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
||||
assert(LiveRegDefs[I->Reg] == SU &&
|
||||
assert(LiveRegDefs[I->getReg()] == SU &&
|
||||
"Physical register dependency violated?");
|
||||
--NumLiveRegs;
|
||||
LiveRegDefs[I->Reg] = NULL;
|
||||
LiveRegCycles[I->Reg] = 0;
|
||||
LiveRegDefs[I->getReg()] = NULL;
|
||||
LiveRegCycles[I->getReg()] = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -314,7 +314,8 @@ void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
|
||||
/// CapturePred - This does the opposite of ReleasePred. Since SU is being
|
||||
/// unscheduled, incrcease the succ left count of its predecessors. Remove
|
||||
/// them from AvailableQueue if necessary.
|
||||
void ScheduleDAGRRList::CapturePred(SUnit *PredSU, SUnit *SU, bool isChain) {
|
||||
void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
|
||||
SUnit *PredSU = PredEdge->getSUnit();
|
||||
if (PredSU->isAvailable) {
|
||||
PredSU->isAvailable = false;
|
||||
if (!PredSU->isPending)
|
||||
@ -334,26 +335,26 @@ void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
|
||||
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
CapturePred(I->Dep, SU, I->isCtrl);
|
||||
if (I->Cost < 0 && SU->Cycle == LiveRegCycles[I->Reg]) {
|
||||
CapturePred(&*I);
|
||||
if (I->isAssignedRegDep() && SU->Cycle == LiveRegCycles[I->getReg()]) {
|
||||
assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
|
||||
assert(LiveRegDefs[I->Reg] == I->Dep &&
|
||||
assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
|
||||
"Physical register dependency violated?");
|
||||
--NumLiveRegs;
|
||||
LiveRegDefs[I->Reg] = NULL;
|
||||
LiveRegCycles[I->Reg] = 0;
|
||||
LiveRegDefs[I->getReg()] = NULL;
|
||||
LiveRegCycles[I->getReg()] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
if (!LiveRegDefs[I->Reg]) {
|
||||
LiveRegDefs[I->Reg] = SU;
|
||||
if (I->isAssignedRegDep()) {
|
||||
if (!LiveRegDefs[I->getReg()]) {
|
||||
LiveRegDefs[I->getReg()] = SU;
|
||||
++NumLiveRegs;
|
||||
}
|
||||
if (I->Dep->Cycle < LiveRegCycles[I->Reg])
|
||||
LiveRegCycles[I->Reg] = I->Dep->Cycle;
|
||||
if (I->getSUnit()->Cycle < LiveRegCycles[I->getReg()])
|
||||
LiveRegCycles[I->getReg()] = I->getSUnit()->Cycle;
|
||||
}
|
||||
}
|
||||
|
||||
@ -466,65 +467,66 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
NewSU->Height = SU->Height;
|
||||
ComputeLatency(NewSU);
|
||||
|
||||
SUnit *ChainPred = NULL;
|
||||
SDep ChainPred;
|
||||
SmallVector<SDep, 4> ChainSuccs;
|
||||
SmallVector<SDep, 4> LoadPreds;
|
||||
SmallVector<SDep, 4> NodePreds;
|
||||
SmallVector<SDep, 4> NodeSuccs;
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
ChainPred = I->Dep;
|
||||
else if (I->Dep->getNode() && I->Dep->getNode()->isOperandOf(LoadNode))
|
||||
LoadPreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false, false));
|
||||
if (I->isCtrl())
|
||||
ChainPred = *I;
|
||||
else if (I->getSUnit()->getNode() &&
|
||||
I->getSUnit()->getNode()->isOperandOf(LoadNode))
|
||||
LoadPreds.push_back(*I);
|
||||
else
|
||||
NodePreds.push_back(SDep(I->Dep, I->Reg, I->Cost, false, false, false));
|
||||
NodePreds.push_back(*I);
|
||||
}
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl)
|
||||
ChainSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
||||
I->isCtrl, I->isArtificial, I->isAntiDep));
|
||||
if (I->isCtrl())
|
||||
ChainSuccs.push_back(*I);
|
||||
else
|
||||
NodeSuccs.push_back(SDep(I->Dep, I->Reg, I->Cost,
|
||||
I->isCtrl, I->isArtificial, I->isAntiDep));
|
||||
NodeSuccs.push_back(*I);
|
||||
}
|
||||
|
||||
if (ChainPred) {
|
||||
RemovePred(SU, ChainPred, true, false);
|
||||
if (ChainPred.getSUnit()) {
|
||||
RemovePred(SU, ChainPred);
|
||||
if (isNewLoad)
|
||||
AddPred(LoadSU, ChainPred, true, false);
|
||||
AddPred(LoadSU, ChainPred);
|
||||
}
|
||||
for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
|
||||
SDep *Pred = &LoadPreds[i];
|
||||
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
|
||||
const SDep &Pred = LoadPreds[i];
|
||||
RemovePred(SU, Pred);
|
||||
if (isNewLoad) {
|
||||
AddPred(LoadSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
|
||||
Pred->Reg, Pred->Cost);
|
||||
AddPred(LoadSU, Pred);
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
|
||||
SDep *Pred = &NodePreds[i];
|
||||
RemovePred(SU, Pred->Dep, Pred->isCtrl, Pred->isArtificial);
|
||||
AddPred(NewSU, Pred->Dep, Pred->isCtrl, Pred->isArtificial,
|
||||
Pred->Reg, Pred->Cost);
|
||||
const SDep &Pred = NodePreds[i];
|
||||
RemovePred(SU, Pred);
|
||||
AddPred(NewSU, Pred);
|
||||
}
|
||||
for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
|
||||
SDep *Succ = &NodeSuccs[i];
|
||||
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
|
||||
AddPred(Succ->Dep, NewSU, Succ->isCtrl, Succ->isArtificial,
|
||||
Succ->Reg, Succ->Cost);
|
||||
SDep D = NodeSuccs[i];
|
||||
SUnit *SuccDep = D.getSUnit();
|
||||
D.setSUnit(SU);
|
||||
RemovePred(SuccDep, D);
|
||||
D.setSUnit(NewSU);
|
||||
AddPred(SuccDep, D);
|
||||
}
|
||||
for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
|
||||
SDep *Succ = &ChainSuccs[i];
|
||||
RemovePred(Succ->Dep, SU, Succ->isCtrl, Succ->isArtificial);
|
||||
SDep D = ChainSuccs[i];
|
||||
SUnit *SuccDep = D.getSUnit();
|
||||
D.setSUnit(SU);
|
||||
RemovePred(SuccDep, D);
|
||||
if (isNewLoad) {
|
||||
AddPred(Succ->Dep, LoadSU, Succ->isCtrl, Succ->isArtificial,
|
||||
Succ->Reg, Succ->Cost);
|
||||
D.setSUnit(LoadSU);
|
||||
AddPred(SuccDep, D);
|
||||
}
|
||||
}
|
||||
if (isNewLoad) {
|
||||
AddPred(NewSU, LoadSU, false, false);
|
||||
AddPred(NewSU, SDep(LoadSU, SDep::Order, LoadSU->Latency));
|
||||
}
|
||||
|
||||
if (isNewLoad)
|
||||
@ -546,28 +548,30 @@ SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
|
||||
// New SUnit has the exact same predecessors.
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I)
|
||||
if (!I->isArtificial) {
|
||||
AddPred(NewSU, I->Dep, I->isCtrl, false, I->Reg, I->Cost);
|
||||
NewSU->Depth = std::max(NewSU->Depth, I->Dep->Depth+1);
|
||||
if (!I->isArtificial()) {
|
||||
AddPred(NewSU, *I);
|
||||
NewSU->Depth = std::max(NewSU->Depth, I->getSUnit()->Depth+1);
|
||||
}
|
||||
|
||||
// Only copy scheduled successors. Cut them from old node's successor
|
||||
// list and move them over.
|
||||
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
||||
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isArtificial)
|
||||
if (I->isArtificial())
|
||||
continue;
|
||||
if (I->Dep->isScheduled) {
|
||||
NewSU->Height = std::max(NewSU->Height, I->Dep->Height+1);
|
||||
AddPred(I->Dep, NewSU, I->isCtrl, false, I->Reg, I->Cost);
|
||||
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU->isScheduled) {
|
||||
NewSU->Height = std::max(NewSU->Height, SuccSU->Height+1);
|
||||
SDep D = *I;
|
||||
D.setSUnit(NewSU);
|
||||
AddPred(SuccSU, D);
|
||||
D.setSUnit(SU);
|
||||
DelDeps.push_back(std::make_pair(SuccSU, D));
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
||||
SUnit *Succ = DelDeps[i].first;
|
||||
bool isCtrl = DelDeps[i].second;
|
||||
RemovePred(Succ, SU, isCtrl, false);
|
||||
RemovePred(DelDeps[i].first, DelDeps[i].second);
|
||||
}
|
||||
|
||||
AvailableQueue->updateNode(SU);
|
||||
@ -595,25 +599,25 @@ void ScheduleDAGRRList::InsertCCCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
|
||||
|
||||
// Only copy scheduled successors. Cut them from old node's successor
|
||||
// list and move them over.
|
||||
SmallVector<std::pair<SUnit*, bool>, 4> DelDeps;
|
||||
SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isArtificial)
|
||||
if (I->isArtificial())
|
||||
continue;
|
||||
if (I->Dep->isScheduled) {
|
||||
CopyToSU->Height = std::max(CopyToSU->Height, I->Dep->Height+1);
|
||||
AddPred(I->Dep, CopyToSU, I->isCtrl, false, I->Reg, I->Cost);
|
||||
DelDeps.push_back(std::make_pair(I->Dep, I->isCtrl));
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU->isScheduled) {
|
||||
SDep D = *I;
|
||||
D.setSUnit(CopyToSU);
|
||||
AddPred(SuccSU, D);
|
||||
DelDeps.push_back(std::make_pair(SuccSU, *I));
|
||||
}
|
||||
}
|
||||
for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
|
||||
SUnit *Succ = DelDeps[i].first;
|
||||
bool isCtrl = DelDeps[i].second;
|
||||
RemovePred(Succ, SU, isCtrl, false);
|
||||
RemovePred(DelDeps[i].first, DelDeps[i].second);
|
||||
}
|
||||
|
||||
AddPred(CopyFromSU, SU, false, false, Reg, -1);
|
||||
AddPred(CopyToSU, CopyFromSU, false, false, Reg, 1);
|
||||
AddPred(CopyFromSU, SDep(SU, SDep::Data, SU->Latency, Reg));
|
||||
AddPred(CopyToSU, SDep(CopyFromSU, SDep::Data, CopyFromSU->Latency, 0));
|
||||
|
||||
AvailableQueue->updateNode(SU);
|
||||
AvailableQueue->addNode(CopyFromSU);
|
||||
@ -653,15 +657,15 @@ bool ScheduleDAGRRList::DelayForLiveRegsBottomUp(SUnit *SU,
|
||||
// If this node would clobber any "live" register, then it's not ready.
|
||||
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->Cost < 0) {
|
||||
unsigned Reg = I->Reg;
|
||||
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->Dep) {
|
||||
if (I->isAssignedRegDep()) {
|
||||
unsigned Reg = I->getReg();
|
||||
if (LiveRegDefs[Reg] && LiveRegDefs[Reg] != I->getSUnit()) {
|
||||
if (RegAdded.insert(Reg))
|
||||
LRegs.push_back(Reg);
|
||||
}
|
||||
for (const unsigned *Alias = TRI->getAliasSet(Reg);
|
||||
*Alias; ++Alias)
|
||||
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->Dep) {
|
||||
if (LiveRegDefs[*Alias] && LiveRegDefs[*Alias] != I->getSUnit()) {
|
||||
if (RegAdded.insert(*Alias))
|
||||
LRegs.push_back(*Alias);
|
||||
}
|
||||
@ -749,7 +753,9 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
|
||||
OldSU->isAvailable = false;
|
||||
AvailableQueue->remove(OldSU);
|
||||
}
|
||||
AddPred(TrySU, OldSU, true, true);
|
||||
AddPred(TrySU, SDep(OldSU, SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isNormalMemory=*/false,
|
||||
/*isMustAlias=*/false, /*isArtificial=*/true));
|
||||
// If one or more successors has been unscheduled, then the current
|
||||
// node is no longer avaialable. Schedule a successor that's now
|
||||
// available instead.
|
||||
@ -788,14 +794,18 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
|
||||
InsertCCCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
|
||||
DOUT << "Adding an edge from SU # " << TrySU->NodeNum
|
||||
<< " to SU #" << Copies.front()->NodeNum << "\n";
|
||||
AddPred(TrySU, Copies.front(), true, true);
|
||||
AddPred(TrySU, SDep(Copies.front(), SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isMustAlias=*/false,
|
||||
/*isArtificial=*/true));
|
||||
NewDef = Copies.back();
|
||||
}
|
||||
|
||||
DOUT << "Adding an edge from SU # " << NewDef->NodeNum
|
||||
<< " to SU #" << TrySU->NodeNum << "\n";
|
||||
LiveRegDefs[Reg] = NewDef;
|
||||
AddPred(NewDef, TrySU, true, true);
|
||||
AddPred(NewDef, SDep(TrySU, SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isMustAlias=*/false,
|
||||
/*isArtificial=*/true));
|
||||
TrySU->isAvailable = false;
|
||||
CurSU = NewDef;
|
||||
}
|
||||
@ -834,7 +844,8 @@ void ScheduleDAGRRList::ListScheduleBottomUp() {
|
||||
|
||||
/// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
|
||||
/// the AvailableQueue if the count reaches zero. Also update its cycle bound.
|
||||
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SUnit *SuccSU, bool isChain) {
|
||||
void ScheduleDAGRRList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
|
||||
SUnit *SuccSU = SuccEdge->getSUnit();
|
||||
--SuccSU->NumPredsLeft;
|
||||
|
||||
#ifndef NDEBUG
|
||||
@ -865,7 +876,7 @@ void ScheduleDAGRRList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
|
||||
// Top down: release successors
|
||||
for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I)
|
||||
ReleaseSucc(SU, I->Dep, I->isCtrl);
|
||||
ReleaseSucc(SU, &*I);
|
||||
|
||||
SU->isScheduled = true;
|
||||
AvailableQueue->ScheduledNode(SU);
|
||||
@ -948,13 +959,13 @@ CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
|
||||
unsigned Extra = 0;
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue; // ignore chain preds
|
||||
SUnit *PredSU = I->Dep;
|
||||
if (I->isCtrl()) continue; // ignore chain preds
|
||||
SUnit *PredSU = I->getSUnit();
|
||||
unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
|
||||
if (PredSethiUllman > SethiUllmanNumber) {
|
||||
SethiUllmanNumber = PredSethiUllman;
|
||||
Extra = 0;
|
||||
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl)
|
||||
} else if (PredSethiUllman == SethiUllmanNumber && !I->isCtrl())
|
||||
++Extra;
|
||||
}
|
||||
|
||||
@ -1099,11 +1110,12 @@ static unsigned closestSucc(const SUnit *SU) {
|
||||
unsigned MaxCycle = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
unsigned Cycle = I->Dep->Cycle;
|
||||
unsigned Cycle = I->getSUnit()->Cycle;
|
||||
// If there are bunch of CopyToRegs stacked up, they should be considered
|
||||
// to be at the same position.
|
||||
if (I->Dep->getNode() && I->Dep->getNode()->getOpcode() == ISD::CopyToReg)
|
||||
Cycle = closestSucc(I->Dep)+1;
|
||||
if (I->getSUnit()->getNode() &&
|
||||
I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
|
||||
Cycle = closestSucc(I->getSUnit())+1;
|
||||
if (Cycle > MaxCycle)
|
||||
MaxCycle = Cycle;
|
||||
}
|
||||
@ -1117,14 +1129,16 @@ static unsigned calcMaxScratches(const SUnit *SU) {
|
||||
unsigned Scratches = 0;
|
||||
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue; // ignore chain preds
|
||||
if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyFromReg)
|
||||
if (I->isCtrl()) continue; // ignore chain preds
|
||||
if (!I->getSUnit()->getNode() ||
|
||||
I->getSUnit()->getNode()->getOpcode() != ISD::CopyFromReg)
|
||||
Scratches++;
|
||||
}
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue; // ignore chain succs
|
||||
if (!I->Dep->getNode() || I->Dep->getNode()->getOpcode() != ISD::CopyToReg)
|
||||
if (I->isCtrl()) continue; // ignore chain succs
|
||||
if (!I->getSUnit()->getNode() ||
|
||||
I->getSUnit()->getNode()->getOpcode() != ISD::CopyToReg)
|
||||
Scratches += 10;
|
||||
}
|
||||
return Scratches;
|
||||
@ -1205,8 +1219,8 @@ RegReductionPriorityQueue<SF>::canClobber(const SUnit *SU, const SUnit *Op) {
|
||||
static bool hasCopyToRegUse(const SUnit *SU) {
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
if (I->isCtrl) continue;
|
||||
const SUnit *SuccSU = I->Dep;
|
||||
if (I->isCtrl()) continue;
|
||||
const SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg)
|
||||
return true;
|
||||
}
|
||||
@ -1274,8 +1288,8 @@ void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
|
||||
if (!DUSU) continue;
|
||||
for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
|
||||
E = DUSU->Succs.end(); I != E; ++I) {
|
||||
if (I->isCtrl) continue;
|
||||
SUnit *SuccSU = I->Dep;
|
||||
if (I->isCtrl()) continue;
|
||||
SUnit *SuccSU = I->getSUnit();
|
||||
if (SuccSU == SU)
|
||||
continue;
|
||||
// Be conservative. Ignore if nodes aren't at roughly the same
|
||||
@ -1302,7 +1316,9 @@ void RegReductionPriorityQueue<SF>::AddPseudoTwoAddrDeps() {
|
||||
!scheduleDAG->IsReachable(SuccSU, SU)) {
|
||||
DOUT << "Adding a pseudo-two-addr edge from SU # " << SU->NodeNum
|
||||
<< " to SU #" << SuccSU->NodeNum << "\n";
|
||||
scheduleDAG->AddPred(SU, SuccSU, true, true);
|
||||
scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Order, /*Latency=*/1,
|
||||
/*Reg=*/0, /*isMustAlias=*/false,
|
||||
/*isArtificial=*/true));
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -1327,10 +1343,10 @@ static unsigned LimitedSumOfUnscheduledPredsOfSuccs(const SUnit *SU,
|
||||
unsigned Sum = 0;
|
||||
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
||||
I != E; ++I) {
|
||||
const SUnit *SuccSU = I->Dep;
|
||||
const SUnit *SuccSU = I->getSUnit();
|
||||
for (SUnit::const_pred_iterator II = SuccSU->Preds.begin(),
|
||||
EE = SuccSU->Preds.end(); II != EE; ++II) {
|
||||
SUnit *PredSU = II->Dep;
|
||||
SUnit *PredSU = II->getSUnit();
|
||||
if (!PredSU->isScheduled)
|
||||
if (++Sum > Limit)
|
||||
return Sum;
|
||||
|
@ -176,7 +176,10 @@ void ScheduleDAGSDNodes::BuildSchedUnits() {
|
||||
int Cost = 1;
|
||||
// Determine if this is a physical register dependency.
|
||||
CheckForPhysRegDependency(OpN, N, i, TRI, TII, PhysReg, Cost);
|
||||
SU->addPred(OpSU, isChain, false, PhysReg, Cost);
|
||||
assert((PhysReg == 0 || !isChain) &&
|
||||
"Chain dependence via physreg data?");
|
||||
SU->addPred(SDep(OpSU, isChain ? SDep::Order : SDep::Data,
|
||||
OpSU->Latency, PhysReg));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user